L(s) = 1 | − 2.44·3-s − 3·5-s + 0.449·7-s + 2.99·9-s + 2.44·11-s + 5.89·13-s + 7.34·15-s − 4.89·17-s − 3.55·19-s − 1.10·21-s + 4·25-s + 7.89·29-s + 10.8·31-s − 5.99·33-s − 1.34·35-s + 8·37-s − 14.4·39-s + 7.89·41-s − 6.89·43-s − 8.99·45-s − 1.55·47-s − 6.79·49-s + 11.9·51-s + 8.79·53-s − 7.34·55-s + 8.69·57-s − 5.34·59-s + ⋯ |
L(s) = 1 | − 1.41·3-s − 1.34·5-s + 0.169·7-s + 0.999·9-s + 0.738·11-s + 1.63·13-s + 1.89·15-s − 1.18·17-s − 0.814·19-s − 0.240·21-s + 0.800·25-s + 1.46·29-s + 1.95·31-s − 1.04·33-s − 0.227·35-s + 1.31·37-s − 2.31·39-s + 1.23·41-s − 1.05·43-s − 1.34·45-s − 0.226·47-s − 0.971·49-s + 1.68·51-s + 1.20·53-s − 0.990·55-s + 1.15·57-s − 0.696·59-s + ⋯ |
Λ(s)=(=(8464s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(8464s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.8931884369 |
L(21) |
≈ |
0.8931884369 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 23 | 1 |
good | 3 | 1+2.44T+3T2 |
| 5 | 1+3T+5T2 |
| 7 | 1−0.449T+7T2 |
| 11 | 1−2.44T+11T2 |
| 13 | 1−5.89T+13T2 |
| 17 | 1+4.89T+17T2 |
| 19 | 1+3.55T+19T2 |
| 29 | 1−7.89T+29T2 |
| 31 | 1−10.8T+31T2 |
| 37 | 1−8T+37T2 |
| 41 | 1−7.89T+41T2 |
| 43 | 1+6.89T+43T2 |
| 47 | 1+1.55T+47T2 |
| 53 | 1−8.79T+53T2 |
| 59 | 1+5.34T+59T2 |
| 61 | 1−5.89T+61T2 |
| 67 | 1+13.7T+67T2 |
| 71 | 1−4.44T+71T2 |
| 73 | 1+1.89T+73T2 |
| 79 | 1+12T+79T2 |
| 83 | 1+6.89T+83T2 |
| 89 | 1−8.79T+89T2 |
| 97 | 1+1.89T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.78098523552231746436921124402, −6.83541994547435757093443458090, −6.29680431745563089588601182998, −6.05573371932215340017507843255, −4.69976944413607947119600354203, −4.46131312179153461526264297037, −3.80485494160127383364013876299, −2.75243464786618541414837244980, −1.29578320510573281359593748324, −0.57114632521050694568744861385,
0.57114632521050694568744861385, 1.29578320510573281359593748324, 2.75243464786618541414837244980, 3.80485494160127383364013876299, 4.46131312179153461526264297037, 4.69976944413607947119600354203, 6.05573371932215340017507843255, 6.29680431745563089588601182998, 6.83541994547435757093443458090, 7.78098523552231746436921124402