L(s) = 1 | + 3·3-s + 2·4-s + 5-s − 7-s + 3·9-s + 6·12-s − 4·13-s + 3·15-s + 2·17-s − 6·19-s + 2·20-s − 3·21-s − 20·23-s + 5·25-s − 2·28-s + 10·29-s − 31-s − 35-s + 6·36-s + 5·37-s − 12·39-s − 2·41-s + 32·43-s + 3·45-s − 8·47-s + 6·51-s − 8·52-s + ⋯ |
L(s) = 1 | + 1.73·3-s + 4-s + 0.447·5-s − 0.377·7-s + 9-s + 1.73·12-s − 1.10·13-s + 0.774·15-s + 0.485·17-s − 1.37·19-s + 0.447·20-s − 0.654·21-s − 4.17·23-s + 25-s − 0.377·28-s + 1.85·29-s − 0.179·31-s − 0.169·35-s + 36-s + 0.821·37-s − 1.92·39-s − 0.312·41-s + 4.87·43-s + 0.447·45-s − 1.16·47-s + 0.840·51-s − 1.10·52-s + ⋯ |
Λ(s)=(=((74⋅118)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((74⋅118)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
74⋅118
|
Sign: |
1
|
Analytic conductor: |
2092.38 |
Root analytic conductor: |
2.60064 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 74⋅118, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.411449550 |
L(21) |
≈ |
3.411449550 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 7 | C4 | 1+T+T2+T3+T4 |
| 11 | | 1 |
good | 2 | C4×C2 | 1−pT2+p2T4−p3T6+p4T8 |
| 3 | C4×C2 | 1−pT+2pT2−p2T3+p2T4−p3T5+2p3T6−p4T7+p4T8 |
| 5 | C4×C2 | 1−T−4T2+9T3+11T4+9pT5−4p2T6−p3T7+p4T8 |
| 13 | C4×C2 | 1+4T+3T2−40T3−199T4−40pT5+3p2T6+4p3T7+p4T8 |
| 17 | C4×C2 | 1−2T−13T2+60T3+101T4+60pT5−13p2T6−2p3T7+p4T8 |
| 19 | C4×C2 | 1+6T+17T2−12T3−395T4−12pT5+17p2T6+6p3T7+p4T8 |
| 23 | C2 | (1+5T+pT2)4 |
| 29 | C4×C2 | 1−10T+71T2−420T3+2141T4−420pT5+71p2T6−10p3T7+p4T8 |
| 31 | C4×C2 | 1+T−30T2−61T3+869T4−61pT5−30p2T6+p3T7+p4T8 |
| 37 | C4×C2 | 1−5T−12T2+245T3−781T4+245pT5−12p2T6−5p3T7+p4T8 |
| 41 | C4×C2 | 1+2T−37T2−156T3+1205T4−156pT5−37p2T6+2p3T7+p4T8 |
| 43 | C2 | (1−8T+pT2)4 |
| 47 | C4×C2 | 1+8T+17T2−240T3−2719T4−240pT5+17p2T6+8p3T7+p4T8 |
| 53 | C4×C2 | 1−6T−17T2+420T3−1619T4+420pT5−17p2T6−6p3T7+p4T8 |
| 59 | C4×C2 | 1+3T−50T2−327T3+1969T4−327pT5−50p2T6+3p3T7+p4T8 |
| 61 | C4×C2 | 1+2T−57T2−236T3+3005T4−236pT5−57p2T6+2p3T7+p4T8 |
| 67 | C2 | (1+3T+pT2)4 |
| 71 | C4×C2 | 1+T−70T2−141T3+4829T4−141pT5−70p2T6+p3T7+p4T8 |
| 73 | C4×C2 | 1−10T+27T2+460T3−6571T4+460pT5+27p2T6−10p3T7+p4T8 |
| 79 | C4×C2 | 1−6T−43T2+732T3−995T4+732pT5−43p2T6−6p3T7+p4T8 |
| 83 | C4×C2 | 1−12T+61T2+264T3−8231T4+264pT5+61p2T6−12p3T7+p4T8 |
| 89 | C2 | (1+15T+pT2)4 |
| 97 | C4×C2 | 1−5T−72T2+845T3+2759T4+845pT5−72p2T6−5p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.45528048174537683151877370280, −7.06043921021673310240955918594, −6.86080151981069932241731810699, −6.76930020858413221706683836030, −6.25218295341912499298566403655, −6.16283522315935989065843124132, −6.10074884962540342783625618715, −5.90845286118685222436989965085, −5.52314628791857521767730749047, −5.26844750815053186609389963032, −4.80913474218338749643048125429, −4.71158784166738734291601555283, −4.27340117459145478232609343687, −3.94173969165015921204476229044, −3.93412662973625388084950185321, −3.87159897017269670202448671487, −3.20103526466802375520514475617, −2.75878029288106046887440356866, −2.60062299094316533223165483521, −2.53766212771330727118091720749, −2.43726768402243278348847815986, −2.05131082770292051708494333216, −1.52456574736774742432399877651, −1.27831561270769580785015426772, −0.34350281464779691706024284713,
0.34350281464779691706024284713, 1.27831561270769580785015426772, 1.52456574736774742432399877651, 2.05131082770292051708494333216, 2.43726768402243278348847815986, 2.53766212771330727118091720749, 2.60062299094316533223165483521, 2.75878029288106046887440356866, 3.20103526466802375520514475617, 3.87159897017269670202448671487, 3.93412662973625388084950185321, 3.94173969165015921204476229044, 4.27340117459145478232609343687, 4.71158784166738734291601555283, 4.80913474218338749643048125429, 5.26844750815053186609389963032, 5.52314628791857521767730749047, 5.90845286118685222436989965085, 6.10074884962540342783625618715, 6.16283522315935989065843124132, 6.25218295341912499298566403655, 6.76930020858413221706683836030, 6.86080151981069932241731810699, 7.06043921021673310240955918594, 7.45528048174537683151877370280