Properties

Label 8464.2.a.y.1.1
Level $8464$
Weight $2$
Character 8464.1
Self dual yes
Analytic conductor $67.585$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8464,2,Mod(1,8464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8464, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8464.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8464 = 2^{4} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8464.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.5853802708\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4232)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.44949\) of defining polynomial
Character \(\chi\) \(=\) 8464.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.44949 q^{3} -3.00000 q^{5} +0.449490 q^{7} +3.00000 q^{9} +2.44949 q^{11} +5.89898 q^{13} +7.34847 q^{15} -4.89898 q^{17} -3.55051 q^{19} -1.10102 q^{21} +4.00000 q^{25} +7.89898 q^{29} +10.8990 q^{31} -6.00000 q^{33} -1.34847 q^{35} +8.00000 q^{37} -14.4495 q^{39} +7.89898 q^{41} -6.89898 q^{43} -9.00000 q^{45} -1.55051 q^{47} -6.79796 q^{49} +12.0000 q^{51} +8.79796 q^{53} -7.34847 q^{55} +8.69694 q^{57} -5.34847 q^{59} +5.89898 q^{61} +1.34847 q^{63} -17.6969 q^{65} -13.7980 q^{67} +4.44949 q^{71} -1.89898 q^{73} -9.79796 q^{75} +1.10102 q^{77} -12.0000 q^{79} -9.00000 q^{81} -6.89898 q^{83} +14.6969 q^{85} -19.3485 q^{87} +8.79796 q^{89} +2.65153 q^{91} -26.6969 q^{93} +10.6515 q^{95} -1.89898 q^{97} +7.34847 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{5} - 4 q^{7} + 6 q^{9} + 2 q^{13} - 12 q^{19} - 12 q^{21} + 8 q^{25} + 6 q^{29} + 12 q^{31} - 12 q^{33} + 12 q^{35} + 16 q^{37} - 24 q^{39} + 6 q^{41} - 4 q^{43} - 18 q^{45} - 8 q^{47} + 6 q^{49}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.44949 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(4\) 0 0
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) 0.449490 0.169891 0.0849456 0.996386i \(-0.472928\pi\)
0.0849456 + 0.996386i \(0.472928\pi\)
\(8\) 0 0
\(9\) 3.00000 1.00000
\(10\) 0 0
\(11\) 2.44949 0.738549 0.369274 0.929320i \(-0.379606\pi\)
0.369274 + 0.929320i \(0.379606\pi\)
\(12\) 0 0
\(13\) 5.89898 1.63608 0.818041 0.575160i \(-0.195060\pi\)
0.818041 + 0.575160i \(0.195060\pi\)
\(14\) 0 0
\(15\) 7.34847 1.89737
\(16\) 0 0
\(17\) −4.89898 −1.18818 −0.594089 0.804400i \(-0.702487\pi\)
−0.594089 + 0.804400i \(0.702487\pi\)
\(18\) 0 0
\(19\) −3.55051 −0.814543 −0.407271 0.913307i \(-0.633520\pi\)
−0.407271 + 0.913307i \(0.633520\pi\)
\(20\) 0 0
\(21\) −1.10102 −0.240262
\(22\) 0 0
\(23\) 0 0
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.89898 1.46680 0.733402 0.679795i \(-0.237931\pi\)
0.733402 + 0.679795i \(0.237931\pi\)
\(30\) 0 0
\(31\) 10.8990 1.95751 0.978757 0.205023i \(-0.0657268\pi\)
0.978757 + 0.205023i \(0.0657268\pi\)
\(32\) 0 0
\(33\) −6.00000 −1.04447
\(34\) 0 0
\(35\) −1.34847 −0.227933
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 0 0
\(39\) −14.4495 −2.31377
\(40\) 0 0
\(41\) 7.89898 1.23361 0.616807 0.787115i \(-0.288426\pi\)
0.616807 + 0.787115i \(0.288426\pi\)
\(42\) 0 0
\(43\) −6.89898 −1.05208 −0.526042 0.850458i \(-0.676325\pi\)
−0.526042 + 0.850458i \(0.676325\pi\)
\(44\) 0 0
\(45\) −9.00000 −1.34164
\(46\) 0 0
\(47\) −1.55051 −0.226165 −0.113083 0.993586i \(-0.536072\pi\)
−0.113083 + 0.993586i \(0.536072\pi\)
\(48\) 0 0
\(49\) −6.79796 −0.971137
\(50\) 0 0
\(51\) 12.0000 1.68034
\(52\) 0 0
\(53\) 8.79796 1.20849 0.604246 0.796798i \(-0.293474\pi\)
0.604246 + 0.796798i \(0.293474\pi\)
\(54\) 0 0
\(55\) −7.34847 −0.990867
\(56\) 0 0
\(57\) 8.69694 1.15194
\(58\) 0 0
\(59\) −5.34847 −0.696311 −0.348156 0.937437i \(-0.613192\pi\)
−0.348156 + 0.937437i \(0.613192\pi\)
\(60\) 0 0
\(61\) 5.89898 0.755287 0.377643 0.925951i \(-0.376735\pi\)
0.377643 + 0.925951i \(0.376735\pi\)
\(62\) 0 0
\(63\) 1.34847 0.169891
\(64\) 0 0
\(65\) −17.6969 −2.19504
\(66\) 0 0
\(67\) −13.7980 −1.68569 −0.842844 0.538157i \(-0.819121\pi\)
−0.842844 + 0.538157i \(0.819121\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.44949 0.528057 0.264029 0.964515i \(-0.414949\pi\)
0.264029 + 0.964515i \(0.414949\pi\)
\(72\) 0 0
\(73\) −1.89898 −0.222259 −0.111129 0.993806i \(-0.535447\pi\)
−0.111129 + 0.993806i \(0.535447\pi\)
\(74\) 0 0
\(75\) −9.79796 −1.13137
\(76\) 0 0
\(77\) 1.10102 0.125473
\(78\) 0 0
\(79\) −12.0000 −1.35011 −0.675053 0.737769i \(-0.735879\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(80\) 0 0
\(81\) −9.00000 −1.00000
\(82\) 0 0
\(83\) −6.89898 −0.757261 −0.378631 0.925548i \(-0.623605\pi\)
−0.378631 + 0.925548i \(0.623605\pi\)
\(84\) 0 0
\(85\) 14.6969 1.59411
\(86\) 0 0
\(87\) −19.3485 −2.07437
\(88\) 0 0
\(89\) 8.79796 0.932582 0.466291 0.884631i \(-0.345590\pi\)
0.466291 + 0.884631i \(0.345590\pi\)
\(90\) 0 0
\(91\) 2.65153 0.277956
\(92\) 0 0
\(93\) −26.6969 −2.76834
\(94\) 0 0
\(95\) 10.6515 1.09282
\(96\) 0 0
\(97\) −1.89898 −0.192812 −0.0964061 0.995342i \(-0.530735\pi\)
−0.0964061 + 0.995342i \(0.530735\pi\)
\(98\) 0 0
\(99\) 7.34847 0.738549
\(100\) 0 0
\(101\) 9.00000 0.895533 0.447767 0.894150i \(-0.352219\pi\)
0.447767 + 0.894150i \(0.352219\pi\)
\(102\) 0 0
\(103\) 6.89898 0.679777 0.339888 0.940466i \(-0.389611\pi\)
0.339888 + 0.940466i \(0.389611\pi\)
\(104\) 0 0
\(105\) 3.30306 0.322346
\(106\) 0 0
\(107\) 16.4495 1.59023 0.795116 0.606457i \(-0.207410\pi\)
0.795116 + 0.606457i \(0.207410\pi\)
\(108\) 0 0
\(109\) −0.797959 −0.0764306 −0.0382153 0.999270i \(-0.512167\pi\)
−0.0382153 + 0.999270i \(0.512167\pi\)
\(110\) 0 0
\(111\) −19.5959 −1.85996
\(112\) 0 0
\(113\) −5.00000 −0.470360 −0.235180 0.971952i \(-0.575568\pi\)
−0.235180 + 0.971952i \(0.575568\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 17.6969 1.63608
\(118\) 0 0
\(119\) −2.20204 −0.201861
\(120\) 0 0
\(121\) −5.00000 −0.454545
\(122\) 0 0
\(123\) −19.3485 −1.74459
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) −6.89898 −0.612185 −0.306093 0.952002i \(-0.599022\pi\)
−0.306093 + 0.952002i \(0.599022\pi\)
\(128\) 0 0
\(129\) 16.8990 1.48787
\(130\) 0 0
\(131\) 18.2474 1.59429 0.797143 0.603790i \(-0.206343\pi\)
0.797143 + 0.603790i \(0.206343\pi\)
\(132\) 0 0
\(133\) −1.59592 −0.138384
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −11.8990 −1.01660 −0.508299 0.861181i \(-0.669726\pi\)
−0.508299 + 0.861181i \(0.669726\pi\)
\(138\) 0 0
\(139\) −12.6969 −1.07694 −0.538470 0.842645i \(-0.680998\pi\)
−0.538470 + 0.842645i \(0.680998\pi\)
\(140\) 0 0
\(141\) 3.79796 0.319846
\(142\) 0 0
\(143\) 14.4495 1.20833
\(144\) 0 0
\(145\) −23.6969 −1.96792
\(146\) 0 0
\(147\) 16.6515 1.37340
\(148\) 0 0
\(149\) −3.89898 −0.319417 −0.159708 0.987164i \(-0.551055\pi\)
−0.159708 + 0.987164i \(0.551055\pi\)
\(150\) 0 0
\(151\) −16.2474 −1.32220 −0.661099 0.750298i \(-0.729910\pi\)
−0.661099 + 0.750298i \(0.729910\pi\)
\(152\) 0 0
\(153\) −14.6969 −1.18818
\(154\) 0 0
\(155\) −32.6969 −2.62628
\(156\) 0 0
\(157\) −3.00000 −0.239426 −0.119713 0.992809i \(-0.538197\pi\)
−0.119713 + 0.992809i \(0.538197\pi\)
\(158\) 0 0
\(159\) −21.5505 −1.70907
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −7.55051 −0.591402 −0.295701 0.955281i \(-0.595553\pi\)
−0.295701 + 0.955281i \(0.595553\pi\)
\(164\) 0 0
\(165\) 18.0000 1.40130
\(166\) 0 0
\(167\) −5.10102 −0.394729 −0.197364 0.980330i \(-0.563238\pi\)
−0.197364 + 0.980330i \(0.563238\pi\)
\(168\) 0 0
\(169\) 21.7980 1.67677
\(170\) 0 0
\(171\) −10.6515 −0.814543
\(172\) 0 0
\(173\) 1.20204 0.0913895 0.0456947 0.998955i \(-0.485450\pi\)
0.0456947 + 0.998955i \(0.485450\pi\)
\(174\) 0 0
\(175\) 1.79796 0.135913
\(176\) 0 0
\(177\) 13.1010 0.984733
\(178\) 0 0
\(179\) 1.10102 0.0822941 0.0411471 0.999153i \(-0.486899\pi\)
0.0411471 + 0.999153i \(0.486899\pi\)
\(180\) 0 0
\(181\) 7.10102 0.527815 0.263907 0.964548i \(-0.414989\pi\)
0.263907 + 0.964548i \(0.414989\pi\)
\(182\) 0 0
\(183\) −14.4495 −1.06814
\(184\) 0 0
\(185\) −24.0000 −1.76452
\(186\) 0 0
\(187\) −12.0000 −0.877527
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.89898 0.499193 0.249596 0.968350i \(-0.419702\pi\)
0.249596 + 0.968350i \(0.419702\pi\)
\(192\) 0 0
\(193\) −8.10102 −0.583124 −0.291562 0.956552i \(-0.594175\pi\)
−0.291562 + 0.956552i \(0.594175\pi\)
\(194\) 0 0
\(195\) 43.3485 3.10425
\(196\) 0 0
\(197\) 19.8990 1.41774 0.708872 0.705337i \(-0.249204\pi\)
0.708872 + 0.705337i \(0.249204\pi\)
\(198\) 0 0
\(199\) −23.3485 −1.65513 −0.827565 0.561371i \(-0.810274\pi\)
−0.827565 + 0.561371i \(0.810274\pi\)
\(200\) 0 0
\(201\) 33.7980 2.38392
\(202\) 0 0
\(203\) 3.55051 0.249197
\(204\) 0 0
\(205\) −23.6969 −1.65507
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −8.69694 −0.601580
\(210\) 0 0
\(211\) −8.24745 −0.567778 −0.283889 0.958857i \(-0.591625\pi\)
−0.283889 + 0.958857i \(0.591625\pi\)
\(212\) 0 0
\(213\) −10.8990 −0.746786
\(214\) 0 0
\(215\) 20.6969 1.41152
\(216\) 0 0
\(217\) 4.89898 0.332564
\(218\) 0 0
\(219\) 4.65153 0.314321
\(220\) 0 0
\(221\) −28.8990 −1.94396
\(222\) 0 0
\(223\) −5.55051 −0.371690 −0.185845 0.982579i \(-0.559502\pi\)
−0.185845 + 0.982579i \(0.559502\pi\)
\(224\) 0 0
\(225\) 12.0000 0.800000
\(226\) 0 0
\(227\) 5.79796 0.384824 0.192412 0.981314i \(-0.438369\pi\)
0.192412 + 0.981314i \(0.438369\pi\)
\(228\) 0 0
\(229\) 5.79796 0.383140 0.191570 0.981479i \(-0.438642\pi\)
0.191570 + 0.981479i \(0.438642\pi\)
\(230\) 0 0
\(231\) −2.69694 −0.177446
\(232\) 0 0
\(233\) −22.5959 −1.48031 −0.740154 0.672438i \(-0.765247\pi\)
−0.740154 + 0.672438i \(0.765247\pi\)
\(234\) 0 0
\(235\) 4.65153 0.303432
\(236\) 0 0
\(237\) 29.3939 1.90934
\(238\) 0 0
\(239\) 1.79796 0.116300 0.0581501 0.998308i \(-0.481480\pi\)
0.0581501 + 0.998308i \(0.481480\pi\)
\(240\) 0 0
\(241\) 19.0000 1.22390 0.611949 0.790897i \(-0.290386\pi\)
0.611949 + 0.790897i \(0.290386\pi\)
\(242\) 0 0
\(243\) 22.0454 1.41421
\(244\) 0 0
\(245\) 20.3939 1.30292
\(246\) 0 0
\(247\) −20.9444 −1.33266
\(248\) 0 0
\(249\) 16.8990 1.07093
\(250\) 0 0
\(251\) 29.3485 1.85246 0.926229 0.376960i \(-0.123031\pi\)
0.926229 + 0.376960i \(0.123031\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −36.0000 −2.25441
\(256\) 0 0
\(257\) 21.8990 1.36602 0.683010 0.730409i \(-0.260670\pi\)
0.683010 + 0.730409i \(0.260670\pi\)
\(258\) 0 0
\(259\) 3.59592 0.223439
\(260\) 0 0
\(261\) 23.6969 1.46680
\(262\) 0 0
\(263\) −8.44949 −0.521018 −0.260509 0.965471i \(-0.583890\pi\)
−0.260509 + 0.965471i \(0.583890\pi\)
\(264\) 0 0
\(265\) −26.3939 −1.62136
\(266\) 0 0
\(267\) −21.5505 −1.31887
\(268\) 0 0
\(269\) −1.79796 −0.109623 −0.0548117 0.998497i \(-0.517456\pi\)
−0.0548117 + 0.998497i \(0.517456\pi\)
\(270\) 0 0
\(271\) −18.4495 −1.12073 −0.560363 0.828247i \(-0.689338\pi\)
−0.560363 + 0.828247i \(0.689338\pi\)
\(272\) 0 0
\(273\) −6.49490 −0.393089
\(274\) 0 0
\(275\) 9.79796 0.590839
\(276\) 0 0
\(277\) 13.7980 0.829039 0.414520 0.910040i \(-0.363950\pi\)
0.414520 + 0.910040i \(0.363950\pi\)
\(278\) 0 0
\(279\) 32.6969 1.95751
\(280\) 0 0
\(281\) −2.20204 −0.131363 −0.0656814 0.997841i \(-0.520922\pi\)
−0.0656814 + 0.997841i \(0.520922\pi\)
\(282\) 0 0
\(283\) −16.6969 −0.992530 −0.496265 0.868171i \(-0.665296\pi\)
−0.496265 + 0.868171i \(0.665296\pi\)
\(284\) 0 0
\(285\) −26.0908 −1.54549
\(286\) 0 0
\(287\) 3.55051 0.209580
\(288\) 0 0
\(289\) 7.00000 0.411765
\(290\) 0 0
\(291\) 4.65153 0.272678
\(292\) 0 0
\(293\) 11.2020 0.654430 0.327215 0.944950i \(-0.393890\pi\)
0.327215 + 0.944950i \(0.393890\pi\)
\(294\) 0 0
\(295\) 16.0454 0.934200
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −3.10102 −0.178740
\(302\) 0 0
\(303\) −22.0454 −1.26648
\(304\) 0 0
\(305\) −17.6969 −1.01332
\(306\) 0 0
\(307\) 1.14643 0.0654301 0.0327151 0.999465i \(-0.489585\pi\)
0.0327151 + 0.999465i \(0.489585\pi\)
\(308\) 0 0
\(309\) −16.8990 −0.961349
\(310\) 0 0
\(311\) 2.24745 0.127441 0.0637206 0.997968i \(-0.479703\pi\)
0.0637206 + 0.997968i \(0.479703\pi\)
\(312\) 0 0
\(313\) 5.00000 0.282617 0.141308 0.989966i \(-0.454869\pi\)
0.141308 + 0.989966i \(0.454869\pi\)
\(314\) 0 0
\(315\) −4.04541 −0.227933
\(316\) 0 0
\(317\) −18.1010 −1.01665 −0.508327 0.861164i \(-0.669736\pi\)
−0.508327 + 0.861164i \(0.669736\pi\)
\(318\) 0 0
\(319\) 19.3485 1.08331
\(320\) 0 0
\(321\) −40.2929 −2.24893
\(322\) 0 0
\(323\) 17.3939 0.967821
\(324\) 0 0
\(325\) 23.5959 1.30887
\(326\) 0 0
\(327\) 1.95459 0.108089
\(328\) 0 0
\(329\) −0.696938 −0.0384235
\(330\) 0 0
\(331\) 24.6969 1.35747 0.678733 0.734385i \(-0.262529\pi\)
0.678733 + 0.734385i \(0.262529\pi\)
\(332\) 0 0
\(333\) 24.0000 1.31519
\(334\) 0 0
\(335\) 41.3939 2.26159
\(336\) 0 0
\(337\) 29.8990 1.62870 0.814351 0.580373i \(-0.197093\pi\)
0.814351 + 0.580373i \(0.197093\pi\)
\(338\) 0 0
\(339\) 12.2474 0.665190
\(340\) 0 0
\(341\) 26.6969 1.44572
\(342\) 0 0
\(343\) −6.20204 −0.334879
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.34847 0.394486 0.197243 0.980355i \(-0.436801\pi\)
0.197243 + 0.980355i \(0.436801\pi\)
\(348\) 0 0
\(349\) 10.6969 0.572594 0.286297 0.958141i \(-0.407576\pi\)
0.286297 + 0.958141i \(0.407576\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 15.6969 0.835464 0.417732 0.908570i \(-0.362825\pi\)
0.417732 + 0.908570i \(0.362825\pi\)
\(354\) 0 0
\(355\) −13.3485 −0.708463
\(356\) 0 0
\(357\) 5.39388 0.285474
\(358\) 0 0
\(359\) −8.44949 −0.445947 −0.222974 0.974825i \(-0.571576\pi\)
−0.222974 + 0.974825i \(0.571576\pi\)
\(360\) 0 0
\(361\) −6.39388 −0.336520
\(362\) 0 0
\(363\) 12.2474 0.642824
\(364\) 0 0
\(365\) 5.69694 0.298191
\(366\) 0 0
\(367\) 15.3485 0.801184 0.400592 0.916257i \(-0.368805\pi\)
0.400592 + 0.916257i \(0.368805\pi\)
\(368\) 0 0
\(369\) 23.6969 1.23361
\(370\) 0 0
\(371\) 3.95459 0.205312
\(372\) 0 0
\(373\) −28.4949 −1.47541 −0.737705 0.675123i \(-0.764090\pi\)
−0.737705 + 0.675123i \(0.764090\pi\)
\(374\) 0 0
\(375\) −7.34847 −0.379473
\(376\) 0 0
\(377\) 46.5959 2.39981
\(378\) 0 0
\(379\) 28.4495 1.46135 0.730676 0.682724i \(-0.239205\pi\)
0.730676 + 0.682724i \(0.239205\pi\)
\(380\) 0 0
\(381\) 16.8990 0.865761
\(382\) 0 0
\(383\) 13.1010 0.669431 0.334715 0.942319i \(-0.391360\pi\)
0.334715 + 0.942319i \(0.391360\pi\)
\(384\) 0 0
\(385\) −3.30306 −0.168340
\(386\) 0 0
\(387\) −20.6969 −1.05208
\(388\) 0 0
\(389\) −30.2929 −1.53591 −0.767954 0.640505i \(-0.778725\pi\)
−0.767954 + 0.640505i \(0.778725\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −44.6969 −2.25466
\(394\) 0 0
\(395\) 36.0000 1.81136
\(396\) 0 0
\(397\) −8.79796 −0.441557 −0.220778 0.975324i \(-0.570860\pi\)
−0.220778 + 0.975324i \(0.570860\pi\)
\(398\) 0 0
\(399\) 3.90918 0.195704
\(400\) 0 0
\(401\) 15.4949 0.773778 0.386889 0.922126i \(-0.373550\pi\)
0.386889 + 0.922126i \(0.373550\pi\)
\(402\) 0 0
\(403\) 64.2929 3.20266
\(404\) 0 0
\(405\) 27.0000 1.34164
\(406\) 0 0
\(407\) 19.5959 0.971334
\(408\) 0 0
\(409\) 11.1010 0.548910 0.274455 0.961600i \(-0.411503\pi\)
0.274455 + 0.961600i \(0.411503\pi\)
\(410\) 0 0
\(411\) 29.1464 1.43769
\(412\) 0 0
\(413\) −2.40408 −0.118297
\(414\) 0 0
\(415\) 20.6969 1.01597
\(416\) 0 0
\(417\) 31.1010 1.52302
\(418\) 0 0
\(419\) 33.3939 1.63140 0.815699 0.578477i \(-0.196353\pi\)
0.815699 + 0.578477i \(0.196353\pi\)
\(420\) 0 0
\(421\) −33.5959 −1.63736 −0.818682 0.574247i \(-0.805295\pi\)
−0.818682 + 0.574247i \(0.805295\pi\)
\(422\) 0 0
\(423\) −4.65153 −0.226165
\(424\) 0 0
\(425\) −19.5959 −0.950542
\(426\) 0 0
\(427\) 2.65153 0.128317
\(428\) 0 0
\(429\) −35.3939 −1.70883
\(430\) 0 0
\(431\) 19.3485 0.931983 0.465991 0.884789i \(-0.345698\pi\)
0.465991 + 0.884789i \(0.345698\pi\)
\(432\) 0 0
\(433\) 2.10102 0.100969 0.0504843 0.998725i \(-0.483924\pi\)
0.0504843 + 0.998725i \(0.483924\pi\)
\(434\) 0 0
\(435\) 58.0454 2.78306
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 2.89898 0.138361 0.0691804 0.997604i \(-0.477962\pi\)
0.0691804 + 0.997604i \(0.477962\pi\)
\(440\) 0 0
\(441\) −20.3939 −0.971137
\(442\) 0 0
\(443\) 22.8990 1.08796 0.543982 0.839097i \(-0.316916\pi\)
0.543982 + 0.839097i \(0.316916\pi\)
\(444\) 0 0
\(445\) −26.3939 −1.25119
\(446\) 0 0
\(447\) 9.55051 0.451724
\(448\) 0 0
\(449\) 1.89898 0.0896184 0.0448092 0.998996i \(-0.485732\pi\)
0.0448092 + 0.998996i \(0.485732\pi\)
\(450\) 0 0
\(451\) 19.3485 0.911084
\(452\) 0 0
\(453\) 39.7980 1.86987
\(454\) 0 0
\(455\) −7.95459 −0.372917
\(456\) 0 0
\(457\) 8.10102 0.378950 0.189475 0.981886i \(-0.439321\pi\)
0.189475 + 0.981886i \(0.439321\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 42.3939 1.97448 0.987240 0.159240i \(-0.0509045\pi\)
0.987240 + 0.159240i \(0.0509045\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) 0 0
\(465\) 80.0908 3.71412
\(466\) 0 0
\(467\) 21.7980 1.00869 0.504345 0.863502i \(-0.331734\pi\)
0.504345 + 0.863502i \(0.331734\pi\)
\(468\) 0 0
\(469\) −6.20204 −0.286384
\(470\) 0 0
\(471\) 7.34847 0.338600
\(472\) 0 0
\(473\) −16.8990 −0.777016
\(474\) 0 0
\(475\) −14.2020 −0.651634
\(476\) 0 0
\(477\) 26.3939 1.20849
\(478\) 0 0
\(479\) 21.1010 0.964130 0.482065 0.876135i \(-0.339887\pi\)
0.482065 + 0.876135i \(0.339887\pi\)
\(480\) 0 0
\(481\) 47.1918 2.15176
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5.69694 0.258685
\(486\) 0 0
\(487\) 22.2474 1.00813 0.504064 0.863666i \(-0.331838\pi\)
0.504064 + 0.863666i \(0.331838\pi\)
\(488\) 0 0
\(489\) 18.4949 0.836368
\(490\) 0 0
\(491\) 5.10102 0.230206 0.115103 0.993354i \(-0.463280\pi\)
0.115103 + 0.993354i \(0.463280\pi\)
\(492\) 0 0
\(493\) −38.6969 −1.74282
\(494\) 0 0
\(495\) −22.0454 −0.990867
\(496\) 0 0
\(497\) 2.00000 0.0897123
\(498\) 0 0
\(499\) 35.5959 1.59349 0.796746 0.604314i \(-0.206553\pi\)
0.796746 + 0.604314i \(0.206553\pi\)
\(500\) 0 0
\(501\) 12.4949 0.558231
\(502\) 0 0
\(503\) −13.1464 −0.586170 −0.293085 0.956086i \(-0.594682\pi\)
−0.293085 + 0.956086i \(0.594682\pi\)
\(504\) 0 0
\(505\) −27.0000 −1.20148
\(506\) 0 0
\(507\) −53.3939 −2.37131
\(508\) 0 0
\(509\) 22.5959 1.00155 0.500773 0.865579i \(-0.333049\pi\)
0.500773 + 0.865579i \(0.333049\pi\)
\(510\) 0 0
\(511\) −0.853572 −0.0377598
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −20.6969 −0.912016
\(516\) 0 0
\(517\) −3.79796 −0.167034
\(518\) 0 0
\(519\) −2.94439 −0.129244
\(520\) 0 0
\(521\) −27.1010 −1.18732 −0.593659 0.804717i \(-0.702317\pi\)
−0.593659 + 0.804717i \(0.702317\pi\)
\(522\) 0 0
\(523\) 31.5959 1.38159 0.690797 0.723049i \(-0.257260\pi\)
0.690797 + 0.723049i \(0.257260\pi\)
\(524\) 0 0
\(525\) −4.40408 −0.192210
\(526\) 0 0
\(527\) −53.3939 −2.32587
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) −16.0454 −0.696311
\(532\) 0 0
\(533\) 46.5959 2.01829
\(534\) 0 0
\(535\) −49.3485 −2.13352
\(536\) 0 0
\(537\) −2.69694 −0.116381
\(538\) 0 0
\(539\) −16.6515 −0.717232
\(540\) 0 0
\(541\) 40.3939 1.73667 0.868334 0.495980i \(-0.165191\pi\)
0.868334 + 0.495980i \(0.165191\pi\)
\(542\) 0 0
\(543\) −17.3939 −0.746443
\(544\) 0 0
\(545\) 2.39388 0.102542
\(546\) 0 0
\(547\) 7.30306 0.312256 0.156128 0.987737i \(-0.450099\pi\)
0.156128 + 0.987737i \(0.450099\pi\)
\(548\) 0 0
\(549\) 17.6969 0.755287
\(550\) 0 0
\(551\) −28.0454 −1.19477
\(552\) 0 0
\(553\) −5.39388 −0.229371
\(554\) 0 0
\(555\) 58.7878 2.49540
\(556\) 0 0
\(557\) −25.6969 −1.08881 −0.544407 0.838821i \(-0.683245\pi\)
−0.544407 + 0.838821i \(0.683245\pi\)
\(558\) 0 0
\(559\) −40.6969 −1.72130
\(560\) 0 0
\(561\) 29.3939 1.24101
\(562\) 0 0
\(563\) −42.0908 −1.77392 −0.886958 0.461850i \(-0.847186\pi\)
−0.886958 + 0.461850i \(0.847186\pi\)
\(564\) 0 0
\(565\) 15.0000 0.631055
\(566\) 0 0
\(567\) −4.04541 −0.169891
\(568\) 0 0
\(569\) 21.4949 0.901113 0.450556 0.892748i \(-0.351226\pi\)
0.450556 + 0.892748i \(0.351226\pi\)
\(570\) 0 0
\(571\) −37.5505 −1.57144 −0.785720 0.618582i \(-0.787707\pi\)
−0.785720 + 0.618582i \(0.787707\pi\)
\(572\) 0 0
\(573\) −16.8990 −0.705965
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −25.5959 −1.06557 −0.532786 0.846250i \(-0.678855\pi\)
−0.532786 + 0.846250i \(0.678855\pi\)
\(578\) 0 0
\(579\) 19.8434 0.824662
\(580\) 0 0
\(581\) −3.10102 −0.128652
\(582\) 0 0
\(583\) 21.5505 0.892531
\(584\) 0 0
\(585\) −53.0908 −2.19504
\(586\) 0 0
\(587\) 7.59592 0.313517 0.156759 0.987637i \(-0.449896\pi\)
0.156759 + 0.987637i \(0.449896\pi\)
\(588\) 0 0
\(589\) −38.6969 −1.59448
\(590\) 0 0
\(591\) −48.7423 −2.00499
\(592\) 0 0
\(593\) −36.8990 −1.51526 −0.757630 0.652685i \(-0.773643\pi\)
−0.757630 + 0.652685i \(0.773643\pi\)
\(594\) 0 0
\(595\) 6.60612 0.270825
\(596\) 0 0
\(597\) 57.1918 2.34071
\(598\) 0 0
\(599\) 13.3485 0.545404 0.272702 0.962099i \(-0.412083\pi\)
0.272702 + 0.962099i \(0.412083\pi\)
\(600\) 0 0
\(601\) 4.79796 0.195713 0.0978564 0.995201i \(-0.468801\pi\)
0.0978564 + 0.995201i \(0.468801\pi\)
\(602\) 0 0
\(603\) −41.3939 −1.68569
\(604\) 0 0
\(605\) 15.0000 0.609837
\(606\) 0 0
\(607\) 16.4495 0.667664 0.333832 0.942633i \(-0.391658\pi\)
0.333832 + 0.942633i \(0.391658\pi\)
\(608\) 0 0
\(609\) −8.69694 −0.352418
\(610\) 0 0
\(611\) −9.14643 −0.370025
\(612\) 0 0
\(613\) 17.8990 0.722933 0.361466 0.932385i \(-0.382276\pi\)
0.361466 + 0.932385i \(0.382276\pi\)
\(614\) 0 0
\(615\) 58.0454 2.34062
\(616\) 0 0
\(617\) −18.0000 −0.724653 −0.362326 0.932051i \(-0.618017\pi\)
−0.362326 + 0.932051i \(0.618017\pi\)
\(618\) 0 0
\(619\) −25.7980 −1.03691 −0.518454 0.855106i \(-0.673492\pi\)
−0.518454 + 0.855106i \(0.673492\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.95459 0.158437
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 21.3031 0.850762
\(628\) 0 0
\(629\) −39.1918 −1.56268
\(630\) 0 0
\(631\) 4.69694 0.186982 0.0934911 0.995620i \(-0.470197\pi\)
0.0934911 + 0.995620i \(0.470197\pi\)
\(632\) 0 0
\(633\) 20.2020 0.802959
\(634\) 0 0
\(635\) 20.6969 0.821333
\(636\) 0 0
\(637\) −40.1010 −1.58886
\(638\) 0 0
\(639\) 13.3485 0.528057
\(640\) 0 0
\(641\) −15.8990 −0.627972 −0.313986 0.949428i \(-0.601664\pi\)
−0.313986 + 0.949428i \(0.601664\pi\)
\(642\) 0 0
\(643\) 15.1464 0.597317 0.298658 0.954360i \(-0.403461\pi\)
0.298658 + 0.954360i \(0.403461\pi\)
\(644\) 0 0
\(645\) −50.6969 −1.99619
\(646\) 0 0
\(647\) 4.65153 0.182871 0.0914353 0.995811i \(-0.470855\pi\)
0.0914353 + 0.995811i \(0.470855\pi\)
\(648\) 0 0
\(649\) −13.1010 −0.514260
\(650\) 0 0
\(651\) −12.0000 −0.470317
\(652\) 0 0
\(653\) 29.6969 1.16213 0.581066 0.813857i \(-0.302636\pi\)
0.581066 + 0.813857i \(0.302636\pi\)
\(654\) 0 0
\(655\) −54.7423 −2.13896
\(656\) 0 0
\(657\) −5.69694 −0.222259
\(658\) 0 0
\(659\) −25.7980 −1.00495 −0.502473 0.864593i \(-0.667576\pi\)
−0.502473 + 0.864593i \(0.667576\pi\)
\(660\) 0 0
\(661\) −29.6969 −1.15508 −0.577539 0.816363i \(-0.695987\pi\)
−0.577539 + 0.816363i \(0.695987\pi\)
\(662\) 0 0
\(663\) 70.7878 2.74917
\(664\) 0 0
\(665\) 4.78775 0.185661
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 13.5959 0.525649
\(670\) 0 0
\(671\) 14.4495 0.557816
\(672\) 0 0
\(673\) −17.7980 −0.686061 −0.343030 0.939324i \(-0.611453\pi\)
−0.343030 + 0.939324i \(0.611453\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 11.8990 0.457315 0.228657 0.973507i \(-0.426566\pi\)
0.228657 + 0.973507i \(0.426566\pi\)
\(678\) 0 0
\(679\) −0.853572 −0.0327571
\(680\) 0 0
\(681\) −14.2020 −0.544223
\(682\) 0 0
\(683\) −25.3939 −0.971670 −0.485835 0.874051i \(-0.661484\pi\)
−0.485835 + 0.874051i \(0.661484\pi\)
\(684\) 0 0
\(685\) 35.6969 1.36391
\(686\) 0 0
\(687\) −14.2020 −0.541842
\(688\) 0 0
\(689\) 51.8990 1.97719
\(690\) 0 0
\(691\) 24.2929 0.924144 0.462072 0.886842i \(-0.347106\pi\)
0.462072 + 0.886842i \(0.347106\pi\)
\(692\) 0 0
\(693\) 3.30306 0.125473
\(694\) 0 0
\(695\) 38.0908 1.44487
\(696\) 0 0
\(697\) −38.6969 −1.46575
\(698\) 0 0
\(699\) 55.3485 2.09347
\(700\) 0 0
\(701\) 21.7980 0.823298 0.411649 0.911343i \(-0.364953\pi\)
0.411649 + 0.911343i \(0.364953\pi\)
\(702\) 0 0
\(703\) −28.4041 −1.07128
\(704\) 0 0
\(705\) −11.3939 −0.429118
\(706\) 0 0
\(707\) 4.04541 0.152143
\(708\) 0 0
\(709\) −5.00000 −0.187779 −0.0938895 0.995583i \(-0.529930\pi\)
−0.0938895 + 0.995583i \(0.529930\pi\)
\(710\) 0 0
\(711\) −36.0000 −1.35011
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −43.3485 −1.62114
\(716\) 0 0
\(717\) −4.40408 −0.164473
\(718\) 0 0
\(719\) −34.4949 −1.28644 −0.643221 0.765680i \(-0.722402\pi\)
−0.643221 + 0.765680i \(0.722402\pi\)
\(720\) 0 0
\(721\) 3.10102 0.115488
\(722\) 0 0
\(723\) −46.5403 −1.73085
\(724\) 0 0
\(725\) 31.5959 1.17344
\(726\) 0 0
\(727\) 20.4495 0.758430 0.379215 0.925309i \(-0.376194\pi\)
0.379215 + 0.925309i \(0.376194\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 33.7980 1.25006
\(732\) 0 0
\(733\) 14.7980 0.546575 0.273288 0.961932i \(-0.411889\pi\)
0.273288 + 0.961932i \(0.411889\pi\)
\(734\) 0 0
\(735\) −49.9546 −1.84260
\(736\) 0 0
\(737\) −33.7980 −1.24496
\(738\) 0 0
\(739\) −48.0454 −1.76738 −0.883689 0.468074i \(-0.844948\pi\)
−0.883689 + 0.468074i \(0.844948\pi\)
\(740\) 0 0
\(741\) 51.3031 1.88467
\(742\) 0 0
\(743\) −14.4495 −0.530100 −0.265050 0.964235i \(-0.585389\pi\)
−0.265050 + 0.964235i \(0.585389\pi\)
\(744\) 0 0
\(745\) 11.6969 0.428543
\(746\) 0 0
\(747\) −20.6969 −0.757261
\(748\) 0 0
\(749\) 7.39388 0.270166
\(750\) 0 0
\(751\) 28.7423 1.04882 0.524412 0.851465i \(-0.324285\pi\)
0.524412 + 0.851465i \(0.324285\pi\)
\(752\) 0 0
\(753\) −71.8888 −2.61977
\(754\) 0 0
\(755\) 48.7423 1.77392
\(756\) 0 0
\(757\) −1.89898 −0.0690196 −0.0345098 0.999404i \(-0.510987\pi\)
−0.0345098 + 0.999404i \(0.510987\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −12.3939 −0.449278 −0.224639 0.974442i \(-0.572120\pi\)
−0.224639 + 0.974442i \(0.572120\pi\)
\(762\) 0 0
\(763\) −0.358674 −0.0129849
\(764\) 0 0
\(765\) 44.0908 1.59411
\(766\) 0 0
\(767\) −31.5505 −1.13922
\(768\) 0 0
\(769\) 16.4949 0.594821 0.297411 0.954750i \(-0.403877\pi\)
0.297411 + 0.954750i \(0.403877\pi\)
\(770\) 0 0
\(771\) −53.6413 −1.93185
\(772\) 0 0
\(773\) 10.0000 0.359675 0.179838 0.983696i \(-0.442443\pi\)
0.179838 + 0.983696i \(0.442443\pi\)
\(774\) 0 0
\(775\) 43.5959 1.56601
\(776\) 0 0
\(777\) −8.80816 −0.315991
\(778\) 0 0
\(779\) −28.0454 −1.00483
\(780\) 0 0
\(781\) 10.8990 0.389996
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 9.00000 0.321224
\(786\) 0 0
\(787\) −12.6515 −0.450978 −0.225489 0.974246i \(-0.572398\pi\)
−0.225489 + 0.974246i \(0.572398\pi\)
\(788\) 0 0
\(789\) 20.6969 0.736831
\(790\) 0 0
\(791\) −2.24745 −0.0799101
\(792\) 0 0
\(793\) 34.7980 1.23571
\(794\) 0 0
\(795\) 64.6515 2.29295
\(796\) 0 0
\(797\) −7.59592 −0.269061 −0.134531 0.990909i \(-0.542953\pi\)
−0.134531 + 0.990909i \(0.542953\pi\)
\(798\) 0 0
\(799\) 7.59592 0.268724
\(800\) 0 0
\(801\) 26.3939 0.932582
\(802\) 0 0
\(803\) −4.65153 −0.164149
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 4.40408 0.155031
\(808\) 0 0
\(809\) −5.59592 −0.196742 −0.0983710 0.995150i \(-0.531363\pi\)
−0.0983710 + 0.995150i \(0.531363\pi\)
\(810\) 0 0
\(811\) −18.9444 −0.665227 −0.332614 0.943063i \(-0.607931\pi\)
−0.332614 + 0.943063i \(0.607931\pi\)
\(812\) 0 0
\(813\) 45.1918 1.58495
\(814\) 0 0
\(815\) 22.6515 0.793449
\(816\) 0 0
\(817\) 24.4949 0.856968
\(818\) 0 0
\(819\) 7.95459 0.277956
\(820\) 0 0
\(821\) −3.49490 −0.121973 −0.0609864 0.998139i \(-0.519425\pi\)
−0.0609864 + 0.998139i \(0.519425\pi\)
\(822\) 0 0
\(823\) 46.0454 1.60504 0.802521 0.596624i \(-0.203492\pi\)
0.802521 + 0.596624i \(0.203492\pi\)
\(824\) 0 0
\(825\) −24.0000 −0.835573
\(826\) 0 0
\(827\) 0.247449 0.00860463 0.00430232 0.999991i \(-0.498631\pi\)
0.00430232 + 0.999991i \(0.498631\pi\)
\(828\) 0 0
\(829\) 33.0000 1.14614 0.573069 0.819507i \(-0.305753\pi\)
0.573069 + 0.819507i \(0.305753\pi\)
\(830\) 0 0
\(831\) −33.7980 −1.17244
\(832\) 0 0
\(833\) 33.3031 1.15388
\(834\) 0 0
\(835\) 15.3031 0.529584
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 20.9444 0.723081 0.361540 0.932356i \(-0.382251\pi\)
0.361540 + 0.932356i \(0.382251\pi\)
\(840\) 0 0
\(841\) 33.3939 1.15151
\(842\) 0 0
\(843\) 5.39388 0.185775
\(844\) 0 0
\(845\) −65.3939 −2.24962
\(846\) 0 0
\(847\) −2.24745 −0.0772233
\(848\) 0 0
\(849\) 40.8990 1.40365
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 32.8990 1.12644 0.563220 0.826307i \(-0.309562\pi\)
0.563220 + 0.826307i \(0.309562\pi\)
\(854\) 0 0
\(855\) 31.9546 1.09282
\(856\) 0 0
\(857\) −6.39388 −0.218411 −0.109205 0.994019i \(-0.534831\pi\)
−0.109205 + 0.994019i \(0.534831\pi\)
\(858\) 0 0
\(859\) −11.3485 −0.387205 −0.193602 0.981080i \(-0.562017\pi\)
−0.193602 + 0.981080i \(0.562017\pi\)
\(860\) 0 0
\(861\) −8.69694 −0.296391
\(862\) 0 0
\(863\) −3.75255 −0.127738 −0.0638692 0.997958i \(-0.520344\pi\)
−0.0638692 + 0.997958i \(0.520344\pi\)
\(864\) 0 0
\(865\) −3.60612 −0.122612
\(866\) 0 0
\(867\) −17.1464 −0.582323
\(868\) 0 0
\(869\) −29.3939 −0.997119
\(870\) 0 0
\(871\) −81.3939 −2.75793
\(872\) 0 0
\(873\) −5.69694 −0.192812
\(874\) 0 0
\(875\) 1.34847 0.0455866
\(876\) 0 0
\(877\) 16.8990 0.570638 0.285319 0.958433i \(-0.407900\pi\)
0.285319 + 0.958433i \(0.407900\pi\)
\(878\) 0 0
\(879\) −27.4393 −0.925504
\(880\) 0 0
\(881\) −47.0908 −1.58653 −0.793265 0.608877i \(-0.791620\pi\)
−0.793265 + 0.608877i \(0.791620\pi\)
\(882\) 0 0
\(883\) 16.0454 0.539971 0.269985 0.962864i \(-0.412981\pi\)
0.269985 + 0.962864i \(0.412981\pi\)
\(884\) 0 0
\(885\) −39.3031 −1.32116
\(886\) 0 0
\(887\) 14.2020 0.476858 0.238429 0.971160i \(-0.423368\pi\)
0.238429 + 0.971160i \(0.423368\pi\)
\(888\) 0 0
\(889\) −3.10102 −0.104005
\(890\) 0 0
\(891\) −22.0454 −0.738549
\(892\) 0 0
\(893\) 5.50510 0.184221
\(894\) 0 0
\(895\) −3.30306 −0.110409
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 86.0908 2.87129
\(900\) 0 0
\(901\) −43.1010 −1.43590
\(902\) 0 0
\(903\) 7.59592 0.252776
\(904\) 0 0
\(905\) −21.3031 −0.708138
\(906\) 0 0
\(907\) 10.9444 0.363402 0.181701 0.983354i \(-0.441840\pi\)
0.181701 + 0.983354i \(0.441840\pi\)
\(908\) 0 0
\(909\) 27.0000 0.895533
\(910\) 0 0
\(911\) 2.89898 0.0960475 0.0480237 0.998846i \(-0.484708\pi\)
0.0480237 + 0.998846i \(0.484708\pi\)
\(912\) 0 0
\(913\) −16.8990 −0.559275
\(914\) 0 0
\(915\) 43.3485 1.43306
\(916\) 0 0
\(917\) 8.20204 0.270855
\(918\) 0 0
\(919\) 17.3485 0.572273 0.286137 0.958189i \(-0.407629\pi\)
0.286137 + 0.958189i \(0.407629\pi\)
\(920\) 0 0
\(921\) −2.80816 −0.0925322
\(922\) 0 0
\(923\) 26.2474 0.863945
\(924\) 0 0
\(925\) 32.0000 1.05215
\(926\) 0 0
\(927\) 20.6969 0.679777
\(928\) 0 0
\(929\) −32.4949 −1.06612 −0.533062 0.846076i \(-0.678959\pi\)
−0.533062 + 0.846076i \(0.678959\pi\)
\(930\) 0 0
\(931\) 24.1362 0.791033
\(932\) 0 0
\(933\) −5.50510 −0.180229
\(934\) 0 0
\(935\) 36.0000 1.17733
\(936\) 0 0
\(937\) 36.8990 1.20544 0.602719 0.797954i \(-0.294084\pi\)
0.602719 + 0.797954i \(0.294084\pi\)
\(938\) 0 0
\(939\) −12.2474 −0.399680
\(940\) 0 0
\(941\) −6.00000 −0.195594 −0.0977972 0.995206i \(-0.531180\pi\)
−0.0977972 + 0.995206i \(0.531180\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −55.1918 −1.79349 −0.896747 0.442544i \(-0.854076\pi\)
−0.896747 + 0.442544i \(0.854076\pi\)
\(948\) 0 0
\(949\) −11.2020 −0.363634
\(950\) 0 0
\(951\) 44.3383 1.43777
\(952\) 0 0
\(953\) 5.69694 0.184542 0.0922710 0.995734i \(-0.470587\pi\)
0.0922710 + 0.995734i \(0.470587\pi\)
\(954\) 0 0
\(955\) −20.6969 −0.669737
\(956\) 0 0
\(957\) −47.3939 −1.53203
\(958\) 0 0
\(959\) −5.34847 −0.172711
\(960\) 0 0
\(961\) 87.7878 2.83186
\(962\) 0 0
\(963\) 49.3485 1.59023
\(964\) 0 0
\(965\) 24.3031 0.782343
\(966\) 0 0
\(967\) −26.6515 −0.857055 −0.428528 0.903529i \(-0.640968\pi\)
−0.428528 + 0.903529i \(0.640968\pi\)
\(968\) 0 0
\(969\) −42.6061 −1.36871
\(970\) 0 0
\(971\) −56.7423 −1.82095 −0.910474 0.413566i \(-0.864283\pi\)
−0.910474 + 0.413566i \(0.864283\pi\)
\(972\) 0 0
\(973\) −5.70714 −0.182963
\(974\) 0 0
\(975\) −57.7980 −1.85102
\(976\) 0 0
\(977\) −17.6969 −0.566175 −0.283088 0.959094i \(-0.591359\pi\)
−0.283088 + 0.959094i \(0.591359\pi\)
\(978\) 0 0
\(979\) 21.5505 0.688757
\(980\) 0 0
\(981\) −2.39388 −0.0764306
\(982\) 0 0
\(983\) 26.8990 0.857944 0.428972 0.903318i \(-0.358876\pi\)
0.428972 + 0.903318i \(0.358876\pi\)
\(984\) 0 0
\(985\) −59.6969 −1.90210
\(986\) 0 0
\(987\) 1.70714 0.0543390
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 48.9898 1.55621 0.778106 0.628133i \(-0.216181\pi\)
0.778106 + 0.628133i \(0.216181\pi\)
\(992\) 0 0
\(993\) −60.4949 −1.91975
\(994\) 0 0
\(995\) 70.0454 2.22059
\(996\) 0 0
\(997\) −34.3939 −1.08927 −0.544633 0.838675i \(-0.683331\pi\)
−0.544633 + 0.838675i \(0.683331\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8464.2.a.y.1.1 2
4.3 odd 2 4232.2.a.p.1.2 2
23.22 odd 2 8464.2.a.bc.1.1 2
92.91 even 2 4232.2.a.q.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4232.2.a.p.1.2 2 4.3 odd 2
4232.2.a.q.1.2 yes 2 92.91 even 2
8464.2.a.y.1.1 2 1.1 even 1 trivial
8464.2.a.bc.1.1 2 23.22 odd 2