Properties

Label 2-92e2-1.1-c1-0-53
Degree $2$
Conductor $8464$
Sign $1$
Analytic cond. $67.5853$
Root an. cond. $8.22103$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.44·3-s − 3·5-s + 0.449·7-s + 2.99·9-s + 2.44·11-s + 5.89·13-s + 7.34·15-s − 4.89·17-s − 3.55·19-s − 1.10·21-s + 4·25-s + 7.89·29-s + 10.8·31-s − 5.99·33-s − 1.34·35-s + 8·37-s − 14.4·39-s + 7.89·41-s − 6.89·43-s − 8.99·45-s − 1.55·47-s − 6.79·49-s + 11.9·51-s + 8.79·53-s − 7.34·55-s + 8.69·57-s − 5.34·59-s + ⋯
L(s)  = 1  − 1.41·3-s − 1.34·5-s + 0.169·7-s + 0.999·9-s + 0.738·11-s + 1.63·13-s + 1.89·15-s − 1.18·17-s − 0.814·19-s − 0.240·21-s + 0.800·25-s + 1.46·29-s + 1.95·31-s − 1.04·33-s − 0.227·35-s + 1.31·37-s − 2.31·39-s + 1.23·41-s − 1.05·43-s − 1.34·45-s − 0.226·47-s − 0.971·49-s + 1.68·51-s + 1.20·53-s − 0.990·55-s + 1.15·57-s − 0.696·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8464\)    =    \(2^{4} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(67.5853\)
Root analytic conductor: \(8.22103\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8464,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8931884369\)
\(L(\frac12)\) \(\approx\) \(0.8931884369\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 \)
good3 \( 1 + 2.44T + 3T^{2} \)
5 \( 1 + 3T + 5T^{2} \)
7 \( 1 - 0.449T + 7T^{2} \)
11 \( 1 - 2.44T + 11T^{2} \)
13 \( 1 - 5.89T + 13T^{2} \)
17 \( 1 + 4.89T + 17T^{2} \)
19 \( 1 + 3.55T + 19T^{2} \)
29 \( 1 - 7.89T + 29T^{2} \)
31 \( 1 - 10.8T + 31T^{2} \)
37 \( 1 - 8T + 37T^{2} \)
41 \( 1 - 7.89T + 41T^{2} \)
43 \( 1 + 6.89T + 43T^{2} \)
47 \( 1 + 1.55T + 47T^{2} \)
53 \( 1 - 8.79T + 53T^{2} \)
59 \( 1 + 5.34T + 59T^{2} \)
61 \( 1 - 5.89T + 61T^{2} \)
67 \( 1 + 13.7T + 67T^{2} \)
71 \( 1 - 4.44T + 71T^{2} \)
73 \( 1 + 1.89T + 73T^{2} \)
79 \( 1 + 12T + 79T^{2} \)
83 \( 1 + 6.89T + 83T^{2} \)
89 \( 1 - 8.79T + 89T^{2} \)
97 \( 1 + 1.89T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.78098523552231746436921124402, −6.83541994547435757093443458090, −6.29680431745563089588601182998, −6.05573371932215340017507843255, −4.69976944413607947119600354203, −4.46131312179153461526264297037, −3.80485494160127383364013876299, −2.75243464786618541414837244980, −1.29578320510573281359593748324, −0.57114632521050694568744861385, 0.57114632521050694568744861385, 1.29578320510573281359593748324, 2.75243464786618541414837244980, 3.80485494160127383364013876299, 4.46131312179153461526264297037, 4.69976944413607947119600354203, 6.05573371932215340017507843255, 6.29680431745563089588601182998, 6.83541994547435757093443458090, 7.78098523552231746436921124402

Graph of the $Z$-function along the critical line