Properties

Label 847.2.f.h.148.1
Level $847$
Weight $2$
Character 847.148
Analytic conductor $6.763$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [847,2,Mod(148,847)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(847, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("847.148");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 847.f (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.76332905120\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 148.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 847.148
Dual form 847.2.f.h.372.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.42705 + 1.76336i) q^{3} +(1.61803 - 1.17557i) q^{4} +(-0.309017 + 0.951057i) q^{5} +(-0.809017 + 0.587785i) q^{7} +(1.85410 + 5.70634i) q^{9} +6.00000 q^{12} +(1.23607 + 3.80423i) q^{13} +(-2.42705 + 1.76336i) q^{15} +(1.23607 - 3.80423i) q^{16} +(-0.618034 + 1.90211i) q^{17} +(-4.85410 - 3.52671i) q^{19} +(0.618034 + 1.90211i) q^{20} -3.00000 q^{21} -5.00000 q^{23} +(3.23607 + 2.35114i) q^{25} +(-2.78115 + 8.55951i) q^{27} +(-0.618034 + 1.90211i) q^{28} +(8.09017 - 5.87785i) q^{29} +(0.309017 + 0.951057i) q^{31} +(-0.309017 - 0.951057i) q^{35} +(9.70820 + 7.05342i) q^{36} +(4.04508 - 2.93893i) q^{37} +(-3.70820 + 11.4127i) q^{39} +(-1.61803 - 1.17557i) q^{41} +8.00000 q^{43} -6.00000 q^{45} +(-6.47214 - 4.70228i) q^{47} +(9.70820 - 7.05342i) q^{48} +(0.309017 - 0.951057i) q^{49} +(-4.85410 + 3.52671i) q^{51} +(6.47214 + 4.70228i) q^{52} +(-1.85410 - 5.70634i) q^{53} +(-5.56231 - 17.1190i) q^{57} +(-2.42705 + 1.76336i) q^{59} +(-1.85410 + 5.70634i) q^{60} +(0.618034 - 1.90211i) q^{61} +(-4.85410 - 3.52671i) q^{63} +(-2.47214 - 7.60845i) q^{64} -4.00000 q^{65} -3.00000 q^{67} +(1.23607 + 3.80423i) q^{68} +(-12.1353 - 8.81678i) q^{69} +(0.309017 - 0.951057i) q^{71} +(8.09017 - 5.87785i) q^{73} +(3.70820 + 11.4127i) q^{75} -12.0000 q^{76} +(-1.85410 - 5.70634i) q^{79} +(3.23607 + 2.35114i) q^{80} +(-7.28115 + 5.29007i) q^{81} +(-3.70820 + 11.4127i) q^{83} +(-4.85410 + 3.52671i) q^{84} +(-1.61803 - 1.17557i) q^{85} +30.0000 q^{87} -15.0000 q^{89} +(-3.23607 - 2.35114i) q^{91} +(-8.09017 + 5.87785i) q^{92} +(-0.927051 + 2.85317i) q^{93} +(4.85410 - 3.52671i) q^{95} +(-1.54508 - 4.75528i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{3} + 2 q^{4} + q^{5} - q^{7} - 6 q^{9} + 24 q^{12} - 4 q^{13} - 3 q^{15} - 4 q^{16} + 2 q^{17} - 6 q^{19} - 2 q^{20} - 12 q^{21} - 20 q^{23} + 4 q^{25} + 9 q^{27} + 2 q^{28} + 10 q^{29} - q^{31}+ \cdots + 5 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/847\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(365\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(3\) 2.42705 + 1.76336i 1.40126 + 1.01807i 0.994522 + 0.104528i \(0.0333333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(4\) 1.61803 1.17557i 0.809017 0.587785i
\(5\) −0.309017 + 0.951057i −0.138197 + 0.425325i −0.996074 0.0885298i \(-0.971783\pi\)
0.857877 + 0.513855i \(0.171783\pi\)
\(6\) 0 0
\(7\) −0.809017 + 0.587785i −0.305780 + 0.222162i
\(8\) 0 0
\(9\) 1.85410 + 5.70634i 0.618034 + 1.90211i
\(10\) 0 0
\(11\) 0 0
\(12\) 6.00000 1.73205
\(13\) 1.23607 + 3.80423i 0.342824 + 1.05510i 0.962739 + 0.270434i \(0.0871670\pi\)
−0.619915 + 0.784669i \(0.712833\pi\)
\(14\) 0 0
\(15\) −2.42705 + 1.76336i −0.626662 + 0.455296i
\(16\) 1.23607 3.80423i 0.309017 0.951057i
\(17\) −0.618034 + 1.90211i −0.149895 + 0.461330i −0.997608 0.0691254i \(-0.977979\pi\)
0.847713 + 0.530456i \(0.177979\pi\)
\(18\) 0 0
\(19\) −4.85410 3.52671i −1.11361 0.809083i −0.130379 0.991464i \(-0.541620\pi\)
−0.983228 + 0.182381i \(0.941620\pi\)
\(20\) 0.618034 + 1.90211i 0.138197 + 0.425325i
\(21\) −3.00000 −0.654654
\(22\) 0 0
\(23\) −5.00000 −1.04257 −0.521286 0.853382i \(-0.674548\pi\)
−0.521286 + 0.853382i \(0.674548\pi\)
\(24\) 0 0
\(25\) 3.23607 + 2.35114i 0.647214 + 0.470228i
\(26\) 0 0
\(27\) −2.78115 + 8.55951i −0.535233 + 1.64728i
\(28\) −0.618034 + 1.90211i −0.116797 + 0.359466i
\(29\) 8.09017 5.87785i 1.50231 1.09149i 0.532855 0.846206i \(-0.321119\pi\)
0.969451 0.245284i \(-0.0788811\pi\)
\(30\) 0 0
\(31\) 0.309017 + 0.951057i 0.0555011 + 0.170815i 0.974964 0.222361i \(-0.0713764\pi\)
−0.919463 + 0.393176i \(0.871376\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.309017 0.951057i −0.0522334 0.160758i
\(36\) 9.70820 + 7.05342i 1.61803 + 1.17557i
\(37\) 4.04508 2.93893i 0.665008 0.483157i −0.203343 0.979108i \(-0.565181\pi\)
0.868350 + 0.495951i \(0.165181\pi\)
\(38\) 0 0
\(39\) −3.70820 + 11.4127i −0.593788 + 1.82749i
\(40\) 0 0
\(41\) −1.61803 1.17557i −0.252694 0.183593i 0.454226 0.890887i \(-0.349916\pi\)
−0.706920 + 0.707293i \(0.749916\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) −6.00000 −0.894427
\(46\) 0 0
\(47\) −6.47214 4.70228i −0.944058 0.685898i 0.00533600 0.999986i \(-0.498301\pi\)
−0.949394 + 0.314087i \(0.898301\pi\)
\(48\) 9.70820 7.05342i 1.40126 1.01807i
\(49\) 0.309017 0.951057i 0.0441453 0.135865i
\(50\) 0 0
\(51\) −4.85410 + 3.52671i −0.679710 + 0.493838i
\(52\) 6.47214 + 4.70228i 0.897524 + 0.652089i
\(53\) −1.85410 5.70634i −0.254680 0.783826i −0.993892 0.110353i \(-0.964802\pi\)
0.739212 0.673473i \(-0.235198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −5.56231 17.1190i −0.736745 2.26747i
\(58\) 0 0
\(59\) −2.42705 + 1.76336i −0.315975 + 0.229569i −0.734456 0.678656i \(-0.762563\pi\)
0.418481 + 0.908226i \(0.362563\pi\)
\(60\) −1.85410 + 5.70634i −0.239364 + 0.736685i
\(61\) 0.618034 1.90211i 0.0791311 0.243541i −0.903663 0.428244i \(-0.859132\pi\)
0.982794 + 0.184703i \(0.0591324\pi\)
\(62\) 0 0
\(63\) −4.85410 3.52671i −0.611559 0.444324i
\(64\) −2.47214 7.60845i −0.309017 0.951057i
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) −3.00000 −0.366508 −0.183254 0.983066i \(-0.558663\pi\)
−0.183254 + 0.983066i \(0.558663\pi\)
\(68\) 1.23607 + 3.80423i 0.149895 + 0.461330i
\(69\) −12.1353 8.81678i −1.46091 1.06142i
\(70\) 0 0
\(71\) 0.309017 0.951057i 0.0366736 0.112870i −0.931044 0.364907i \(-0.881101\pi\)
0.967717 + 0.252038i \(0.0811007\pi\)
\(72\) 0 0
\(73\) 8.09017 5.87785i 0.946883 0.687951i −0.00318477 0.999995i \(-0.501014\pi\)
0.950068 + 0.312044i \(0.101014\pi\)
\(74\) 0 0
\(75\) 3.70820 + 11.4127i 0.428187 + 1.31782i
\(76\) −12.0000 −1.37649
\(77\) 0 0
\(78\) 0 0
\(79\) −1.85410 5.70634i −0.208603 0.642013i −0.999546 0.0301240i \(-0.990410\pi\)
0.790943 0.611889i \(-0.209590\pi\)
\(80\) 3.23607 + 2.35114i 0.361803 + 0.262866i
\(81\) −7.28115 + 5.29007i −0.809017 + 0.587785i
\(82\) 0 0
\(83\) −3.70820 + 11.4127i −0.407028 + 1.25270i 0.512161 + 0.858889i \(0.328845\pi\)
−0.919190 + 0.393815i \(0.871155\pi\)
\(84\) −4.85410 + 3.52671i −0.529626 + 0.384796i
\(85\) −1.61803 1.17557i −0.175500 0.127509i
\(86\) 0 0
\(87\) 30.0000 3.21634
\(88\) 0 0
\(89\) −15.0000 −1.59000 −0.794998 0.606612i \(-0.792528\pi\)
−0.794998 + 0.606612i \(0.792528\pi\)
\(90\) 0 0
\(91\) −3.23607 2.35114i −0.339232 0.246467i
\(92\) −8.09017 + 5.87785i −0.843459 + 0.612808i
\(93\) −0.927051 + 2.85317i −0.0961307 + 0.295860i
\(94\) 0 0
\(95\) 4.85410 3.52671i 0.498020 0.361833i
\(96\) 0 0
\(97\) −1.54508 4.75528i −0.156880 0.482826i 0.841467 0.540309i \(-0.181693\pi\)
−0.998346 + 0.0574829i \(0.981693\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 8.00000 0.800000
\(101\) 3.70820 + 11.4127i 0.368980 + 1.13560i 0.947451 + 0.319901i \(0.103650\pi\)
−0.578471 + 0.815703i \(0.696350\pi\)
\(102\) 0 0
\(103\) 9.70820 7.05342i 0.956578 0.694994i 0.00422434 0.999991i \(-0.498655\pi\)
0.952353 + 0.304997i \(0.0986553\pi\)
\(104\) 0 0
\(105\) 0.927051 2.85317i 0.0904709 0.278441i
\(106\) 0 0
\(107\) −8.09017 5.87785i −0.782106 0.568233i 0.123504 0.992344i \(-0.460587\pi\)
−0.905610 + 0.424111i \(0.860587\pi\)
\(108\) 5.56231 + 17.1190i 0.535233 + 1.64728i
\(109\) −4.00000 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(110\) 0 0
\(111\) 15.0000 1.42374
\(112\) 1.23607 + 3.80423i 0.116797 + 0.359466i
\(113\) 15.3713 + 11.1679i 1.44601 + 1.05059i 0.986743 + 0.162293i \(0.0518889\pi\)
0.459270 + 0.888297i \(0.348111\pi\)
\(114\) 0 0
\(115\) 1.54508 4.75528i 0.144080 0.443432i
\(116\) 6.18034 19.0211i 0.573830 1.76607i
\(117\) −19.4164 + 14.1068i −1.79505 + 1.30418i
\(118\) 0 0
\(119\) −0.618034 1.90211i −0.0566551 0.174366i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −1.85410 5.70634i −0.167179 0.514523i
\(124\) 1.61803 + 1.17557i 0.145304 + 0.105569i
\(125\) −7.28115 + 5.29007i −0.651246 + 0.473158i
\(126\) 0 0
\(127\) −0.618034 + 1.90211i −0.0548416 + 0.168785i −0.974726 0.223405i \(-0.928283\pi\)
0.919884 + 0.392191i \(0.128283\pi\)
\(128\) 0 0
\(129\) 19.4164 + 14.1068i 1.70952 + 1.24204i
\(130\) 0 0
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 6.00000 0.520266
\(134\) 0 0
\(135\) −7.28115 5.29007i −0.626662 0.455296i
\(136\) 0 0
\(137\) −0.927051 + 2.85317i −0.0792033 + 0.243763i −0.982816 0.184588i \(-0.940905\pi\)
0.903613 + 0.428350i \(0.140905\pi\)
\(138\) 0 0
\(139\) −8.09017 + 5.87785i −0.686199 + 0.498553i −0.875409 0.483384i \(-0.839408\pi\)
0.189209 + 0.981937i \(0.439408\pi\)
\(140\) −1.61803 1.17557i −0.136749 0.0993538i
\(141\) −7.41641 22.8254i −0.624574 1.92224i
\(142\) 0 0
\(143\) 0 0
\(144\) 24.0000 2.00000
\(145\) 3.09017 + 9.51057i 0.256625 + 0.789809i
\(146\) 0 0
\(147\) 2.42705 1.76336i 0.200180 0.145439i
\(148\) 3.09017 9.51057i 0.254010 0.781764i
\(149\) 6.79837 20.9232i 0.556944 1.71410i −0.133808 0.991007i \(-0.542720\pi\)
0.690752 0.723092i \(-0.257280\pi\)
\(150\) 0 0
\(151\) 4.85410 + 3.52671i 0.395021 + 0.287000i 0.767510 0.641037i \(-0.221495\pi\)
−0.372489 + 0.928037i \(0.621495\pi\)
\(152\) 0 0
\(153\) −12.0000 −0.970143
\(154\) 0 0
\(155\) −1.00000 −0.0803219
\(156\) 7.41641 + 22.8254i 0.593788 + 1.82749i
\(157\) −5.66312 4.11450i −0.451966 0.328373i 0.338405 0.941000i \(-0.390112\pi\)
−0.790372 + 0.612628i \(0.790112\pi\)
\(158\) 0 0
\(159\) 5.56231 17.1190i 0.441120 1.35763i
\(160\) 0 0
\(161\) 4.04508 2.93893i 0.318797 0.231620i
\(162\) 0 0
\(163\) 1.23607 + 3.80423i 0.0968163 + 0.297970i 0.987723 0.156217i \(-0.0499299\pi\)
−0.890906 + 0.454187i \(0.849930\pi\)
\(164\) −4.00000 −0.312348
\(165\) 0 0
\(166\) 0 0
\(167\) 0.618034 + 1.90211i 0.0478249 + 0.147190i 0.972117 0.234495i \(-0.0753438\pi\)
−0.924292 + 0.381685i \(0.875344\pi\)
\(168\) 0 0
\(169\) −2.42705 + 1.76336i −0.186696 + 0.135643i
\(170\) 0 0
\(171\) 11.1246 34.2380i 0.850720 2.61825i
\(172\) 12.9443 9.40456i 0.986991 0.717091i
\(173\) 12.9443 + 9.40456i 0.984135 + 0.715016i 0.958629 0.284659i \(-0.0918803\pi\)
0.0255059 + 0.999675i \(0.491880\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) 0 0
\(177\) −9.00000 −0.676481
\(178\) 0 0
\(179\) −0.809017 0.587785i −0.0604688 0.0439331i 0.557140 0.830418i \(-0.311899\pi\)
−0.617609 + 0.786485i \(0.711899\pi\)
\(180\) −9.70820 + 7.05342i −0.723607 + 0.525731i
\(181\) 1.54508 4.75528i 0.114845 0.353457i −0.877069 0.480364i \(-0.840505\pi\)
0.991915 + 0.126906i \(0.0405047\pi\)
\(182\) 0 0
\(183\) 4.85410 3.52671i 0.358826 0.260702i
\(184\) 0 0
\(185\) 1.54508 + 4.75528i 0.113597 + 0.349615i
\(186\) 0 0
\(187\) 0 0
\(188\) −16.0000 −1.16692
\(189\) −2.78115 8.55951i −0.202299 0.622613i
\(190\) 0 0
\(191\) −4.04508 + 2.93893i −0.292692 + 0.212653i −0.724434 0.689344i \(-0.757899\pi\)
0.431742 + 0.901997i \(0.357899\pi\)
\(192\) 7.41641 22.8254i 0.535233 1.64728i
\(193\) −4.32624 + 13.3148i −0.311409 + 0.958420i 0.665798 + 0.746132i \(0.268091\pi\)
−0.977207 + 0.212287i \(0.931909\pi\)
\(194\) 0 0
\(195\) −9.70820 7.05342i −0.695219 0.505106i
\(196\) −0.618034 1.90211i −0.0441453 0.135865i
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) −7.28115 5.29007i −0.513573 0.373133i
\(202\) 0 0
\(203\) −3.09017 + 9.51057i −0.216887 + 0.667511i
\(204\) −3.70820 + 11.4127i −0.259626 + 0.799047i
\(205\) 1.61803 1.17557i 0.113008 0.0821054i
\(206\) 0 0
\(207\) −9.27051 28.5317i −0.644345 1.98309i
\(208\) 16.0000 1.10940
\(209\) 0 0
\(210\) 0 0
\(211\) 0.618034 + 1.90211i 0.0425472 + 0.130947i 0.970074 0.242810i \(-0.0780693\pi\)
−0.927527 + 0.373757i \(0.878069\pi\)
\(212\) −9.70820 7.05342i −0.666762 0.484431i
\(213\) 2.42705 1.76336i 0.166299 0.120823i
\(214\) 0 0
\(215\) −2.47214 + 7.60845i −0.168598 + 0.518892i
\(216\) 0 0
\(217\) −0.809017 0.587785i −0.0549197 0.0399015i
\(218\) 0 0
\(219\) 30.0000 2.02721
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) 0 0
\(223\) −0.809017 0.587785i −0.0541758 0.0393610i 0.560368 0.828244i \(-0.310660\pi\)
−0.614544 + 0.788883i \(0.710660\pi\)
\(224\) 0 0
\(225\) −7.41641 + 22.8254i −0.494427 + 1.52169i
\(226\) 0 0
\(227\) 3.23607 2.35114i 0.214785 0.156051i −0.475191 0.879883i \(-0.657621\pi\)
0.689976 + 0.723832i \(0.257621\pi\)
\(228\) −29.1246 21.1603i −1.92882 1.40137i
\(229\) −2.16312 6.65740i −0.142943 0.439933i 0.853798 0.520605i \(-0.174293\pi\)
−0.996741 + 0.0806717i \(0.974293\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.85410 5.70634i −0.121466 0.373835i 0.871774 0.489907i \(-0.162969\pi\)
−0.993241 + 0.116073i \(0.962969\pi\)
\(234\) 0 0
\(235\) 6.47214 4.70228i 0.422196 0.306743i
\(236\) −1.85410 + 5.70634i −0.120692 + 0.371451i
\(237\) 5.56231 17.1190i 0.361311 1.11200i
\(238\) 0 0
\(239\) 3.23607 + 2.35114i 0.209324 + 0.152083i 0.687508 0.726177i \(-0.258705\pi\)
−0.478184 + 0.878260i \(0.658705\pi\)
\(240\) 3.70820 + 11.4127i 0.239364 + 0.736685i
\(241\) 12.0000 0.772988 0.386494 0.922292i \(-0.373686\pi\)
0.386494 + 0.922292i \(0.373686\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −1.23607 3.80423i −0.0791311 0.243541i
\(245\) 0.809017 + 0.587785i 0.0516862 + 0.0375522i
\(246\) 0 0
\(247\) 7.41641 22.8254i 0.471895 1.45234i
\(248\) 0 0
\(249\) −29.1246 + 21.1603i −1.84570 + 1.34098i
\(250\) 0 0
\(251\) −6.48936 19.9722i −0.409605 1.26063i −0.916989 0.398913i \(-0.869387\pi\)
0.507384 0.861720i \(-0.330613\pi\)
\(252\) −12.0000 −0.755929
\(253\) 0 0
\(254\) 0 0
\(255\) −1.85410 5.70634i −0.116108 0.357345i
\(256\) −12.9443 9.40456i −0.809017 0.587785i
\(257\) 4.85410 3.52671i 0.302791 0.219990i −0.426006 0.904720i \(-0.640080\pi\)
0.728797 + 0.684730i \(0.240080\pi\)
\(258\) 0 0
\(259\) −1.54508 + 4.75528i −0.0960069 + 0.295479i
\(260\) −6.47214 + 4.70228i −0.401385 + 0.291623i
\(261\) 48.5410 + 35.2671i 3.00461 + 2.18298i
\(262\) 0 0
\(263\) −18.0000 −1.10993 −0.554964 0.831875i \(-0.687268\pi\)
−0.554964 + 0.831875i \(0.687268\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 0 0
\(267\) −36.4058 26.4503i −2.22800 1.61873i
\(268\) −4.85410 + 3.52671i −0.296511 + 0.215428i
\(269\) −5.56231 + 17.1190i −0.339140 + 1.04376i 0.625507 + 0.780219i \(0.284892\pi\)
−0.964647 + 0.263546i \(0.915108\pi\)
\(270\) 0 0
\(271\) 12.9443 9.40456i 0.786309 0.571287i −0.120557 0.992706i \(-0.538468\pi\)
0.906866 + 0.421420i \(0.138468\pi\)
\(272\) 6.47214 + 4.70228i 0.392431 + 0.285118i
\(273\) −3.70820 11.4127i −0.224431 0.690727i
\(274\) 0 0
\(275\) 0 0
\(276\) −30.0000 −1.80579
\(277\) −7.41641 22.8254i −0.445609 1.37144i −0.881815 0.471596i \(-0.843678\pi\)
0.436206 0.899847i \(-0.356322\pi\)
\(278\) 0 0
\(279\) −4.85410 + 3.52671i −0.290607 + 0.211139i
\(280\) 0 0
\(281\) 1.23607 3.80423i 0.0737376 0.226941i −0.907394 0.420280i \(-0.861932\pi\)
0.981132 + 0.193339i \(0.0619318\pi\)
\(282\) 0 0
\(283\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(284\) −0.618034 1.90211i −0.0366736 0.112870i
\(285\) 18.0000 1.06623
\(286\) 0 0
\(287\) 2.00000 0.118056
\(288\) 0 0
\(289\) 10.5172 + 7.64121i 0.618660 + 0.449483i
\(290\) 0 0
\(291\) 4.63525 14.2658i 0.271723 0.836279i
\(292\) 6.18034 19.0211i 0.361677 1.11313i
\(293\) −4.85410 + 3.52671i −0.283580 + 0.206033i −0.720477 0.693479i \(-0.756077\pi\)
0.436898 + 0.899511i \(0.356077\pi\)
\(294\) 0 0
\(295\) −0.927051 2.85317i −0.0539750 0.166118i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.18034 19.0211i −0.357418 1.10002i
\(300\) 19.4164 + 14.1068i 1.12101 + 0.814459i
\(301\) −6.47214 + 4.70228i −0.373048 + 0.271035i
\(302\) 0 0
\(303\) −11.1246 + 34.2380i −0.639092 + 1.96692i
\(304\) −19.4164 + 14.1068i −1.11361 + 0.809083i
\(305\) 1.61803 + 1.17557i 0.0926484 + 0.0673130i
\(306\) 0 0
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) 0 0
\(309\) 36.0000 2.04797
\(310\) 0 0
\(311\) −6.47214 4.70228i −0.367001 0.266642i 0.388965 0.921252i \(-0.372833\pi\)
−0.755966 + 0.654611i \(0.772833\pi\)
\(312\) 0 0
\(313\) −7.10739 + 21.8743i −0.401733 + 1.23641i 0.521859 + 0.853032i \(0.325239\pi\)
−0.923592 + 0.383377i \(0.874761\pi\)
\(314\) 0 0
\(315\) 4.85410 3.52671i 0.273498 0.198708i
\(316\) −9.70820 7.05342i −0.546129 0.396786i
\(317\) 2.78115 + 8.55951i 0.156205 + 0.480750i 0.998281 0.0586092i \(-0.0186666\pi\)
−0.842076 + 0.539359i \(0.818667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 8.00000 0.447214
\(321\) −9.27051 28.5317i −0.517429 1.59248i
\(322\) 0 0
\(323\) 9.70820 7.05342i 0.540179 0.392463i
\(324\) −5.56231 + 17.1190i −0.309017 + 0.951057i
\(325\) −4.94427 + 15.2169i −0.274259 + 0.844082i
\(326\) 0 0
\(327\) −9.70820 7.05342i −0.536865 0.390055i
\(328\) 0 0
\(329\) 8.00000 0.441054
\(330\) 0 0
\(331\) −17.0000 −0.934405 −0.467202 0.884150i \(-0.654738\pi\)
−0.467202 + 0.884150i \(0.654738\pi\)
\(332\) 7.41641 + 22.8254i 0.407028 + 1.25270i
\(333\) 24.2705 + 17.6336i 1.33002 + 0.966313i
\(334\) 0 0
\(335\) 0.927051 2.85317i 0.0506502 0.155885i
\(336\) −3.70820 + 11.4127i −0.202299 + 0.622613i
\(337\) −14.5623 + 10.5801i −0.793259 + 0.576337i −0.908929 0.416951i \(-0.863099\pi\)
0.115670 + 0.993288i \(0.463099\pi\)
\(338\) 0 0
\(339\) 17.6140 + 54.2102i 0.956659 + 2.94430i
\(340\) −4.00000 −0.216930
\(341\) 0 0
\(342\) 0 0
\(343\) 0.309017 + 0.951057i 0.0166853 + 0.0513522i
\(344\) 0 0
\(345\) 12.1353 8.81678i 0.653340 0.474679i
\(346\) 0 0
\(347\) −4.32624 + 13.3148i −0.232245 + 0.714775i 0.765230 + 0.643757i \(0.222625\pi\)
−0.997475 + 0.0710189i \(0.977375\pi\)
\(348\) 48.5410 35.2671i 2.60207 1.89052i
\(349\) −27.5066 19.9847i −1.47239 1.06976i −0.979911 0.199434i \(-0.936090\pi\)
−0.492482 0.870323i \(-0.663910\pi\)
\(350\) 0 0
\(351\) −36.0000 −1.92154
\(352\) 0 0
\(353\) 9.00000 0.479022 0.239511 0.970894i \(-0.423013\pi\)
0.239511 + 0.970894i \(0.423013\pi\)
\(354\) 0 0
\(355\) 0.809017 + 0.587785i 0.0429382 + 0.0311964i
\(356\) −24.2705 + 17.6336i −1.28633 + 0.934577i
\(357\) 1.85410 5.70634i 0.0981295 0.302011i
\(358\) 0 0
\(359\) 6.47214 4.70228i 0.341586 0.248177i −0.403745 0.914872i \(-0.632292\pi\)
0.745331 + 0.666695i \(0.232292\pi\)
\(360\) 0 0
\(361\) 5.25329 + 16.1680i 0.276489 + 0.850945i
\(362\) 0 0
\(363\) 0 0
\(364\) −8.00000 −0.419314
\(365\) 3.09017 + 9.51057i 0.161747 + 0.497806i
\(366\) 0 0
\(367\) 8.89919 6.46564i 0.464534 0.337504i −0.330773 0.943710i \(-0.607310\pi\)
0.795307 + 0.606207i \(0.207310\pi\)
\(368\) −6.18034 + 19.0211i −0.322172 + 0.991545i
\(369\) 3.70820 11.4127i 0.193041 0.594120i
\(370\) 0 0
\(371\) 4.85410 + 3.52671i 0.252012 + 0.183098i
\(372\) 1.85410 + 5.70634i 0.0961307 + 0.295860i
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 0 0
\(375\) −27.0000 −1.39427
\(376\) 0 0
\(377\) 32.3607 + 23.5114i 1.66666 + 1.21090i
\(378\) 0 0
\(379\) −8.96149 + 27.5806i −0.460321 + 1.41672i 0.404452 + 0.914559i \(0.367462\pi\)
−0.864773 + 0.502163i \(0.832538\pi\)
\(380\) 3.70820 11.4127i 0.190227 0.585458i
\(381\) −4.85410 + 3.52671i −0.248683 + 0.180679i
\(382\) 0 0
\(383\) 5.25329 + 16.1680i 0.268431 + 0.826144i 0.990883 + 0.134724i \(0.0430147\pi\)
−0.722453 + 0.691420i \(0.756985\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 14.8328 + 45.6507i 0.753994 + 2.32056i
\(388\) −8.09017 5.87785i −0.410716 0.298403i
\(389\) −7.28115 + 5.29007i −0.369169 + 0.268217i −0.756866 0.653570i \(-0.773271\pi\)
0.387697 + 0.921787i \(0.373271\pi\)
\(390\) 0 0
\(391\) 3.09017 9.51057i 0.156277 0.480970i
\(392\) 0 0
\(393\) −43.6869 31.7404i −2.20371 1.60109i
\(394\) 0 0
\(395\) 6.00000 0.301893
\(396\) 0 0
\(397\) 18.0000 0.903394 0.451697 0.892171i \(-0.350819\pi\)
0.451697 + 0.892171i \(0.350819\pi\)
\(398\) 0 0
\(399\) 14.5623 + 10.5801i 0.729027 + 0.529669i
\(400\) 12.9443 9.40456i 0.647214 0.470228i
\(401\) −1.85410 + 5.70634i −0.0925894 + 0.284961i −0.986618 0.163049i \(-0.947867\pi\)
0.894029 + 0.448010i \(0.147867\pi\)
\(402\) 0 0
\(403\) −3.23607 + 2.35114i −0.161200 + 0.117119i
\(404\) 19.4164 + 14.1068i 0.966002 + 0.701842i
\(405\) −2.78115 8.55951i −0.138197 0.425325i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 8.03444 + 24.7275i 0.397278 + 1.22269i 0.927174 + 0.374632i \(0.122231\pi\)
−0.529896 + 0.848063i \(0.677769\pi\)
\(410\) 0 0
\(411\) −7.28115 + 5.29007i −0.359153 + 0.260940i
\(412\) 7.41641 22.8254i 0.365380 1.12452i
\(413\) 0.927051 2.85317i 0.0456172 0.140395i
\(414\) 0 0
\(415\) −9.70820 7.05342i −0.476557 0.346239i
\(416\) 0 0
\(417\) −30.0000 −1.46911
\(418\) 0 0
\(419\) 16.0000 0.781651 0.390826 0.920465i \(-0.372190\pi\)
0.390826 + 0.920465i \(0.372190\pi\)
\(420\) −1.85410 5.70634i −0.0904709 0.278441i
\(421\) −17.7984 12.9313i −0.867440 0.630232i 0.0624590 0.998048i \(-0.480106\pi\)
−0.929899 + 0.367816i \(0.880106\pi\)
\(422\) 0 0
\(423\) 14.8328 45.6507i 0.721196 2.21961i
\(424\) 0 0
\(425\) −6.47214 + 4.70228i −0.313945 + 0.228094i
\(426\) 0 0
\(427\) 0.618034 + 1.90211i 0.0299088 + 0.0920497i
\(428\) −20.0000 −0.966736
\(429\) 0 0
\(430\) 0 0
\(431\) 6.18034 + 19.0211i 0.297696 + 0.916216i 0.982302 + 0.187302i \(0.0599743\pi\)
−0.684606 + 0.728913i \(0.740026\pi\)
\(432\) 29.1246 + 21.1603i 1.40126 + 1.01807i
\(433\) 20.2254 14.6946i 0.971972 0.706179i 0.0160718 0.999871i \(-0.494884\pi\)
0.955900 + 0.293692i \(0.0948840\pi\)
\(434\) 0 0
\(435\) −9.27051 + 28.5317i −0.444487 + 1.36799i
\(436\) −6.47214 + 4.70228i −0.309959 + 0.225198i
\(437\) 24.2705 + 17.6336i 1.16102 + 0.843527i
\(438\) 0 0
\(439\) 14.0000 0.668184 0.334092 0.942541i \(-0.391570\pi\)
0.334092 + 0.942541i \(0.391570\pi\)
\(440\) 0 0
\(441\) 6.00000 0.285714
\(442\) 0 0
\(443\) 31.5517 + 22.9236i 1.49906 + 1.08913i 0.970752 + 0.240084i \(0.0771751\pi\)
0.528313 + 0.849050i \(0.322825\pi\)
\(444\) 24.2705 17.6336i 1.15183 0.836852i
\(445\) 4.63525 14.2658i 0.219732 0.676266i
\(446\) 0 0
\(447\) 53.3951 38.7938i 2.52550 1.83489i
\(448\) 6.47214 + 4.70228i 0.305780 + 0.222162i
\(449\) 4.63525 + 14.2658i 0.218751 + 0.673247i 0.998866 + 0.0476105i \(0.0151606\pi\)
−0.780115 + 0.625636i \(0.784839\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 38.0000 1.78737
\(453\) 5.56231 + 17.1190i 0.261340 + 0.804322i
\(454\) 0 0
\(455\) 3.23607 2.35114i 0.151709 0.110223i
\(456\) 0 0
\(457\) −2.47214 + 7.60845i −0.115642 + 0.355908i −0.992080 0.125605i \(-0.959913\pi\)
0.876439 + 0.481514i \(0.159913\pi\)
\(458\) 0 0
\(459\) −14.5623 10.5801i −0.679710 0.493838i
\(460\) −3.09017 9.51057i −0.144080 0.443432i
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) 13.0000 0.604161 0.302081 0.953282i \(-0.402319\pi\)
0.302081 + 0.953282i \(0.402319\pi\)
\(464\) −12.3607 38.0423i −0.573830 1.76607i
\(465\) −2.42705 1.76336i −0.112552 0.0817737i
\(466\) 0 0
\(467\) 0.927051 2.85317i 0.0428988 0.132029i −0.927313 0.374286i \(-0.877888\pi\)
0.970212 + 0.242257i \(0.0778878\pi\)
\(468\) −14.8328 + 45.6507i −0.685647 + 2.11020i
\(469\) 2.42705 1.76336i 0.112071 0.0814242i
\(470\) 0 0
\(471\) −6.48936 19.9722i −0.299014 0.920270i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −7.41641 22.8254i −0.340288 1.04730i
\(476\) −3.23607 2.35114i −0.148325 0.107764i
\(477\) 29.1246 21.1603i 1.33352 0.968862i
\(478\) 0 0
\(479\) 8.65248 26.6296i 0.395342 1.21674i −0.533353 0.845893i \(-0.679068\pi\)
0.928695 0.370844i \(-0.120932\pi\)
\(480\) 0 0
\(481\) 16.1803 + 11.7557i 0.737760 + 0.536014i
\(482\) 0 0
\(483\) 15.0000 0.682524
\(484\) 0 0
\(485\) 5.00000 0.227038
\(486\) 0 0
\(487\) 10.5172 + 7.64121i 0.476581 + 0.346256i 0.800000 0.599999i \(-0.204833\pi\)
−0.323420 + 0.946256i \(0.604833\pi\)
\(488\) 0 0
\(489\) −3.70820 + 11.4127i −0.167691 + 0.516099i
\(490\) 0 0
\(491\) −24.2705 + 17.6336i −1.09531 + 0.795791i −0.980289 0.197571i \(-0.936695\pi\)
−0.115024 + 0.993363i \(0.536695\pi\)
\(492\) −9.70820 7.05342i −0.437680 0.317993i
\(493\) 6.18034 + 19.0211i 0.278349 + 0.856669i
\(494\) 0 0
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) 0.309017 + 0.951057i 0.0138613 + 0.0426607i
\(498\) 0 0
\(499\) −35.5967 + 25.8626i −1.59353 + 1.15777i −0.694855 + 0.719150i \(0.744532\pi\)
−0.898674 + 0.438617i \(0.855468\pi\)
\(500\) −5.56231 + 17.1190i −0.248754 + 0.765586i
\(501\) −1.85410 + 5.70634i −0.0828352 + 0.254940i
\(502\) 0 0
\(503\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(504\) 0 0
\(505\) −12.0000 −0.533993
\(506\) 0 0
\(507\) −9.00000 −0.399704
\(508\) 1.23607 + 3.80423i 0.0548416 + 0.168785i
\(509\) 25.0795 + 18.2213i 1.11163 + 0.807647i 0.982920 0.184035i \(-0.0589161\pi\)
0.128711 + 0.991682i \(0.458916\pi\)
\(510\) 0 0
\(511\) −3.09017 + 9.51057i −0.136701 + 0.420723i
\(512\) 0 0
\(513\) 43.6869 31.7404i 1.92882 1.40137i
\(514\) 0 0
\(515\) 3.70820 + 11.4127i 0.163403 + 0.502903i
\(516\) 48.0000 2.11308
\(517\) 0 0
\(518\) 0 0
\(519\) 14.8328 + 45.6507i 0.651088 + 2.00384i
\(520\) 0 0
\(521\) −5.66312 + 4.11450i −0.248106 + 0.180259i −0.704887 0.709320i \(-0.749002\pi\)
0.456781 + 0.889579i \(0.349002\pi\)
\(522\) 0 0
\(523\) −9.88854 + 30.4338i −0.432396 + 1.33078i 0.463336 + 0.886183i \(0.346652\pi\)
−0.895732 + 0.444595i \(0.853348\pi\)
\(524\) −29.1246 + 21.1603i −1.27231 + 0.924391i
\(525\) −9.70820 7.05342i −0.423701 0.307837i
\(526\) 0 0
\(527\) −2.00000 −0.0871214
\(528\) 0 0
\(529\) 2.00000 0.0869565
\(530\) 0 0
\(531\) −14.5623 10.5801i −0.631950 0.459139i
\(532\) 9.70820 7.05342i 0.420904 0.305805i
\(533\) 2.47214 7.60845i 0.107080 0.329559i
\(534\) 0 0
\(535\) 8.09017 5.87785i 0.349769 0.254122i
\(536\) 0 0
\(537\) −0.927051 2.85317i −0.0400052 0.123123i
\(538\) 0 0
\(539\) 0 0
\(540\) −18.0000 −0.774597
\(541\) −9.88854 30.4338i −0.425142 1.30845i −0.902859 0.429938i \(-0.858536\pi\)
0.477717 0.878514i \(-0.341464\pi\)
\(542\) 0 0
\(543\) 12.1353 8.81678i 0.520774 0.378364i
\(544\) 0 0
\(545\) 1.23607 3.80423i 0.0529473 0.162955i
\(546\) 0 0
\(547\) −19.4164 14.1068i −0.830186 0.603165i 0.0894262 0.995993i \(-0.471497\pi\)
−0.919612 + 0.392828i \(0.871497\pi\)
\(548\) 1.85410 + 5.70634i 0.0792033 + 0.243763i
\(549\) 12.0000 0.512148
\(550\) 0 0
\(551\) −60.0000 −2.55609
\(552\) 0 0
\(553\) 4.85410 + 3.52671i 0.206417 + 0.149971i
\(554\) 0 0
\(555\) −4.63525 + 14.2658i −0.196756 + 0.605552i
\(556\) −6.18034 + 19.0211i −0.262105 + 0.806676i
\(557\) 11.3262 8.22899i 0.479908 0.348674i −0.321382 0.946950i \(-0.604147\pi\)
0.801290 + 0.598276i \(0.204147\pi\)
\(558\) 0 0
\(559\) 9.88854 + 30.4338i 0.418241 + 1.28721i
\(560\) −4.00000 −0.169031
\(561\) 0 0
\(562\) 0 0
\(563\) −6.18034 19.0211i −0.260470 0.801645i −0.992702 0.120590i \(-0.961521\pi\)
0.732232 0.681055i \(-0.238479\pi\)
\(564\) −38.8328 28.2137i −1.63516 1.18801i
\(565\) −15.3713 + 11.1679i −0.646676 + 0.469838i
\(566\) 0 0
\(567\) 2.78115 8.55951i 0.116797 0.359466i
\(568\) 0 0
\(569\) −14.5623 10.5801i −0.610484 0.443542i 0.239101 0.970995i \(-0.423147\pi\)
−0.849585 + 0.527452i \(0.823147\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 0 0
\(573\) −15.0000 −0.626634
\(574\) 0 0
\(575\) −16.1803 11.7557i −0.674767 0.490247i
\(576\) 38.8328 28.2137i 1.61803 1.17557i
\(577\) −7.72542 + 23.7764i −0.321614 + 0.989825i 0.651332 + 0.758793i \(0.274210\pi\)
−0.972946 + 0.231032i \(0.925790\pi\)
\(578\) 0 0
\(579\) −33.9787 + 24.6870i −1.41211 + 1.02596i
\(580\) 16.1803 + 11.7557i 0.671852 + 0.488129i
\(581\) −3.70820 11.4127i −0.153842 0.473478i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −7.41641 22.8254i −0.306631 0.943712i
\(586\) 0 0
\(587\) −29.1246 + 21.1603i −1.20210 + 0.873378i −0.994490 0.104834i \(-0.966569\pi\)
−0.207612 + 0.978211i \(0.566569\pi\)
\(588\) 1.85410 5.70634i 0.0764619 0.235325i
\(589\) 1.85410 5.70634i 0.0763969 0.235126i
\(590\) 0 0
\(591\) −43.6869 31.7404i −1.79704 1.30563i
\(592\) −6.18034 19.0211i −0.254010 0.781764i
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) 2.00000 0.0819920
\(596\) −13.5967 41.8465i −0.556944 1.71410i
\(597\) −19.4164 14.1068i −0.794661 0.577355i
\(598\) 0 0
\(599\) −14.8328 + 45.6507i −0.606052 + 1.86524i −0.116664 + 0.993171i \(0.537220\pi\)
−0.489388 + 0.872066i \(0.662780\pi\)
\(600\) 0 0
\(601\) 6.47214 4.70228i 0.264004 0.191810i −0.447906 0.894080i \(-0.647830\pi\)
0.711910 + 0.702270i \(0.247830\pi\)
\(602\) 0 0
\(603\) −5.56231 17.1190i −0.226515 0.697140i
\(604\) 12.0000 0.488273
\(605\) 0 0
\(606\) 0 0
\(607\) 3.09017 + 9.51057i 0.125426 + 0.386022i 0.993978 0.109576i \(-0.0349491\pi\)
−0.868552 + 0.495597i \(0.834949\pi\)
\(608\) 0 0
\(609\) −24.2705 + 17.6336i −0.983491 + 0.714548i
\(610\) 0 0
\(611\) 9.88854 30.4338i 0.400048 1.23122i
\(612\) −19.4164 + 14.1068i −0.784862 + 0.570235i
\(613\) 12.9443 + 9.40456i 0.522814 + 0.379847i 0.817663 0.575697i \(-0.195269\pi\)
−0.294849 + 0.955544i \(0.595269\pi\)
\(614\) 0 0
\(615\) 6.00000 0.241943
\(616\) 0 0
\(617\) −30.0000 −1.20775 −0.603877 0.797077i \(-0.706378\pi\)
−0.603877 + 0.797077i \(0.706378\pi\)
\(618\) 0 0
\(619\) −13.7533 9.99235i −0.552791 0.401626i 0.276022 0.961151i \(-0.410984\pi\)
−0.828814 + 0.559525i \(0.810984\pi\)
\(620\) −1.61803 + 1.17557i −0.0649818 + 0.0472120i
\(621\) 13.9058 42.7975i 0.558019 1.71741i
\(622\) 0 0
\(623\) 12.1353 8.81678i 0.486189 0.353237i
\(624\) 38.8328 + 28.2137i 1.55456 + 1.12945i
\(625\) 3.39919 + 10.4616i 0.135967 + 0.418465i
\(626\) 0 0
\(627\) 0 0
\(628\) −14.0000 −0.558661
\(629\) 3.09017 + 9.51057i 0.123213 + 0.379211i
\(630\) 0 0
\(631\) −21.8435 + 15.8702i −0.869574 + 0.631783i −0.930473 0.366361i \(-0.880603\pi\)
0.0608983 + 0.998144i \(0.480603\pi\)
\(632\) 0 0
\(633\) −1.85410 + 5.70634i −0.0736939 + 0.226807i
\(634\) 0 0
\(635\) −1.61803 1.17557i −0.0642097 0.0466511i
\(636\) −11.1246 34.2380i −0.441120 1.35763i
\(637\) 4.00000 0.158486
\(638\) 0 0
\(639\) 6.00000 0.237356
\(640\) 0 0
\(641\) −12.1353 8.81678i −0.479314 0.348242i 0.321746 0.946826i \(-0.395730\pi\)
−0.801060 + 0.598584i \(0.795730\pi\)
\(642\) 0 0
\(643\) −8.96149 + 27.5806i −0.353407 + 1.08767i 0.603521 + 0.797347i \(0.293764\pi\)
−0.956928 + 0.290327i \(0.906236\pi\)
\(644\) 3.09017 9.51057i 0.121770 0.374769i
\(645\) −19.4164 + 14.1068i −0.764520 + 0.555457i
\(646\) 0 0
\(647\) −6.48936 19.9722i −0.255123 0.785188i −0.993805 0.111134i \(-0.964552\pi\)
0.738682 0.674054i \(-0.235448\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −0.927051 2.85317i −0.0363340 0.111825i
\(652\) 6.47214 + 4.70228i 0.253468 + 0.184156i
\(653\) 13.7533 9.99235i 0.538208 0.391031i −0.285211 0.958465i \(-0.592064\pi\)
0.823419 + 0.567434i \(0.192064\pi\)
\(654\) 0 0
\(655\) 5.56231 17.1190i 0.217337 0.668895i
\(656\) −6.47214 + 4.70228i −0.252694 + 0.183593i
\(657\) 48.5410 + 35.2671i 1.89377 + 1.37590i
\(658\) 0 0
\(659\) 2.00000 0.0779089 0.0389545 0.999241i \(-0.487597\pi\)
0.0389545 + 0.999241i \(0.487597\pi\)
\(660\) 0 0
\(661\) 35.0000 1.36134 0.680671 0.732589i \(-0.261688\pi\)
0.680671 + 0.732589i \(0.261688\pi\)
\(662\) 0 0
\(663\) −19.4164 14.1068i −0.754071 0.547865i
\(664\) 0 0
\(665\) −1.85410 + 5.70634i −0.0718990 + 0.221282i
\(666\) 0 0
\(667\) −40.4508 + 29.3893i −1.56626 + 1.13796i
\(668\) 3.23607 + 2.35114i 0.125207 + 0.0909684i
\(669\) −0.927051 2.85317i −0.0358419 0.110310i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.23607 3.80423i −0.0476469 0.146642i 0.924403 0.381418i \(-0.124564\pi\)
−0.972049 + 0.234776i \(0.924564\pi\)
\(674\) 0 0
\(675\) −29.1246 + 21.1603i −1.12101 + 0.814459i
\(676\) −1.85410 + 5.70634i −0.0713116 + 0.219475i
\(677\) −11.7426 + 36.1401i −0.451307 + 1.38898i 0.424111 + 0.905610i \(0.360587\pi\)
−0.875417 + 0.483368i \(0.839413\pi\)
\(678\) 0 0
\(679\) 4.04508 + 2.93893i 0.155236 + 0.112786i
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) −22.2492 68.4761i −0.850720 2.61825i
\(685\) −2.42705 1.76336i −0.0927329 0.0673744i
\(686\) 0 0
\(687\) 6.48936 19.9722i 0.247584 0.761986i
\(688\) 9.88854 30.4338i 0.376997 1.16028i
\(689\) 19.4164 14.1068i 0.739706 0.537428i
\(690\) 0 0
\(691\) 4.63525 + 14.2658i 0.176333 + 0.542698i 0.999692 0.0248233i \(-0.00790230\pi\)
−0.823358 + 0.567522i \(0.807902\pi\)
\(692\) 32.0000 1.21646
\(693\) 0 0
\(694\) 0 0
\(695\) −3.09017 9.51057i −0.117217 0.360756i
\(696\) 0 0
\(697\) 3.23607 2.35114i 0.122575 0.0890558i
\(698\) 0 0
\(699\) 5.56231 17.1190i 0.210386 0.647501i
\(700\) −6.47214 + 4.70228i −0.244624 + 0.177730i
\(701\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(702\) 0 0
\(703\) −30.0000 −1.13147
\(704\) 0 0
\(705\) 24.0000 0.903892
\(706\) 0 0
\(707\) −9.70820 7.05342i −0.365115 0.265271i
\(708\) −14.5623 + 10.5801i −0.547285 + 0.397626i
\(709\) 12.0517 37.0912i 0.452610 1.39299i −0.421309 0.906917i \(-0.638429\pi\)
0.873919 0.486072i \(-0.161571\pi\)
\(710\) 0 0
\(711\) 29.1246 21.1603i 1.09226 0.793572i
\(712\) 0 0
\(713\) −1.54508 4.75528i −0.0578639 0.178087i
\(714\) 0 0
\(715\) 0 0
\(716\) −2.00000 −0.0747435
\(717\) 3.70820 + 11.4127i 0.138485 + 0.426214i
\(718\) 0 0
\(719\) 8.89919 6.46564i 0.331884 0.241128i −0.409346 0.912379i \(-0.634243\pi\)
0.741229 + 0.671252i \(0.234243\pi\)
\(720\) −7.41641 + 22.8254i −0.276393 + 0.850651i
\(721\) −3.70820 + 11.4127i −0.138101 + 0.425030i
\(722\) 0 0
\(723\) 29.1246 + 21.1603i 1.08316 + 0.786959i
\(724\) −3.09017 9.51057i −0.114845 0.353457i
\(725\) 40.0000 1.48556
\(726\) 0 0
\(727\) −19.0000 −0.704671 −0.352335 0.935874i \(-0.614612\pi\)
−0.352335 + 0.935874i \(0.614612\pi\)
\(728\) 0 0
\(729\) 21.8435 + 15.8702i 0.809017 + 0.587785i
\(730\) 0 0
\(731\) −4.94427 + 15.2169i −0.182871 + 0.562818i
\(732\) 3.70820 11.4127i 0.137059 0.421825i
\(733\) −3.23607 + 2.35114i −0.119527 + 0.0868414i −0.645943 0.763386i \(-0.723536\pi\)
0.526416 + 0.850227i \(0.323536\pi\)
\(734\) 0 0
\(735\) 0.927051 + 2.85317i 0.0341948 + 0.105241i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 5.56231 + 17.1190i 0.204613 + 0.629733i 0.999729 + 0.0232763i \(0.00740975\pi\)
−0.795116 + 0.606457i \(0.792590\pi\)
\(740\) 8.09017 + 5.87785i 0.297401 + 0.216074i
\(741\) 58.2492 42.3205i 2.13984 1.55468i
\(742\) 0 0
\(743\) 7.41641 22.8254i 0.272082 0.837381i −0.717895 0.696151i \(-0.754894\pi\)
0.989977 0.141230i \(-0.0451057\pi\)
\(744\) 0 0
\(745\) 17.7984 + 12.9313i 0.652082 + 0.473765i
\(746\) 0 0
\(747\) −72.0000 −2.63434
\(748\) 0 0
\(749\) 10.0000 0.365392
\(750\) 0 0
\(751\) 18.6074 + 13.5191i 0.678993 + 0.493318i 0.873024 0.487678i \(-0.162156\pi\)
−0.194030 + 0.980996i \(0.562156\pi\)
\(752\) −25.8885 + 18.8091i −0.944058 + 0.685898i
\(753\) 19.4681 59.9166i 0.709456 2.18348i
\(754\) 0 0
\(755\) −4.85410 + 3.52671i −0.176659 + 0.128350i
\(756\) −14.5623 10.5801i −0.529626 0.384796i
\(757\) 11.7426 + 36.1401i 0.426794 + 1.31354i 0.901266 + 0.433266i \(0.142639\pi\)
−0.474473 + 0.880270i \(0.657361\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 14.8328 + 45.6507i 0.537689 + 1.65484i 0.737766 + 0.675057i \(0.235881\pi\)
−0.200077 + 0.979780i \(0.564119\pi\)
\(762\) 0 0
\(763\) 3.23607 2.35114i 0.117154 0.0851170i
\(764\) −3.09017 + 9.51057i −0.111798 + 0.344080i
\(765\) 3.70820 11.4127i 0.134070 0.412626i
\(766\) 0 0
\(767\) −9.70820 7.05342i −0.350543 0.254684i
\(768\) −14.8328 45.6507i −0.535233 1.64728i
\(769\) −40.0000 −1.44244 −0.721218 0.692708i \(-0.756418\pi\)
−0.721218 + 0.692708i \(0.756418\pi\)
\(770\) 0 0
\(771\) 18.0000 0.648254
\(772\) 8.65248 + 26.6296i 0.311409 + 0.958420i
\(773\) 4.85410 + 3.52671i 0.174590 + 0.126847i 0.671648 0.740870i \(-0.265587\pi\)
−0.497059 + 0.867717i \(0.665587\pi\)
\(774\) 0 0
\(775\) −1.23607 + 3.80423i −0.0444009 + 0.136652i
\(776\) 0 0
\(777\) −12.1353 + 8.81678i −0.435350 + 0.316300i
\(778\) 0 0
\(779\) 3.70820 + 11.4127i 0.132860 + 0.408902i
\(780\) −24.0000 −0.859338
\(781\) 0 0
\(782\) 0 0
\(783\) 27.8115 + 85.5951i 0.993903 + 3.05892i
\(784\) −3.23607 2.35114i −0.115574 0.0839693i
\(785\) 5.66312 4.11450i 0.202125 0.146853i
\(786\) 0 0
\(787\) 6.79837 20.9232i 0.242336 0.745833i −0.753727 0.657187i \(-0.771746\pi\)
0.996063 0.0886458i \(-0.0282539\pi\)
\(788\) −29.1246 + 21.1603i −1.03752 + 0.753803i
\(789\) −43.6869 31.7404i −1.55530 1.12999i
\(790\) 0 0
\(791\) −19.0000 −0.675562
\(792\) 0 0
\(793\) 8.00000 0.284088
\(794\) 0 0
\(795\) 14.5623 + 10.5801i 0.516472 + 0.375239i
\(796\) −12.9443 + 9.40456i −0.458798 + 0.333336i
\(797\) 7.10739 21.8743i 0.251757 0.774827i −0.742695 0.669630i \(-0.766453\pi\)
0.994451 0.105197i \(-0.0335474\pi\)
\(798\) 0 0
\(799\) 12.9443 9.40456i 0.457935 0.332710i
\(800\) 0 0
\(801\) −27.8115 85.5951i −0.982672 3.02435i
\(802\) 0 0
\(803\) 0 0
\(804\) −18.0000 −0.634811
\(805\) 1.54508 + 4.75528i 0.0544571 + 0.167602i
\(806\) 0 0
\(807\) −43.6869 + 31.7404i −1.53785 + 1.11732i
\(808\) 0 0
\(809\) −9.27051 + 28.5317i −0.325934 + 1.00312i 0.645084 + 0.764112i \(0.276823\pi\)
−0.971017 + 0.239009i \(0.923177\pi\)
\(810\) 0 0
\(811\) −17.7984 12.9313i −0.624985 0.454078i 0.229674 0.973268i \(-0.426234\pi\)
−0.854659 + 0.519189i \(0.826234\pi\)
\(812\) 6.18034 + 19.0211i 0.216887 + 0.667511i
\(813\) 48.0000 1.68343
\(814\) 0 0
\(815\) −4.00000 −0.140114
\(816\) 7.41641 + 22.8254i 0.259626 + 0.799047i
\(817\) −38.8328 28.2137i −1.35859 0.987072i
\(818\) 0 0
\(819\) 7.41641 22.8254i 0.259150 0.797582i
\(820\) 1.23607 3.80423i 0.0431654 0.132849i
\(821\) 14.5623 10.5801i 0.508228 0.369249i −0.303923 0.952697i \(-0.598297\pi\)
0.812151 + 0.583447i \(0.198297\pi\)
\(822\) 0 0
\(823\) −7.72542 23.7764i −0.269291 0.828794i −0.990674 0.136257i \(-0.956493\pi\)
0.721382 0.692537i \(-0.243507\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −6.18034 19.0211i −0.214911 0.661430i −0.999160 0.0409825i \(-0.986951\pi\)
0.784248 0.620447i \(-0.213049\pi\)
\(828\) −48.5410 35.2671i −1.68692 1.22562i
\(829\) 23.4615 17.0458i 0.814851 0.592024i −0.100382 0.994949i \(-0.532006\pi\)
0.915233 + 0.402925i \(0.132006\pi\)
\(830\) 0 0
\(831\) 22.2492 68.4761i 0.771817 2.37541i
\(832\) 25.8885 18.8091i 0.897524 0.652089i
\(833\) 1.61803 + 1.17557i 0.0560616 + 0.0407311i
\(834\) 0 0
\(835\) −2.00000 −0.0692129
\(836\) 0 0
\(837\) −9.00000 −0.311086
\(838\) 0 0
\(839\) −36.4058 26.4503i −1.25687 0.913167i −0.258267 0.966074i \(-0.583151\pi\)
−0.998599 + 0.0529065i \(0.983151\pi\)
\(840\) 0 0
\(841\) 21.9402 67.5250i 0.756559 2.32845i
\(842\) 0 0
\(843\) 9.70820 7.05342i 0.334368 0.242933i
\(844\) 3.23607 + 2.35114i 0.111390 + 0.0809296i
\(845\) −0.927051 2.85317i −0.0318915 0.0981520i
\(846\) 0 0
\(847\) 0 0
\(848\) −24.0000 −0.824163
\(849\) 0 0
\(850\) 0 0
\(851\) −20.2254 + 14.6946i −0.693319 + 0.503725i
\(852\) 1.85410 5.70634i 0.0635205 0.195496i
\(853\) 10.5066 32.3359i 0.359738 1.10716i −0.593472 0.804854i \(-0.702243\pi\)
0.953211 0.302307i \(-0.0977566\pi\)
\(854\) 0 0
\(855\) 29.1246 + 21.1603i 0.996041 + 0.723666i
\(856\) 0 0
\(857\) 28.0000 0.956462 0.478231 0.878234i \(-0.341278\pi\)
0.478231 + 0.878234i \(0.341278\pi\)
\(858\) 0 0
\(859\) 55.0000 1.87658 0.938288 0.345855i \(-0.112411\pi\)
0.938288 + 0.345855i \(0.112411\pi\)
\(860\) 4.94427 + 15.2169i 0.168598 + 0.518892i
\(861\) 4.85410 + 3.52671i 0.165427 + 0.120190i
\(862\) 0 0
\(863\) 16.0689 49.4549i 0.546991 1.68347i −0.169217 0.985579i \(-0.554124\pi\)
0.716208 0.697887i \(-0.245876\pi\)
\(864\) 0 0
\(865\) −12.9443 + 9.40456i −0.440118 + 0.319765i
\(866\) 0 0
\(867\) 12.0517 + 37.0912i 0.409296 + 1.25968i
\(868\) −2.00000 −0.0678844
\(869\) 0 0
\(870\) 0 0
\(871\) −3.70820 11.4127i −0.125648 0.386704i
\(872\) 0 0
\(873\) 24.2705 17.6336i 0.821432 0.596806i
\(874\) 0 0
\(875\) 2.78115 8.55951i 0.0940201 0.289364i
\(876\) 48.5410 35.2671i 1.64005 1.19157i
\(877\) −30.7426 22.3358i −1.03811 0.754228i −0.0681906 0.997672i \(-0.521723\pi\)
−0.969915 + 0.243445i \(0.921723\pi\)
\(878\) 0 0
\(879\) −18.0000 −0.607125
\(880\) 0 0
\(881\) 27.0000 0.909653 0.454827 0.890580i \(-0.349701\pi\)
0.454827 + 0.890580i \(0.349701\pi\)
\(882\) 0 0
\(883\) 35.5967 + 25.8626i 1.19793 + 0.870344i 0.994079 0.108659i \(-0.0346555\pi\)
0.203847 + 0.979003i \(0.434656\pi\)
\(884\) −12.9443 + 9.40456i −0.435363 + 0.316310i
\(885\) 2.78115 8.55951i 0.0934874 0.287725i
\(886\) 0 0
\(887\) −1.61803 + 1.17557i −0.0543283 + 0.0394718i −0.614618 0.788825i \(-0.710690\pi\)
0.560290 + 0.828297i \(0.310690\pi\)
\(888\) 0 0
\(889\) −0.618034 1.90211i −0.0207282 0.0637948i
\(890\) 0 0
\(891\) 0 0
\(892\) −2.00000 −0.0669650
\(893\) 14.8328 + 45.6507i 0.496361 + 1.52764i
\(894\) 0 0
\(895\) 0.809017 0.587785i 0.0270425 0.0196475i
\(896\) 0 0
\(897\) 18.5410 57.0634i 0.619067 1.90529i
\(898\) 0 0
\(899\) 8.09017 + 5.87785i 0.269822 + 0.196037i
\(900\) 14.8328 + 45.6507i 0.494427 + 1.52169i
\(901\) 12.0000 0.399778
\(902\) 0 0
\(903\) −24.0000 −0.798670
\(904\) 0 0
\(905\) 4.04508 + 2.93893i 0.134463 + 0.0976932i
\(906\) 0 0
\(907\) −12.3607 + 38.0423i −0.410430 + 1.26317i 0.505846 + 0.862624i \(0.331180\pi\)
−0.916275 + 0.400549i \(0.868820\pi\)
\(908\) 2.47214 7.60845i 0.0820407 0.252495i
\(909\) −58.2492 + 42.3205i −1.93200 + 1.40368i
\(910\) 0 0
\(911\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(912\) −72.0000 −2.38416
\(913\) 0 0
\(914\) 0 0
\(915\) 1.85410 + 5.70634i 0.0612947 + 0.188646i
\(916\) −11.3262 8.22899i −0.374229 0.271894i
\(917\) 14.5623 10.5801i 0.480890 0.349387i
\(918\) 0 0
\(919\) −14.8328 + 45.6507i −0.489289 + 1.50588i 0.336381 + 0.941726i \(0.390797\pi\)
−0.825671 + 0.564152i \(0.809203\pi\)
\(920\) 0 0
\(921\) 67.9574 + 49.3740i 2.23927 + 1.62693i
\(922\) 0 0
\(923\) 4.00000 0.131662
\(924\) 0 0
\(925\) 20.0000 0.657596
\(926\) 0 0
\(927\) 58.2492 + 42.3205i 1.91316 + 1.38999i
\(928\) 0 0
\(929\) −9.27051 + 28.5317i −0.304156 + 0.936095i 0.675835 + 0.737053i \(0.263783\pi\)
−0.979991 + 0.199042i \(0.936217\pi\)
\(930\) 0 0
\(931\) −4.85410 + 3.52671i −0.159087 + 0.115583i
\(932\) −9.70820 7.05342i −0.318003 0.231043i
\(933\) −7.41641 22.8254i −0.242802 0.747269i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −11.1246 34.2380i −0.363425 1.11851i −0.950961 0.309310i \(-0.899902\pi\)
0.587536 0.809198i \(-0.300098\pi\)
\(938\) 0 0
\(939\) −55.8222 + 40.5572i −1.82169 + 1.32353i
\(940\) 4.94427 15.2169i 0.161264 0.496321i
\(941\) −17.9230 + 55.1613i −0.584273 + 1.79821i 0.0178992 + 0.999840i \(0.494302\pi\)
−0.602172 + 0.798366i \(0.705698\pi\)
\(942\) 0 0
\(943\) 8.09017 + 5.87785i 0.263452 + 0.191409i
\(944\) 3.70820 + 11.4127i 0.120692 + 0.371451i
\(945\) 9.00000 0.292770
\(946\) 0 0
\(947\) 5.00000 0.162478 0.0812391 0.996695i \(-0.474112\pi\)
0.0812391 + 0.996695i \(0.474112\pi\)
\(948\) −11.1246 34.2380i −0.361311 1.11200i
\(949\) 32.3607 + 23.5114i 1.05047 + 0.763213i
\(950\) 0 0
\(951\) −8.34346 + 25.6785i −0.270555 + 0.832683i
\(952\) 0 0
\(953\) 35.5967 25.8626i 1.15309 0.837770i 0.164203 0.986427i \(-0.447495\pi\)
0.988889 + 0.148656i \(0.0474948\pi\)
\(954\) 0 0
\(955\) −1.54508 4.75528i −0.0499978 0.153877i
\(956\) 8.00000 0.258738
\(957\) 0 0
\(958\) 0 0
\(959\) −0.927051 2.85317i −0.0299360 0.0921337i
\(960\) 19.4164 + 14.1068i 0.626662 + 0.455296i
\(961\) 24.2705 17.6336i 0.782920 0.568824i
\(962\) 0 0
\(963\) 18.5410 57.0634i 0.597476 1.83884i
\(964\) 19.4164 14.1068i 0.625360 0.454351i
\(965\) −11.3262 8.22899i −0.364604 0.264901i
\(966\) 0 0
\(967\) 34.0000 1.09337 0.546683 0.837340i \(-0.315890\pi\)
0.546683 + 0.837340i \(0.315890\pi\)
\(968\) 0 0
\(969\) 36.0000 1.15649
\(970\) 0 0
\(971\) −23.4615 17.0458i −0.752915 0.547025i 0.143814 0.989605i \(-0.454063\pi\)
−0.896729 + 0.442580i \(0.854063\pi\)
\(972\) 0 0
\(973\) 3.09017 9.51057i 0.0990663 0.304895i
\(974\) 0 0
\(975\) −38.8328 + 28.2137i −1.24365 + 0.903561i
\(976\) −6.47214 4.70228i −0.207168 0.150516i
\(977\) −9.57953 29.4828i −0.306476 0.943237i −0.979122 0.203272i \(-0.934842\pi\)
0.672646 0.739964i \(-0.265158\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 2.00000 0.0638877
\(981\) −7.41641 22.8254i −0.236788 0.728758i
\(982\) 0 0
\(983\) 21.8435 15.8702i 0.696698 0.506181i −0.182157 0.983269i \(-0.558308\pi\)
0.878855 + 0.477089i \(0.158308\pi\)
\(984\) 0 0
\(985\) 5.56231 17.1190i 0.177230 0.545457i
\(986\) 0 0
\(987\) 19.4164 + 14.1068i 0.618031 + 0.449026i
\(988\) −14.8328 45.6507i −0.471895 1.45234i
\(989\) −40.0000 −1.27193
\(990\) 0 0
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 0 0
\(993\) −41.2599 29.9770i −1.30934 0.951293i
\(994\) 0 0
\(995\) 2.47214 7.60845i 0.0783720 0.241204i
\(996\) −22.2492 + 68.4761i −0.704994 + 2.16975i
\(997\) −9.70820 + 7.05342i −0.307462 + 0.223384i −0.730807 0.682585i \(-0.760856\pi\)
0.423345 + 0.905969i \(0.360856\pi\)
\(998\) 0 0
\(999\) 13.9058 + 42.7975i 0.439959 + 1.35405i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 847.2.f.h.148.1 4
11.2 odd 10 847.2.f.i.372.1 4
11.3 even 5 847.2.a.b.1.1 1
11.4 even 5 inner 847.2.f.h.729.1 4
11.5 even 5 inner 847.2.f.h.323.1 4
11.6 odd 10 847.2.f.i.323.1 4
11.7 odd 10 847.2.f.i.729.1 4
11.8 odd 10 77.2.a.a.1.1 1
11.9 even 5 inner 847.2.f.h.372.1 4
11.10 odd 2 847.2.f.i.148.1 4
33.8 even 10 693.2.a.c.1.1 1
33.14 odd 10 7623.2.a.j.1.1 1
44.19 even 10 1232.2.a.l.1.1 1
55.8 even 20 1925.2.b.e.1849.1 2
55.19 odd 10 1925.2.a.h.1.1 1
55.52 even 20 1925.2.b.e.1849.2 2
77.19 even 30 539.2.e.c.67.1 2
77.30 odd 30 539.2.e.f.67.1 2
77.41 even 10 539.2.a.c.1.1 1
77.52 even 30 539.2.e.c.177.1 2
77.69 odd 10 5929.2.a.f.1.1 1
77.74 odd 30 539.2.e.f.177.1 2
88.19 even 10 4928.2.a.a.1.1 1
88.85 odd 10 4928.2.a.bj.1.1 1
231.41 odd 10 4851.2.a.j.1.1 1
308.195 odd 10 8624.2.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.2.a.a.1.1 1 11.8 odd 10
539.2.a.c.1.1 1 77.41 even 10
539.2.e.c.67.1 2 77.19 even 30
539.2.e.c.177.1 2 77.52 even 30
539.2.e.f.67.1 2 77.30 odd 30
539.2.e.f.177.1 2 77.74 odd 30
693.2.a.c.1.1 1 33.8 even 10
847.2.a.b.1.1 1 11.3 even 5
847.2.f.h.148.1 4 1.1 even 1 trivial
847.2.f.h.323.1 4 11.5 even 5 inner
847.2.f.h.372.1 4 11.9 even 5 inner
847.2.f.h.729.1 4 11.4 even 5 inner
847.2.f.i.148.1 4 11.10 odd 2
847.2.f.i.323.1 4 11.6 odd 10
847.2.f.i.372.1 4 11.2 odd 10
847.2.f.i.729.1 4 11.7 odd 10
1232.2.a.l.1.1 1 44.19 even 10
1925.2.a.h.1.1 1 55.19 odd 10
1925.2.b.e.1849.1 2 55.8 even 20
1925.2.b.e.1849.2 2 55.52 even 20
4851.2.a.j.1.1 1 231.41 odd 10
4928.2.a.a.1.1 1 88.19 even 10
4928.2.a.bj.1.1 1 88.85 odd 10
5929.2.a.f.1.1 1 77.69 odd 10
7623.2.a.j.1.1 1 33.14 odd 10
8624.2.a.a.1.1 1 308.195 odd 10