Properties

Label 5850.2.a.cp.1.1
Level $5850$
Weight $2$
Character 5850.1
Self dual yes
Analytic conductor $46.712$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5850,2,Mod(1,5850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5850, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5850.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5850 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5850.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.7124851824\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.940.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 7x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.89511\) of defining polynomial
Character \(\chi\) \(=\) 5850.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -4.38164 q^{7} -1.00000 q^{8} -2.00000 q^{11} +1.00000 q^{13} +4.38164 q^{14} +1.00000 q^{16} -5.86818 q^{17} -0.973070 q^{19} +2.00000 q^{22} -7.79021 q^{23} -1.00000 q^{26} -4.38164 q^{28} -0.973070 q^{29} -1.79021 q^{31} -1.00000 q^{32} +5.86818 q^{34} -0.591429 q^{37} +0.973070 q^{38} -4.81714 q^{41} +4.68532 q^{43} -2.00000 q^{44} +7.79021 q^{46} -0.381642 q^{47} +12.1988 q^{49} +1.00000 q^{52} -7.79021 q^{53} +4.38164 q^{56} +0.973070 q^{58} +0.973070 q^{59} -0.817143 q^{61} +1.79021 q^{62} +1.00000 q^{64} +1.79021 q^{67} -5.86818 q^{68} +3.92204 q^{71} -6.00000 q^{73} +0.591429 q^{74} -0.973070 q^{76} +8.76328 q^{77} +10.9731 q^{79} +4.81714 q^{82} +6.97307 q^{83} -4.68532 q^{86} +2.00000 q^{88} -0.973070 q^{89} -4.38164 q^{91} -7.79021 q^{92} +0.381642 q^{94} -18.6074 q^{97} -12.1988 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 3 q^{4} - 2 q^{7} - 3 q^{8} - 6 q^{11} + 3 q^{13} + 2 q^{14} + 3 q^{16} - 4 q^{17} + 2 q^{19} + 6 q^{22} - 6 q^{23} - 3 q^{26} - 2 q^{28} + 2 q^{29} + 12 q^{31} - 3 q^{32} + 4 q^{34} - 8 q^{37}+ \cdots - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) −4.38164 −1.65610 −0.828052 0.560651i \(-0.810551\pi\)
−0.828052 + 0.560651i \(0.810551\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 4.38164 1.17104
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −5.86818 −1.42324 −0.711621 0.702564i \(-0.752039\pi\)
−0.711621 + 0.702564i \(0.752039\pi\)
\(18\) 0 0
\(19\) −0.973070 −0.223238 −0.111619 0.993751i \(-0.535604\pi\)
−0.111619 + 0.993751i \(0.535604\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 2.00000 0.426401
\(23\) −7.79021 −1.62437 −0.812186 0.583399i \(-0.801722\pi\)
−0.812186 + 0.583399i \(0.801722\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −1.00000 −0.196116
\(27\) 0 0
\(28\) −4.38164 −0.828052
\(29\) −0.973070 −0.180695 −0.0903473 0.995910i \(-0.528798\pi\)
−0.0903473 + 0.995910i \(0.528798\pi\)
\(30\) 0 0
\(31\) −1.79021 −0.321532 −0.160766 0.986993i \(-0.551396\pi\)
−0.160766 + 0.986993i \(0.551396\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 5.86818 1.00638
\(35\) 0 0
\(36\) 0 0
\(37\) −0.591429 −0.0972303 −0.0486151 0.998818i \(-0.515481\pi\)
−0.0486151 + 0.998818i \(0.515481\pi\)
\(38\) 0.973070 0.157853
\(39\) 0 0
\(40\) 0 0
\(41\) −4.81714 −0.752311 −0.376156 0.926556i \(-0.622754\pi\)
−0.376156 + 0.926556i \(0.622754\pi\)
\(42\) 0 0
\(43\) 4.68532 0.714505 0.357252 0.934008i \(-0.383714\pi\)
0.357252 + 0.934008i \(0.383714\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) 7.79021 1.14860
\(47\) −0.381642 −0.0556682 −0.0278341 0.999613i \(-0.508861\pi\)
−0.0278341 + 0.999613i \(0.508861\pi\)
\(48\) 0 0
\(49\) 12.1988 1.74268
\(50\) 0 0
\(51\) 0 0
\(52\) 1.00000 0.138675
\(53\) −7.79021 −1.07007 −0.535034 0.844831i \(-0.679701\pi\)
−0.535034 + 0.844831i \(0.679701\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 4.38164 0.585522
\(57\) 0 0
\(58\) 0.973070 0.127770
\(59\) 0.973070 0.126683 0.0633415 0.997992i \(-0.479824\pi\)
0.0633415 + 0.997992i \(0.479824\pi\)
\(60\) 0 0
\(61\) −0.817143 −0.104624 −0.0523122 0.998631i \(-0.516659\pi\)
−0.0523122 + 0.998631i \(0.516659\pi\)
\(62\) 1.79021 0.227357
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 1.79021 0.218709 0.109355 0.994003i \(-0.465122\pi\)
0.109355 + 0.994003i \(0.465122\pi\)
\(68\) −5.86818 −0.711621
\(69\) 0 0
\(70\) 0 0
\(71\) 3.92204 0.465460 0.232730 0.972541i \(-0.425234\pi\)
0.232730 + 0.972541i \(0.425234\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0.591429 0.0687522
\(75\) 0 0
\(76\) −0.973070 −0.111619
\(77\) 8.76328 0.998669
\(78\) 0 0
\(79\) 10.9731 1.23457 0.617283 0.786741i \(-0.288233\pi\)
0.617283 + 0.786741i \(0.288233\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 4.81714 0.531964
\(83\) 6.97307 0.765394 0.382697 0.923874i \(-0.374995\pi\)
0.382697 + 0.923874i \(0.374995\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.68532 −0.505231
\(87\) 0 0
\(88\) 2.00000 0.213201
\(89\) −0.973070 −0.103145 −0.0515726 0.998669i \(-0.516423\pi\)
−0.0515726 + 0.998669i \(0.516423\pi\)
\(90\) 0 0
\(91\) −4.38164 −0.459321
\(92\) −7.79021 −0.812186
\(93\) 0 0
\(94\) 0.381642 0.0393633
\(95\) 0 0
\(96\) 0 0
\(97\) −18.6074 −1.88929 −0.944645 0.328093i \(-0.893594\pi\)
−0.944645 + 0.328093i \(0.893594\pi\)
\(98\) −12.1988 −1.23226
\(99\) 0 0
\(100\) 0 0
\(101\) −14.3437 −1.42725 −0.713626 0.700527i \(-0.752948\pi\)
−0.713626 + 0.700527i \(0.752948\pi\)
\(102\) 0 0
\(103\) 9.73635 0.959351 0.479676 0.877446i \(-0.340754\pi\)
0.479676 + 0.877446i \(0.340754\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 0 0
\(106\) 7.79021 0.756652
\(107\) 5.79021 0.559761 0.279881 0.960035i \(-0.409705\pi\)
0.279881 + 0.960035i \(0.409705\pi\)
\(108\) 0 0
\(109\) −0.685320 −0.0656417 −0.0328209 0.999461i \(-0.510449\pi\)
−0.0328209 + 0.999461i \(0.510449\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −4.38164 −0.414026
\(113\) −4.00000 −0.376288 −0.188144 0.982141i \(-0.560247\pi\)
−0.188144 + 0.982141i \(0.560247\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.973070 −0.0903473
\(117\) 0 0
\(118\) −0.973070 −0.0895784
\(119\) 25.7122 2.35704
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0.817143 0.0739806
\(123\) 0 0
\(124\) −1.79021 −0.160766
\(125\) 0 0
\(126\) 0 0
\(127\) 11.7902 1.04621 0.523106 0.852268i \(-0.324773\pi\)
0.523106 + 0.852268i \(0.324773\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 16.9890 1.48434 0.742168 0.670214i \(-0.233798\pi\)
0.742168 + 0.670214i \(0.233798\pi\)
\(132\) 0 0
\(133\) 4.26365 0.369705
\(134\) −1.79021 −0.154651
\(135\) 0 0
\(136\) 5.86818 0.503192
\(137\) −4.20979 −0.359666 −0.179833 0.983697i \(-0.557556\pi\)
−0.179833 + 0.983697i \(0.557556\pi\)
\(138\) 0 0
\(139\) −6.17185 −0.523490 −0.261745 0.965137i \(-0.584298\pi\)
−0.261745 + 0.965137i \(0.584298\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3.92204 −0.329130
\(143\) −2.00000 −0.167248
\(144\) 0 0
\(145\) 0 0
\(146\) 6.00000 0.496564
\(147\) 0 0
\(148\) −0.591429 −0.0486151
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 15.5025 1.26157 0.630786 0.775957i \(-0.282732\pi\)
0.630786 + 0.775957i \(0.282732\pi\)
\(152\) 0.973070 0.0789264
\(153\) 0 0
\(154\) −8.76328 −0.706166
\(155\) 0 0
\(156\) 0 0
\(157\) 8.97307 0.716129 0.358064 0.933697i \(-0.383437\pi\)
0.358064 + 0.933697i \(0.383437\pi\)
\(158\) −10.9731 −0.872971
\(159\) 0 0
\(160\) 0 0
\(161\) 34.1339 2.69013
\(162\) 0 0
\(163\) −12.6074 −0.987484 −0.493742 0.869608i \(-0.664371\pi\)
−0.493742 + 0.869608i \(0.664371\pi\)
\(164\) −4.81714 −0.376156
\(165\) 0 0
\(166\) −6.97307 −0.541215
\(167\) −23.1609 −1.79224 −0.896120 0.443811i \(-0.853626\pi\)
−0.896120 + 0.443811i \(0.853626\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 4.68532 0.357252
\(173\) 19.7902 1.50462 0.752311 0.658808i \(-0.228939\pi\)
0.752311 + 0.658808i \(0.228939\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2.00000 −0.150756
\(177\) 0 0
\(178\) 0.973070 0.0729347
\(179\) −6.17185 −0.461306 −0.230653 0.973036i \(-0.574086\pi\)
−0.230653 + 0.973036i \(0.574086\pi\)
\(180\) 0 0
\(181\) −19.3706 −1.43981 −0.719904 0.694074i \(-0.755814\pi\)
−0.719904 + 0.694074i \(0.755814\pi\)
\(182\) 4.38164 0.324789
\(183\) 0 0
\(184\) 7.79021 0.574302
\(185\) 0 0
\(186\) 0 0
\(187\) 11.7364 0.858247
\(188\) −0.381642 −0.0278341
\(189\) 0 0
\(190\) 0 0
\(191\) 3.73635 0.270353 0.135177 0.990822i \(-0.456840\pi\)
0.135177 + 0.990822i \(0.456840\pi\)
\(192\) 0 0
\(193\) 15.3706 1.10640 0.553201 0.833048i \(-0.313406\pi\)
0.553201 + 0.833048i \(0.313406\pi\)
\(194\) 18.6074 1.33593
\(195\) 0 0
\(196\) 12.1988 0.871342
\(197\) −26.9890 −1.92289 −0.961443 0.275004i \(-0.911321\pi\)
−0.961443 + 0.275004i \(0.911321\pi\)
\(198\) 0 0
\(199\) 23.3168 1.65288 0.826441 0.563023i \(-0.190362\pi\)
0.826441 + 0.563023i \(0.190362\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 14.3437 1.00922
\(203\) 4.26365 0.299249
\(204\) 0 0
\(205\) 0 0
\(206\) −9.73635 −0.678364
\(207\) 0 0
\(208\) 1.00000 0.0693375
\(209\) 1.94614 0.134617
\(210\) 0 0
\(211\) 15.3547 1.05706 0.528531 0.848914i \(-0.322743\pi\)
0.528531 + 0.848914i \(0.322743\pi\)
\(212\) −7.79021 −0.535034
\(213\) 0 0
\(214\) −5.79021 −0.395811
\(215\) 0 0
\(216\) 0 0
\(217\) 7.84407 0.532490
\(218\) 0.685320 0.0464157
\(219\) 0 0
\(220\) 0 0
\(221\) −5.86818 −0.394736
\(222\) 0 0
\(223\) 24.8331 1.66295 0.831473 0.555566i \(-0.187498\pi\)
0.831473 + 0.555566i \(0.187498\pi\)
\(224\) 4.38164 0.292761
\(225\) 0 0
\(226\) 4.00000 0.266076
\(227\) 21.5266 1.42877 0.714384 0.699754i \(-0.246707\pi\)
0.714384 + 0.699754i \(0.246707\pi\)
\(228\) 0 0
\(229\) −2.63146 −0.173892 −0.0869459 0.996213i \(-0.527711\pi\)
−0.0869459 + 0.996213i \(0.527711\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.973070 0.0638852
\(233\) 29.0290 1.90175 0.950877 0.309568i \(-0.100184\pi\)
0.950877 + 0.309568i \(0.100184\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.973070 0.0633415
\(237\) 0 0
\(238\) −25.7122 −1.66668
\(239\) −2.13182 −0.137896 −0.0689481 0.997620i \(-0.521964\pi\)
−0.0689481 + 0.997620i \(0.521964\pi\)
\(240\) 0 0
\(241\) 22.4996 1.44933 0.724665 0.689102i \(-0.241995\pi\)
0.724665 + 0.689102i \(0.241995\pi\)
\(242\) 7.00000 0.449977
\(243\) 0 0
\(244\) −0.817143 −0.0523122
\(245\) 0 0
\(246\) 0 0
\(247\) −0.973070 −0.0619150
\(248\) 1.79021 0.113679
\(249\) 0 0
\(250\) 0 0
\(251\) 0.419574 0.0264833 0.0132416 0.999912i \(-0.495785\pi\)
0.0132416 + 0.999912i \(0.495785\pi\)
\(252\) 0 0
\(253\) 15.5804 0.979533
\(254\) −11.7902 −0.739784
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −19.6584 −1.22626 −0.613128 0.789983i \(-0.710089\pi\)
−0.613128 + 0.789983i \(0.710089\pi\)
\(258\) 0 0
\(259\) 2.59143 0.161024
\(260\) 0 0
\(261\) 0 0
\(262\) −16.9890 −1.04958
\(263\) 10.7633 0.663692 0.331846 0.943333i \(-0.392328\pi\)
0.331846 + 0.943333i \(0.392328\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −4.26365 −0.261421
\(267\) 0 0
\(268\) 1.79021 0.109355
\(269\) 14.7633 0.900133 0.450067 0.892995i \(-0.351400\pi\)
0.450067 + 0.892995i \(0.351400\pi\)
\(270\) 0 0
\(271\) −27.2388 −1.65464 −0.827320 0.561731i \(-0.810136\pi\)
−0.827320 + 0.561731i \(0.810136\pi\)
\(272\) −5.86818 −0.355810
\(273\) 0 0
\(274\) 4.20979 0.254323
\(275\) 0 0
\(276\) 0 0
\(277\) −2.87100 −0.172502 −0.0862509 0.996273i \(-0.527489\pi\)
−0.0862509 + 0.996273i \(0.527489\pi\)
\(278\) 6.17185 0.370163
\(279\) 0 0
\(280\) 0 0
\(281\) −5.39264 −0.321698 −0.160849 0.986979i \(-0.551423\pi\)
−0.160849 + 0.986979i \(0.551423\pi\)
\(282\) 0 0
\(283\) −24.9511 −1.48319 −0.741593 0.670850i \(-0.765930\pi\)
−0.741593 + 0.670850i \(0.765930\pi\)
\(284\) 3.92204 0.232730
\(285\) 0 0
\(286\) 2.00000 0.118262
\(287\) 21.1070 1.24591
\(288\) 0 0
\(289\) 17.4355 1.02562
\(290\) 0 0
\(291\) 0 0
\(292\) −6.00000 −0.351123
\(293\) −24.9351 −1.45673 −0.728363 0.685191i \(-0.759719\pi\)
−0.728363 + 0.685191i \(0.759719\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.591429 0.0343761
\(297\) 0 0
\(298\) 0 0
\(299\) −7.79021 −0.450520
\(300\) 0 0
\(301\) −20.5294 −1.18329
\(302\) −15.5025 −0.892066
\(303\) 0 0
\(304\) −0.973070 −0.0558094
\(305\) 0 0
\(306\) 0 0
\(307\) −14.8171 −0.845659 −0.422829 0.906209i \(-0.638963\pi\)
−0.422829 + 0.906209i \(0.638963\pi\)
\(308\) 8.76328 0.499334
\(309\) 0 0
\(310\) 0 0
\(311\) −12.8710 −0.729848 −0.364924 0.931037i \(-0.618905\pi\)
−0.364924 + 0.931037i \(0.618905\pi\)
\(312\) 0 0
\(313\) 19.9220 1.12606 0.563030 0.826436i \(-0.309636\pi\)
0.563030 + 0.826436i \(0.309636\pi\)
\(314\) −8.97307 −0.506380
\(315\) 0 0
\(316\) 10.9731 0.617283
\(317\) 3.94614 0.221637 0.110819 0.993841i \(-0.464653\pi\)
0.110819 + 0.993841i \(0.464653\pi\)
\(318\) 0 0
\(319\) 1.94614 0.108963
\(320\) 0 0
\(321\) 0 0
\(322\) −34.1339 −1.90221
\(323\) 5.71015 0.317721
\(324\) 0 0
\(325\) 0 0
\(326\) 12.6074 0.698257
\(327\) 0 0
\(328\) 4.81714 0.265982
\(329\) 1.67222 0.0921923
\(330\) 0 0
\(331\) 21.4245 1.17760 0.588798 0.808280i \(-0.299601\pi\)
0.588798 + 0.808280i \(0.299601\pi\)
\(332\) 6.97307 0.382697
\(333\) 0 0
\(334\) 23.1609 1.26731
\(335\) 0 0
\(336\) 0 0
\(337\) −11.2388 −0.612217 −0.306109 0.951997i \(-0.599027\pi\)
−0.306109 + 0.951997i \(0.599027\pi\)
\(338\) −1.00000 −0.0543928
\(339\) 0 0
\(340\) 0 0
\(341\) 3.58043 0.193891
\(342\) 0 0
\(343\) −22.7792 −1.22996
\(344\) −4.68532 −0.252616
\(345\) 0 0
\(346\) −19.7902 −1.06393
\(347\) 16.9490 0.909868 0.454934 0.890525i \(-0.349663\pi\)
0.454934 + 0.890525i \(0.349663\pi\)
\(348\) 0 0
\(349\) −10.2119 −0.546630 −0.273315 0.961925i \(-0.588120\pi\)
−0.273315 + 0.961925i \(0.588120\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.00000 0.106600
\(353\) 14.9511 0.795765 0.397882 0.917436i \(-0.369745\pi\)
0.397882 + 0.917436i \(0.369745\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −0.973070 −0.0515726
\(357\) 0 0
\(358\) 6.17185 0.326193
\(359\) −11.8441 −0.625106 −0.312553 0.949900i \(-0.601184\pi\)
−0.312553 + 0.949900i \(0.601184\pi\)
\(360\) 0 0
\(361\) −18.0531 −0.950165
\(362\) 19.3706 1.01810
\(363\) 0 0
\(364\) −4.38164 −0.229660
\(365\) 0 0
\(366\) 0 0
\(367\) 16.0539 0.838005 0.419002 0.907985i \(-0.362380\pi\)
0.419002 + 0.907985i \(0.362380\pi\)
\(368\) −7.79021 −0.406093
\(369\) 0 0
\(370\) 0 0
\(371\) 34.1339 1.77214
\(372\) 0 0
\(373\) −6.87100 −0.355767 −0.177883 0.984052i \(-0.556925\pi\)
−0.177883 + 0.984052i \(0.556925\pi\)
\(374\) −11.7364 −0.606872
\(375\) 0 0
\(376\) 0.381642 0.0196817
\(377\) −0.973070 −0.0501157
\(378\) 0 0
\(379\) 1.84407 0.0947236 0.0473618 0.998878i \(-0.484919\pi\)
0.0473618 + 0.998878i \(0.484919\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −3.73635 −0.191168
\(383\) 9.25264 0.472788 0.236394 0.971657i \(-0.424034\pi\)
0.236394 + 0.971657i \(0.424034\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −15.3706 −0.782345
\(387\) 0 0
\(388\) −18.6074 −0.944645
\(389\) 21.2686 1.07836 0.539180 0.842191i \(-0.318734\pi\)
0.539180 + 0.842191i \(0.318734\pi\)
\(390\) 0 0
\(391\) 45.7143 2.31187
\(392\) −12.1988 −0.616132
\(393\) 0 0
\(394\) 26.9890 1.35969
\(395\) 0 0
\(396\) 0 0
\(397\) −33.4727 −1.67995 −0.839974 0.542627i \(-0.817430\pi\)
−0.839974 + 0.542627i \(0.817430\pi\)
\(398\) −23.3168 −1.16876
\(399\) 0 0
\(400\) 0 0
\(401\) −17.7364 −0.885711 −0.442856 0.896593i \(-0.646035\pi\)
−0.442856 + 0.896593i \(0.646035\pi\)
\(402\) 0 0
\(403\) −1.79021 −0.0891769
\(404\) −14.3437 −0.713626
\(405\) 0 0
\(406\) −4.26365 −0.211601
\(407\) 1.18286 0.0586321
\(408\) 0 0
\(409\) 7.68249 0.379875 0.189937 0.981796i \(-0.439171\pi\)
0.189937 + 0.981796i \(0.439171\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 9.73635 0.479676
\(413\) −4.26365 −0.209800
\(414\) 0 0
\(415\) 0 0
\(416\) −1.00000 −0.0490290
\(417\) 0 0
\(418\) −1.94614 −0.0951889
\(419\) −11.8061 −0.576768 −0.288384 0.957515i \(-0.593118\pi\)
−0.288384 + 0.957515i \(0.593118\pi\)
\(420\) 0 0
\(421\) −26.3678 −1.28509 −0.642544 0.766249i \(-0.722121\pi\)
−0.642544 + 0.766249i \(0.722121\pi\)
\(422\) −15.3547 −0.747456
\(423\) 0 0
\(424\) 7.79021 0.378326
\(425\) 0 0
\(426\) 0 0
\(427\) 3.58043 0.173269
\(428\) 5.79021 0.279881
\(429\) 0 0
\(430\) 0 0
\(431\) −1.71225 −0.0824761 −0.0412381 0.999149i \(-0.513130\pi\)
−0.0412381 + 0.999149i \(0.513130\pi\)
\(432\) 0 0
\(433\) −11.9220 −0.572936 −0.286468 0.958090i \(-0.592481\pi\)
−0.286468 + 0.958090i \(0.592481\pi\)
\(434\) −7.84407 −0.376528
\(435\) 0 0
\(436\) −0.685320 −0.0328209
\(437\) 7.58043 0.362621
\(438\) 0 0
\(439\) −12.3437 −0.589133 −0.294567 0.955631i \(-0.595175\pi\)
−0.294567 + 0.955631i \(0.595175\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 5.86818 0.279121
\(443\) 28.1580 1.33783 0.668914 0.743340i \(-0.266759\pi\)
0.668914 + 0.743340i \(0.266759\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −24.8331 −1.17588
\(447\) 0 0
\(448\) −4.38164 −0.207013
\(449\) 29.0531 1.37110 0.685551 0.728025i \(-0.259561\pi\)
0.685551 + 0.728025i \(0.259561\pi\)
\(450\) 0 0
\(451\) 9.63429 0.453661
\(452\) −4.00000 −0.188144
\(453\) 0 0
\(454\) −21.5266 −1.01029
\(455\) 0 0
\(456\) 0 0
\(457\) −11.5266 −0.539190 −0.269595 0.962974i \(-0.586890\pi\)
−0.269595 + 0.962974i \(0.586890\pi\)
\(458\) 2.63146 0.122960
\(459\) 0 0
\(460\) 0 0
\(461\) −28.4217 −1.32373 −0.661865 0.749623i \(-0.730235\pi\)
−0.661865 + 0.749623i \(0.730235\pi\)
\(462\) 0 0
\(463\) −27.4727 −1.27677 −0.638383 0.769719i \(-0.720396\pi\)
−0.638383 + 0.769719i \(0.720396\pi\)
\(464\) −0.973070 −0.0451737
\(465\) 0 0
\(466\) −29.0290 −1.34474
\(467\) 18.2098 0.842648 0.421324 0.906910i \(-0.361565\pi\)
0.421324 + 0.906910i \(0.361565\pi\)
\(468\) 0 0
\(469\) −7.84407 −0.362206
\(470\) 0 0
\(471\) 0 0
\(472\) −0.973070 −0.0447892
\(473\) −9.37064 −0.430862
\(474\) 0 0
\(475\) 0 0
\(476\) 25.7122 1.17852
\(477\) 0 0
\(478\) 2.13182 0.0975073
\(479\) 33.6045 1.53543 0.767715 0.640791i \(-0.221394\pi\)
0.767715 + 0.640791i \(0.221394\pi\)
\(480\) 0 0
\(481\) −0.591429 −0.0269668
\(482\) −22.4996 −1.02483
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) 0 0
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) 0.817143 0.0369903
\(489\) 0 0
\(490\) 0 0
\(491\) 19.8061 0.893839 0.446919 0.894574i \(-0.352521\pi\)
0.446919 + 0.894574i \(0.352521\pi\)
\(492\) 0 0
\(493\) 5.71015 0.257172
\(494\) 0.973070 0.0437805
\(495\) 0 0
\(496\) −1.79021 −0.0803829
\(497\) −17.1850 −0.770851
\(498\) 0 0
\(499\) 9.12900 0.408670 0.204335 0.978901i \(-0.434497\pi\)
0.204335 + 0.978901i \(0.434497\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −0.419574 −0.0187265
\(503\) −10.6074 −0.472959 −0.236479 0.971637i \(-0.575994\pi\)
−0.236479 + 0.971637i \(0.575994\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −15.5804 −0.692634
\(507\) 0 0
\(508\) 11.7902 0.523106
\(509\) 5.63429 0.249735 0.124868 0.992173i \(-0.460149\pi\)
0.124868 + 0.992173i \(0.460149\pi\)
\(510\) 0 0
\(511\) 26.2899 1.16299
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 19.6584 0.867094
\(515\) 0 0
\(516\) 0 0
\(517\) 0.763283 0.0335692
\(518\) −2.59143 −0.113861
\(519\) 0 0
\(520\) 0 0
\(521\) 22.8012 0.998939 0.499470 0.866331i \(-0.333528\pi\)
0.499470 + 0.866331i \(0.333528\pi\)
\(522\) 0 0
\(523\) 23.6286 1.03321 0.516604 0.856224i \(-0.327196\pi\)
0.516604 + 0.856224i \(0.327196\pi\)
\(524\) 16.9890 0.742168
\(525\) 0 0
\(526\) −10.7633 −0.469301
\(527\) 10.5053 0.457617
\(528\) 0 0
\(529\) 37.6874 1.63858
\(530\) 0 0
\(531\) 0 0
\(532\) 4.26365 0.184853
\(533\) −4.81714 −0.208654
\(534\) 0 0
\(535\) 0 0
\(536\) −1.79021 −0.0773254
\(537\) 0 0
\(538\) −14.7633 −0.636490
\(539\) −24.3976 −1.05088
\(540\) 0 0
\(541\) 11.3147 0.486456 0.243228 0.969969i \(-0.421794\pi\)
0.243228 + 0.969969i \(0.421794\pi\)
\(542\) 27.2388 1.17001
\(543\) 0 0
\(544\) 5.86818 0.251596
\(545\) 0 0
\(546\) 0 0
\(547\) 16.8412 0.720080 0.360040 0.932937i \(-0.382763\pi\)
0.360040 + 0.932937i \(0.382763\pi\)
\(548\) −4.20979 −0.179833
\(549\) 0 0
\(550\) 0 0
\(551\) 0.946866 0.0403379
\(552\) 0 0
\(553\) −48.0801 −2.04457
\(554\) 2.87100 0.121977
\(555\) 0 0
\(556\) −6.17185 −0.261745
\(557\) 35.7523 1.51487 0.757436 0.652909i \(-0.226452\pi\)
0.757436 + 0.652909i \(0.226452\pi\)
\(558\) 0 0
\(559\) 4.68532 0.198168
\(560\) 0 0
\(561\) 0 0
\(562\) 5.39264 0.227475
\(563\) 13.3685 0.563417 0.281708 0.959500i \(-0.409099\pi\)
0.281708 + 0.959500i \(0.409099\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 24.9511 1.04877
\(567\) 0 0
\(568\) −3.92204 −0.164565
\(569\) 29.9621 1.25608 0.628038 0.778183i \(-0.283858\pi\)
0.628038 + 0.778183i \(0.283858\pi\)
\(570\) 0 0
\(571\) 30.5156 1.27704 0.638518 0.769607i \(-0.279548\pi\)
0.638518 + 0.769607i \(0.279548\pi\)
\(572\) −2.00000 −0.0836242
\(573\) 0 0
\(574\) −21.1070 −0.880989
\(575\) 0 0
\(576\) 0 0
\(577\) 33.1609 1.38050 0.690252 0.723569i \(-0.257500\pi\)
0.690252 + 0.723569i \(0.257500\pi\)
\(578\) −17.4355 −0.725221
\(579\) 0 0
\(580\) 0 0
\(581\) −30.5535 −1.26757
\(582\) 0 0
\(583\) 15.5804 0.645275
\(584\) 6.00000 0.248282
\(585\) 0 0
\(586\) 24.9351 1.03006
\(587\) −14.1339 −0.583369 −0.291685 0.956515i \(-0.594216\pi\)
−0.291685 + 0.956515i \(0.594216\pi\)
\(588\) 0 0
\(589\) 1.74200 0.0717780
\(590\) 0 0
\(591\) 0 0
\(592\) −0.591429 −0.0243076
\(593\) 9.39264 0.385710 0.192855 0.981227i \(-0.438225\pi\)
0.192855 + 0.981227i \(0.438225\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 7.79021 0.318566
\(599\) −45.5584 −1.86147 −0.930733 0.365699i \(-0.880830\pi\)
−0.930733 + 0.365699i \(0.880830\pi\)
\(600\) 0 0
\(601\) 26.7254 1.09015 0.545075 0.838387i \(-0.316501\pi\)
0.545075 + 0.838387i \(0.316501\pi\)
\(602\) 20.5294 0.836716
\(603\) 0 0
\(604\) 15.5025 0.630786
\(605\) 0 0
\(606\) 0 0
\(607\) −30.0801 −1.22091 −0.610456 0.792050i \(-0.709014\pi\)
−0.610456 + 0.792050i \(0.709014\pi\)
\(608\) 0.973070 0.0394632
\(609\) 0 0
\(610\) 0 0
\(611\) −0.381642 −0.0154396
\(612\) 0 0
\(613\) −17.2686 −0.697471 −0.348735 0.937221i \(-0.613389\pi\)
−0.348735 + 0.937221i \(0.613389\pi\)
\(614\) 14.8171 0.597971
\(615\) 0 0
\(616\) −8.76328 −0.353083
\(617\) 14.3437 0.577456 0.288728 0.957411i \(-0.406768\pi\)
0.288728 + 0.957411i \(0.406768\pi\)
\(618\) 0 0
\(619\) −38.4514 −1.54549 −0.772747 0.634715i \(-0.781118\pi\)
−0.772747 + 0.634715i \(0.781118\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 12.8710 0.516080
\(623\) 4.26365 0.170819
\(624\) 0 0
\(625\) 0 0
\(626\) −19.9220 −0.796245
\(627\) 0 0
\(628\) 8.97307 0.358064
\(629\) 3.47061 0.138382
\(630\) 0 0
\(631\) −8.18568 −0.325867 −0.162933 0.986637i \(-0.552096\pi\)
−0.162933 + 0.986637i \(0.552096\pi\)
\(632\) −10.9731 −0.436485
\(633\) 0 0
\(634\) −3.94614 −0.156721
\(635\) 0 0
\(636\) 0 0
\(637\) 12.1988 0.483333
\(638\) −1.94614 −0.0770485
\(639\) 0 0
\(640\) 0 0
\(641\) 12.3657 0.488416 0.244208 0.969723i \(-0.421472\pi\)
0.244208 + 0.969723i \(0.421472\pi\)
\(642\) 0 0
\(643\) −46.8972 −1.84945 −0.924723 0.380642i \(-0.875703\pi\)
−0.924723 + 0.380642i \(0.875703\pi\)
\(644\) 34.1339 1.34506
\(645\) 0 0
\(646\) −5.71015 −0.224663
\(647\) 26.1878 1.02955 0.514774 0.857326i \(-0.327876\pi\)
0.514774 + 0.857326i \(0.327876\pi\)
\(648\) 0 0
\(649\) −1.94614 −0.0763927
\(650\) 0 0
\(651\) 0 0
\(652\) −12.6074 −0.493742
\(653\) 10.7633 0.421200 0.210600 0.977572i \(-0.432458\pi\)
0.210600 + 0.977572i \(0.432458\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −4.81714 −0.188078
\(657\) 0 0
\(658\) −1.67222 −0.0651898
\(659\) −31.4727 −1.22600 −0.613001 0.790082i \(-0.710038\pi\)
−0.613001 + 0.790082i \(0.710038\pi\)
\(660\) 0 0
\(661\) 25.2147 0.980739 0.490369 0.871515i \(-0.336862\pi\)
0.490369 + 0.871515i \(0.336862\pi\)
\(662\) −21.4245 −0.832687
\(663\) 0 0
\(664\) −6.97307 −0.270608
\(665\) 0 0
\(666\) 0 0
\(667\) 7.58043 0.293515
\(668\) −23.1609 −0.896120
\(669\) 0 0
\(670\) 0 0
\(671\) 1.63429 0.0630909
\(672\) 0 0
\(673\) 23.2388 0.895791 0.447895 0.894086i \(-0.352174\pi\)
0.447895 + 0.894086i \(0.352174\pi\)
\(674\) 11.2388 0.432903
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 47.2629 1.81646 0.908231 0.418470i \(-0.137433\pi\)
0.908231 + 0.418470i \(0.137433\pi\)
\(678\) 0 0
\(679\) 81.5308 3.12886
\(680\) 0 0
\(681\) 0 0
\(682\) −3.58043 −0.137102
\(683\) 6.97307 0.266817 0.133409 0.991061i \(-0.457408\pi\)
0.133409 + 0.991061i \(0.457408\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 22.7792 0.869714
\(687\) 0 0
\(688\) 4.68532 0.178626
\(689\) −7.79021 −0.296783
\(690\) 0 0
\(691\) −32.2899 −1.22836 −0.614182 0.789164i \(-0.710514\pi\)
−0.614182 + 0.789164i \(0.710514\pi\)
\(692\) 19.7902 0.752311
\(693\) 0 0
\(694\) −16.9490 −0.643374
\(695\) 0 0
\(696\) 0 0
\(697\) 28.2678 1.07072
\(698\) 10.2119 0.386526
\(699\) 0 0
\(700\) 0 0
\(701\) 0.521643 0.0197022 0.00985109 0.999951i \(-0.496864\pi\)
0.00985109 + 0.999951i \(0.496864\pi\)
\(702\) 0 0
\(703\) 0.575502 0.0217055
\(704\) −2.00000 −0.0753778
\(705\) 0 0
\(706\) −14.9511 −0.562691
\(707\) 62.8490 2.36368
\(708\) 0 0
\(709\) −33.2147 −1.24740 −0.623702 0.781662i \(-0.714372\pi\)
−0.623702 + 0.781662i \(0.714372\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0.973070 0.0364674
\(713\) 13.9461 0.522287
\(714\) 0 0
\(715\) 0 0
\(716\) −6.17185 −0.230653
\(717\) 0 0
\(718\) 11.8441 0.442017
\(719\) 4.26365 0.159007 0.0795036 0.996835i \(-0.474666\pi\)
0.0795036 + 0.996835i \(0.474666\pi\)
\(720\) 0 0
\(721\) −42.6612 −1.58879
\(722\) 18.0531 0.671868
\(723\) 0 0
\(724\) −19.3706 −0.719904
\(725\) 0 0
\(726\) 0 0
\(727\) 47.5266 1.76266 0.881331 0.472499i \(-0.156648\pi\)
0.881331 + 0.472499i \(0.156648\pi\)
\(728\) 4.38164 0.162394
\(729\) 0 0
\(730\) 0 0
\(731\) −27.4943 −1.01691
\(732\) 0 0
\(733\) 44.8593 1.65692 0.828458 0.560052i \(-0.189219\pi\)
0.828458 + 0.560052i \(0.189219\pi\)
\(734\) −16.0539 −0.592559
\(735\) 0 0
\(736\) 7.79021 0.287151
\(737\) −3.58043 −0.131887
\(738\) 0 0
\(739\) −18.4514 −0.678747 −0.339373 0.940652i \(-0.610215\pi\)
−0.339373 + 0.940652i \(0.610215\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −34.1339 −1.25310
\(743\) 14.2201 0.521684 0.260842 0.965382i \(-0.416000\pi\)
0.260842 + 0.965382i \(0.416000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 6.87100 0.251565
\(747\) 0 0
\(748\) 11.7364 0.429124
\(749\) −25.3706 −0.927023
\(750\) 0 0
\(751\) −28.7951 −1.05075 −0.525375 0.850871i \(-0.676075\pi\)
−0.525375 + 0.850871i \(0.676075\pi\)
\(752\) −0.381642 −0.0139170
\(753\) 0 0
\(754\) 0.973070 0.0354371
\(755\) 0 0
\(756\) 0 0
\(757\) 13.7364 0.499256 0.249628 0.968342i \(-0.419692\pi\)
0.249628 + 0.968342i \(0.419692\pi\)
\(758\) −1.84407 −0.0669797
\(759\) 0 0
\(760\) 0 0
\(761\) −5.39264 −0.195483 −0.0977416 0.995212i \(-0.531162\pi\)
−0.0977416 + 0.995212i \(0.531162\pi\)
\(762\) 0 0
\(763\) 3.00282 0.108710
\(764\) 3.73635 0.135177
\(765\) 0 0
\(766\) −9.25264 −0.334312
\(767\) 0.973070 0.0351355
\(768\) 0 0
\(769\) −2.34371 −0.0845163 −0.0422582 0.999107i \(-0.513455\pi\)
−0.0422582 + 0.999107i \(0.513455\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 15.3706 0.553201
\(773\) 29.3547 1.05582 0.527908 0.849302i \(-0.322977\pi\)
0.527908 + 0.849302i \(0.322977\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 18.6074 0.667965
\(777\) 0 0
\(778\) −21.2686 −0.762515
\(779\) 4.68742 0.167944
\(780\) 0 0
\(781\) −7.84407 −0.280683
\(782\) −45.7143 −1.63474
\(783\) 0 0
\(784\) 12.1988 0.435671
\(785\) 0 0
\(786\) 0 0
\(787\) 34.6336 1.23455 0.617277 0.786746i \(-0.288236\pi\)
0.617277 + 0.786746i \(0.288236\pi\)
\(788\) −26.9890 −0.961443
\(789\) 0 0
\(790\) 0 0
\(791\) 17.5266 0.623173
\(792\) 0 0
\(793\) −0.817143 −0.0290176
\(794\) 33.4727 1.18790
\(795\) 0 0
\(796\) 23.3168 0.826441
\(797\) −27.8221 −0.985508 −0.492754 0.870169i \(-0.664010\pi\)
−0.492754 + 0.870169i \(0.664010\pi\)
\(798\) 0 0
\(799\) 2.23954 0.0792293
\(800\) 0 0
\(801\) 0 0
\(802\) 17.7364 0.626292
\(803\) 12.0000 0.423471
\(804\) 0 0
\(805\) 0 0
\(806\) 1.79021 0.0630576
\(807\) 0 0
\(808\) 14.3437 0.504610
\(809\) 23.1768 0.814852 0.407426 0.913238i \(-0.366426\pi\)
0.407426 + 0.913238i \(0.366426\pi\)
\(810\) 0 0
\(811\) 36.0857 1.26714 0.633570 0.773685i \(-0.281589\pi\)
0.633570 + 0.773685i \(0.281589\pi\)
\(812\) 4.26365 0.149625
\(813\) 0 0
\(814\) −1.18286 −0.0414591
\(815\) 0 0
\(816\) 0 0
\(817\) −4.55915 −0.159504
\(818\) −7.68249 −0.268612
\(819\) 0 0
\(820\) 0 0
\(821\) −38.3196 −1.33736 −0.668682 0.743549i \(-0.733141\pi\)
−0.668682 + 0.743549i \(0.733141\pi\)
\(822\) 0 0
\(823\) 53.3486 1.85962 0.929808 0.368044i \(-0.119973\pi\)
0.929808 + 0.368044i \(0.119973\pi\)
\(824\) −9.73635 −0.339182
\(825\) 0 0
\(826\) 4.26365 0.148351
\(827\) −14.5053 −0.504398 −0.252199 0.967675i \(-0.581154\pi\)
−0.252199 + 0.967675i \(0.581154\pi\)
\(828\) 0 0
\(829\) −13.3926 −0.465146 −0.232573 0.972579i \(-0.574714\pi\)
−0.232573 + 0.972579i \(0.574714\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.00000 0.0346688
\(833\) −71.5846 −2.48026
\(834\) 0 0
\(835\) 0 0
\(836\) 1.94614 0.0673087
\(837\) 0 0
\(838\) 11.8061 0.407836
\(839\) −2.52164 −0.0870568 −0.0435284 0.999052i \(-0.513860\pi\)
−0.0435284 + 0.999052i \(0.513860\pi\)
\(840\) 0 0
\(841\) −28.0531 −0.967349
\(842\) 26.3678 0.908695
\(843\) 0 0
\(844\) 15.3547 0.528531
\(845\) 0 0
\(846\) 0 0
\(847\) 30.6715 1.05388
\(848\) −7.79021 −0.267517
\(849\) 0 0
\(850\) 0 0
\(851\) 4.60736 0.157938
\(852\) 0 0
\(853\) 36.4078 1.24658 0.623290 0.781990i \(-0.285795\pi\)
0.623290 + 0.781990i \(0.285795\pi\)
\(854\) −3.58043 −0.122520
\(855\) 0 0
\(856\) −5.79021 −0.197905
\(857\) −21.4188 −0.731654 −0.365827 0.930683i \(-0.619214\pi\)
−0.365827 + 0.930683i \(0.619214\pi\)
\(858\) 0 0
\(859\) −41.9461 −1.43118 −0.715592 0.698519i \(-0.753843\pi\)
−0.715592 + 0.698519i \(0.753843\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 1.71225 0.0583194
\(863\) −38.3278 −1.30469 −0.652346 0.757921i \(-0.726215\pi\)
−0.652346 + 0.757921i \(0.726215\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 11.9220 0.405127
\(867\) 0 0
\(868\) 7.84407 0.266245
\(869\) −21.9461 −0.744472
\(870\) 0 0
\(871\) 1.79021 0.0606591
\(872\) 0.685320 0.0232078
\(873\) 0 0
\(874\) −7.58043 −0.256412
\(875\) 0 0
\(876\) 0 0
\(877\) −43.3327 −1.46324 −0.731621 0.681712i \(-0.761236\pi\)
−0.731621 + 0.681712i \(0.761236\pi\)
\(878\) 12.3437 0.416580
\(879\) 0 0
\(880\) 0 0
\(881\) −1.09107 −0.0367590 −0.0183795 0.999831i \(-0.505851\pi\)
−0.0183795 + 0.999831i \(0.505851\pi\)
\(882\) 0 0
\(883\) 28.3735 0.954843 0.477422 0.878674i \(-0.341571\pi\)
0.477422 + 0.878674i \(0.341571\pi\)
\(884\) −5.86818 −0.197368
\(885\) 0 0
\(886\) −28.1580 −0.945987
\(887\) −4.50529 −0.151273 −0.0756364 0.997135i \(-0.524099\pi\)
−0.0756364 + 0.997135i \(0.524099\pi\)
\(888\) 0 0
\(889\) −51.6605 −1.73264
\(890\) 0 0
\(891\) 0 0
\(892\) 24.8331 0.831473
\(893\) 0.371364 0.0124272
\(894\) 0 0
\(895\) 0 0
\(896\) 4.38164 0.146380
\(897\) 0 0
\(898\) −29.0531 −0.969516
\(899\) 1.74200 0.0580991
\(900\) 0 0
\(901\) 45.7143 1.52297
\(902\) −9.63429 −0.320787
\(903\) 0 0
\(904\) 4.00000 0.133038
\(905\) 0 0
\(906\) 0 0
\(907\) −48.0503 −1.59548 −0.797742 0.602999i \(-0.793972\pi\)
−0.797742 + 0.602999i \(0.793972\pi\)
\(908\) 21.5266 0.714384
\(909\) 0 0
\(910\) 0 0
\(911\) −12.5755 −0.416645 −0.208322 0.978060i \(-0.566800\pi\)
−0.208322 + 0.978060i \(0.566800\pi\)
\(912\) 0 0
\(913\) −13.9461 −0.461550
\(914\) 11.5266 0.381265
\(915\) 0 0
\(916\) −2.63146 −0.0869459
\(917\) −74.4397 −2.45822
\(918\) 0 0
\(919\) 23.6881 0.781400 0.390700 0.920518i \(-0.372233\pi\)
0.390700 + 0.920518i \(0.372233\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 28.4217 0.936018
\(923\) 3.92204 0.129095
\(924\) 0 0
\(925\) 0 0
\(926\) 27.4727 0.902809
\(927\) 0 0
\(928\) 0.973070 0.0319426
\(929\) −45.0850 −1.47919 −0.739595 0.673052i \(-0.764983\pi\)
−0.739595 + 0.673052i \(0.764983\pi\)
\(930\) 0 0
\(931\) −11.8703 −0.389033
\(932\) 29.0290 0.950877
\(933\) 0 0
\(934\) −18.2098 −0.595842
\(935\) 0 0
\(936\) 0 0
\(937\) 28.7951 0.940696 0.470348 0.882481i \(-0.344128\pi\)
0.470348 + 0.882481i \(0.344128\pi\)
\(938\) 7.84407 0.256118
\(939\) 0 0
\(940\) 0 0
\(941\) 2.84690 0.0928062 0.0464031 0.998923i \(-0.485224\pi\)
0.0464031 + 0.998923i \(0.485224\pi\)
\(942\) 0 0
\(943\) 37.5266 1.22203
\(944\) 0.973070 0.0316707
\(945\) 0 0
\(946\) 9.37064 0.304666
\(947\) −11.3168 −0.367746 −0.183873 0.982950i \(-0.558864\pi\)
−0.183873 + 0.982950i \(0.558864\pi\)
\(948\) 0 0
\(949\) −6.00000 −0.194768
\(950\) 0 0
\(951\) 0 0
\(952\) −25.7122 −0.833339
\(953\) 28.4535 0.921700 0.460850 0.887478i \(-0.347545\pi\)
0.460850 + 0.887478i \(0.347545\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −2.13182 −0.0689481
\(957\) 0 0
\(958\) −33.6045 −1.08571
\(959\) 18.4458 0.595645
\(960\) 0 0
\(961\) −27.7951 −0.896617
\(962\) 0.591429 0.0190684
\(963\) 0 0
\(964\) 22.4996 0.724665
\(965\) 0 0
\(966\) 0 0
\(967\) −1.48863 −0.0478713 −0.0239356 0.999714i \(-0.507620\pi\)
−0.0239356 + 0.999714i \(0.507620\pi\)
\(968\) 7.00000 0.224989
\(969\) 0 0
\(970\) 0 0
\(971\) −49.6446 −1.59317 −0.796585 0.604527i \(-0.793362\pi\)
−0.796585 + 0.604527i \(0.793362\pi\)
\(972\) 0 0
\(973\) 27.0429 0.866954
\(974\) −8.00000 −0.256337
\(975\) 0 0
\(976\) −0.817143 −0.0261561
\(977\) 39.6066 1.26713 0.633564 0.773690i \(-0.281591\pi\)
0.633564 + 0.773690i \(0.281591\pi\)
\(978\) 0 0
\(979\) 1.94614 0.0621989
\(980\) 0 0
\(981\) 0 0
\(982\) −19.8061 −0.632039
\(983\) 0.725351 0.0231351 0.0115676 0.999933i \(-0.496318\pi\)
0.0115676 + 0.999933i \(0.496318\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −5.71015 −0.181848
\(987\) 0 0
\(988\) −0.973070 −0.0309575
\(989\) −36.4996 −1.16062
\(990\) 0 0
\(991\) −35.5046 −1.12784 −0.563920 0.825830i \(-0.690707\pi\)
−0.563920 + 0.825830i \(0.690707\pi\)
\(992\) 1.79021 0.0568393
\(993\) 0 0
\(994\) 17.1850 0.545074
\(995\) 0 0
\(996\) 0 0
\(997\) 10.4196 0.329991 0.164996 0.986294i \(-0.447239\pi\)
0.164996 + 0.986294i \(0.447239\pi\)
\(998\) −9.12900 −0.288973
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5850.2.a.cp.1.1 3
3.2 odd 2 650.2.a.o.1.1 3
5.2 odd 4 1170.2.e.f.469.1 6
5.3 odd 4 1170.2.e.f.469.4 6
5.4 even 2 5850.2.a.cs.1.3 3
12.11 even 2 5200.2.a.cf.1.3 3
15.2 even 4 130.2.b.a.79.6 yes 6
15.8 even 4 130.2.b.a.79.1 6
15.14 odd 2 650.2.a.n.1.3 3
39.38 odd 2 8450.2.a.bs.1.1 3
60.23 odd 4 1040.2.d.b.209.6 6
60.47 odd 4 1040.2.d.b.209.1 6
60.59 even 2 5200.2.a.ce.1.1 3
195.8 odd 4 1690.2.c.d.1689.1 6
195.38 even 4 1690.2.b.a.339.4 6
195.47 odd 4 1690.2.c.a.1689.6 6
195.77 even 4 1690.2.b.a.339.3 6
195.83 odd 4 1690.2.c.a.1689.1 6
195.122 odd 4 1690.2.c.d.1689.6 6
195.194 odd 2 8450.2.a.cc.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.b.a.79.1 6 15.8 even 4
130.2.b.a.79.6 yes 6 15.2 even 4
650.2.a.n.1.3 3 15.14 odd 2
650.2.a.o.1.1 3 3.2 odd 2
1040.2.d.b.209.1 6 60.47 odd 4
1040.2.d.b.209.6 6 60.23 odd 4
1170.2.e.f.469.1 6 5.2 odd 4
1170.2.e.f.469.4 6 5.3 odd 4
1690.2.b.a.339.3 6 195.77 even 4
1690.2.b.a.339.4 6 195.38 even 4
1690.2.c.a.1689.1 6 195.83 odd 4
1690.2.c.a.1689.6 6 195.47 odd 4
1690.2.c.d.1689.1 6 195.8 odd 4
1690.2.c.d.1689.6 6 195.122 odd 4
5200.2.a.ce.1.1 3 60.59 even 2
5200.2.a.cf.1.3 3 12.11 even 2
5850.2.a.cp.1.1 3 1.1 even 1 trivial
5850.2.a.cs.1.3 3 5.4 even 2
8450.2.a.bs.1.1 3 39.38 odd 2
8450.2.a.cc.1.3 3 195.194 odd 2