Properties

Label 847.2.f.i.729.1
Level $847$
Weight $2$
Character 847.729
Analytic conductor $6.763$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [847,2,Mod(148,847)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(847, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("847.148");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 847.f (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.76332905120\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 729.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 847.729
Dual form 847.2.f.i.323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.927051 - 2.85317i) q^{3} +(-0.618034 + 1.90211i) q^{4} +(0.809017 + 0.587785i) q^{5} +(-0.309017 + 0.951057i) q^{7} +(-4.85410 + 3.52671i) q^{9} +6.00000 q^{12} +(3.23607 - 2.35114i) q^{13} +(0.927051 - 2.85317i) q^{15} +(-3.23607 - 2.35114i) q^{16} +(-1.61803 - 1.17557i) q^{17} +(-1.85410 - 5.70634i) q^{19} +(-1.61803 + 1.17557i) q^{20} +3.00000 q^{21} -5.00000 q^{23} +(-1.23607 - 3.80423i) q^{25} +(7.28115 + 5.29007i) q^{27} +(-1.61803 - 1.17557i) q^{28} +(3.09017 - 9.51057i) q^{29} +(-0.809017 + 0.587785i) q^{31} +(-0.809017 + 0.587785i) q^{35} +(-3.70820 - 11.4127i) q^{36} +(-1.54508 + 4.75528i) q^{37} +(-9.70820 - 7.05342i) q^{39} +(-0.618034 - 1.90211i) q^{41} -8.00000 q^{43} -6.00000 q^{45} +(2.47214 + 7.60845i) q^{47} +(-3.70820 + 11.4127i) q^{48} +(-0.809017 - 0.587785i) q^{49} +(-1.85410 + 5.70634i) q^{51} +(2.47214 + 7.60845i) q^{52} +(4.85410 - 3.52671i) q^{53} +(-14.5623 + 10.5801i) q^{57} +(0.927051 - 2.85317i) q^{59} +(4.85410 + 3.52671i) q^{60} +(1.61803 + 1.17557i) q^{61} +(-1.85410 - 5.70634i) q^{63} +(6.47214 - 4.70228i) q^{64} +4.00000 q^{65} -3.00000 q^{67} +(3.23607 - 2.35114i) q^{68} +(4.63525 + 14.2658i) q^{69} +(-0.809017 - 0.587785i) q^{71} +(3.09017 - 9.51057i) q^{73} +(-9.70820 + 7.05342i) q^{75} +12.0000 q^{76} +(-4.85410 + 3.52671i) q^{79} +(-1.23607 - 3.80423i) q^{80} +(2.78115 - 8.55951i) q^{81} +(-9.70820 - 7.05342i) q^{83} +(-1.85410 + 5.70634i) q^{84} +(-0.618034 - 1.90211i) q^{85} -30.0000 q^{87} -15.0000 q^{89} +(1.23607 + 3.80423i) q^{91} +(3.09017 - 9.51057i) q^{92} +(2.42705 + 1.76336i) q^{93} +(1.85410 - 5.70634i) q^{95} +(4.04508 - 2.93893i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{3} + 2 q^{4} + q^{5} + q^{7} - 6 q^{9} + 24 q^{12} + 4 q^{13} - 3 q^{15} - 4 q^{16} - 2 q^{17} + 6 q^{19} - 2 q^{20} + 12 q^{21} - 20 q^{23} + 4 q^{25} + 9 q^{27} - 2 q^{28} - 10 q^{29} - q^{31}+ \cdots + 5 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/847\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(365\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(3\) −0.927051 2.85317i −0.535233 1.64728i −0.743145 0.669131i \(-0.766667\pi\)
0.207912 0.978148i \(-0.433333\pi\)
\(4\) −0.618034 + 1.90211i −0.309017 + 0.951057i
\(5\) 0.809017 + 0.587785i 0.361803 + 0.262866i 0.753804 0.657099i \(-0.228217\pi\)
−0.392000 + 0.919965i \(0.628217\pi\)
\(6\) 0 0
\(7\) −0.309017 + 0.951057i −0.116797 + 0.359466i
\(8\) 0 0
\(9\) −4.85410 + 3.52671i −1.61803 + 1.17557i
\(10\) 0 0
\(11\) 0 0
\(12\) 6.00000 1.73205
\(13\) 3.23607 2.35114i 0.897524 0.652089i −0.0403050 0.999187i \(-0.512833\pi\)
0.937829 + 0.347098i \(0.112833\pi\)
\(14\) 0 0
\(15\) 0.927051 2.85317i 0.239364 0.736685i
\(16\) −3.23607 2.35114i −0.809017 0.587785i
\(17\) −1.61803 1.17557i −0.392431 0.285118i 0.374020 0.927421i \(-0.377979\pi\)
−0.766451 + 0.642303i \(0.777979\pi\)
\(18\) 0 0
\(19\) −1.85410 5.70634i −0.425360 1.30912i −0.902649 0.430377i \(-0.858380\pi\)
0.477289 0.878746i \(-0.341620\pi\)
\(20\) −1.61803 + 1.17557i −0.361803 + 0.262866i
\(21\) 3.00000 0.654654
\(22\) 0 0
\(23\) −5.00000 −1.04257 −0.521286 0.853382i \(-0.674548\pi\)
−0.521286 + 0.853382i \(0.674548\pi\)
\(24\) 0 0
\(25\) −1.23607 3.80423i −0.247214 0.760845i
\(26\) 0 0
\(27\) 7.28115 + 5.29007i 1.40126 + 1.01807i
\(28\) −1.61803 1.17557i −0.305780 0.222162i
\(29\) 3.09017 9.51057i 0.573830 1.76607i −0.0662984 0.997800i \(-0.521119\pi\)
0.640129 0.768268i \(-0.278881\pi\)
\(30\) 0 0
\(31\) −0.809017 + 0.587785i −0.145304 + 0.105569i −0.658062 0.752964i \(-0.728624\pi\)
0.512758 + 0.858533i \(0.328624\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.809017 + 0.587785i −0.136749 + 0.0993538i
\(36\) −3.70820 11.4127i −0.618034 1.90211i
\(37\) −1.54508 + 4.75528i −0.254010 + 0.781764i 0.740013 + 0.672593i \(0.234819\pi\)
−0.994023 + 0.109171i \(0.965181\pi\)
\(38\) 0 0
\(39\) −9.70820 7.05342i −1.55456 1.12945i
\(40\) 0 0
\(41\) −0.618034 1.90211i −0.0965207 0.297060i 0.891126 0.453755i \(-0.149916\pi\)
−0.987647 + 0.156695i \(0.949916\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 0 0
\(45\) −6.00000 −0.894427
\(46\) 0 0
\(47\) 2.47214 + 7.60845i 0.360598 + 1.10981i 0.952692 + 0.303938i \(0.0983015\pi\)
−0.592094 + 0.805869i \(0.701699\pi\)
\(48\) −3.70820 + 11.4127i −0.535233 + 1.64728i
\(49\) −0.809017 0.587785i −0.115574 0.0839693i
\(50\) 0 0
\(51\) −1.85410 + 5.70634i −0.259626 + 0.799047i
\(52\) 2.47214 + 7.60845i 0.342824 + 1.05510i
\(53\) 4.85410 3.52671i 0.666762 0.484431i −0.202178 0.979349i \(-0.564802\pi\)
0.868940 + 0.494918i \(0.164802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −14.5623 + 10.5801i −1.92882 + 1.40137i
\(58\) 0 0
\(59\) 0.927051 2.85317i 0.120692 0.371451i −0.872400 0.488793i \(-0.837437\pi\)
0.993092 + 0.117342i \(0.0374373\pi\)
\(60\) 4.85410 + 3.52671i 0.626662 + 0.455296i
\(61\) 1.61803 + 1.17557i 0.207168 + 0.150516i 0.686531 0.727100i \(-0.259132\pi\)
−0.479363 + 0.877616i \(0.659132\pi\)
\(62\) 0 0
\(63\) −1.85410 5.70634i −0.233595 0.718931i
\(64\) 6.47214 4.70228i 0.809017 0.587785i
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) −3.00000 −0.366508 −0.183254 0.983066i \(-0.558663\pi\)
−0.183254 + 0.983066i \(0.558663\pi\)
\(68\) 3.23607 2.35114i 0.392431 0.285118i
\(69\) 4.63525 + 14.2658i 0.558019 + 1.71741i
\(70\) 0 0
\(71\) −0.809017 0.587785i −0.0960127 0.0697573i 0.538743 0.842470i \(-0.318899\pi\)
−0.634756 + 0.772713i \(0.718899\pi\)
\(72\) 0 0
\(73\) 3.09017 9.51057i 0.361677 1.11313i −0.590359 0.807141i \(-0.701014\pi\)
0.952036 0.305987i \(-0.0989863\pi\)
\(74\) 0 0
\(75\) −9.70820 + 7.05342i −1.12101 + 0.814459i
\(76\) 12.0000 1.37649
\(77\) 0 0
\(78\) 0 0
\(79\) −4.85410 + 3.52671i −0.546129 + 0.396786i −0.826356 0.563148i \(-0.809590\pi\)
0.280227 + 0.959934i \(0.409590\pi\)
\(80\) −1.23607 3.80423i −0.138197 0.425325i
\(81\) 2.78115 8.55951i 0.309017 0.951057i
\(82\) 0 0
\(83\) −9.70820 7.05342i −1.06561 0.774214i −0.0904951 0.995897i \(-0.528845\pi\)
−0.975119 + 0.221683i \(0.928845\pi\)
\(84\) −1.85410 + 5.70634i −0.202299 + 0.622613i
\(85\) −0.618034 1.90211i −0.0670352 0.206313i
\(86\) 0 0
\(87\) −30.0000 −3.21634
\(88\) 0 0
\(89\) −15.0000 −1.59000 −0.794998 0.606612i \(-0.792528\pi\)
−0.794998 + 0.606612i \(0.792528\pi\)
\(90\) 0 0
\(91\) 1.23607 + 3.80423i 0.129575 + 0.398791i
\(92\) 3.09017 9.51057i 0.322172 0.991545i
\(93\) 2.42705 + 1.76336i 0.251673 + 0.182851i
\(94\) 0 0
\(95\) 1.85410 5.70634i 0.190227 0.585458i
\(96\) 0 0
\(97\) 4.04508 2.93893i 0.410716 0.298403i −0.363176 0.931721i \(-0.618307\pi\)
0.773892 + 0.633318i \(0.218307\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 8.00000 0.800000
\(101\) 9.70820 7.05342i 0.966002 0.701842i 0.0114654 0.999934i \(-0.496350\pi\)
0.954537 + 0.298092i \(0.0963504\pi\)
\(102\) 0 0
\(103\) −3.70820 + 11.4127i −0.365380 + 1.12452i 0.584362 + 0.811493i \(0.301345\pi\)
−0.949743 + 0.313032i \(0.898655\pi\)
\(104\) 0 0
\(105\) 2.42705 + 1.76336i 0.236856 + 0.172086i
\(106\) 0 0
\(107\) −3.09017 9.51057i −0.298738 0.919421i −0.981940 0.189192i \(-0.939413\pi\)
0.683202 0.730229i \(-0.260587\pi\)
\(108\) −14.5623 + 10.5801i −1.40126 + 1.01807i
\(109\) 4.00000 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(110\) 0 0
\(111\) 15.0000 1.42374
\(112\) 3.23607 2.35114i 0.305780 0.222162i
\(113\) −5.87132 18.0701i −0.552328 1.69989i −0.702898 0.711290i \(-0.748111\pi\)
0.150571 0.988599i \(-0.451889\pi\)
\(114\) 0 0
\(115\) −4.04508 2.93893i −0.377206 0.274056i
\(116\) 16.1803 + 11.7557i 1.50231 + 1.09149i
\(117\) −7.41641 + 22.8254i −0.685647 + 2.11020i
\(118\) 0 0
\(119\) 1.61803 1.17557i 0.148325 0.107764i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −4.85410 + 3.52671i −0.437680 + 0.317993i
\(124\) −0.618034 1.90211i −0.0555011 0.170815i
\(125\) 2.78115 8.55951i 0.248754 0.765586i
\(126\) 0 0
\(127\) −1.61803 1.17557i −0.143577 0.104315i 0.513678 0.857983i \(-0.328283\pi\)
−0.657255 + 0.753668i \(0.728283\pi\)
\(128\) 0 0
\(129\) 7.41641 + 22.8254i 0.652978 + 2.00966i
\(130\) 0 0
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) 0 0
\(133\) 6.00000 0.520266
\(134\) 0 0
\(135\) 2.78115 + 8.55951i 0.239364 + 0.736685i
\(136\) 0 0
\(137\) 2.42705 + 1.76336i 0.207357 + 0.150654i 0.686617 0.727019i \(-0.259095\pi\)
−0.479260 + 0.877673i \(0.659095\pi\)
\(138\) 0 0
\(139\) −3.09017 + 9.51057i −0.262105 + 0.806676i 0.730241 + 0.683189i \(0.239408\pi\)
−0.992346 + 0.123486i \(0.960592\pi\)
\(140\) −0.618034 1.90211i −0.0522334 0.160758i
\(141\) 19.4164 14.1068i 1.63516 1.18801i
\(142\) 0 0
\(143\) 0 0
\(144\) 24.0000 2.00000
\(145\) 8.09017 5.87785i 0.671852 0.488129i
\(146\) 0 0
\(147\) −0.927051 + 2.85317i −0.0764619 + 0.235325i
\(148\) −8.09017 5.87785i −0.665008 0.483157i
\(149\) 17.7984 + 12.9313i 1.45810 + 1.05937i 0.983853 + 0.178979i \(0.0572796\pi\)
0.474247 + 0.880392i \(0.342720\pi\)
\(150\) 0 0
\(151\) 1.85410 + 5.70634i 0.150885 + 0.464375i 0.997721 0.0674788i \(-0.0214955\pi\)
−0.846836 + 0.531854i \(0.821495\pi\)
\(152\) 0 0
\(153\) 12.0000 0.970143
\(154\) 0 0
\(155\) −1.00000 −0.0803219
\(156\) 19.4164 14.1068i 1.55456 1.12945i
\(157\) 2.16312 + 6.65740i 0.172636 + 0.531318i 0.999518 0.0310576i \(-0.00988752\pi\)
−0.826882 + 0.562376i \(0.809888\pi\)
\(158\) 0 0
\(159\) −14.5623 10.5801i −1.15487 0.839059i
\(160\) 0 0
\(161\) 1.54508 4.75528i 0.121770 0.374769i
\(162\) 0 0
\(163\) −3.23607 + 2.35114i −0.253468 + 0.184156i −0.707263 0.706951i \(-0.750070\pi\)
0.453794 + 0.891107i \(0.350070\pi\)
\(164\) 4.00000 0.312348
\(165\) 0 0
\(166\) 0 0
\(167\) 1.61803 1.17557i 0.125207 0.0909684i −0.523419 0.852075i \(-0.675344\pi\)
0.648626 + 0.761107i \(0.275344\pi\)
\(168\) 0 0
\(169\) 0.927051 2.85317i 0.0713116 0.219475i
\(170\) 0 0
\(171\) 29.1246 + 21.1603i 2.22721 + 1.61817i
\(172\) 4.94427 15.2169i 0.376997 1.16028i
\(173\) 4.94427 + 15.2169i 0.375906 + 1.15692i 0.942865 + 0.333174i \(0.108120\pi\)
−0.566959 + 0.823746i \(0.691880\pi\)
\(174\) 0 0
\(175\) 4.00000 0.302372
\(176\) 0 0
\(177\) −9.00000 −0.676481
\(178\) 0 0
\(179\) 0.309017 + 0.951057i 0.0230970 + 0.0710853i 0.961941 0.273258i \(-0.0881014\pi\)
−0.938844 + 0.344344i \(0.888101\pi\)
\(180\) 3.70820 11.4127i 0.276393 0.850651i
\(181\) −4.04508 2.93893i −0.300669 0.218449i 0.427213 0.904151i \(-0.359495\pi\)
−0.727882 + 0.685702i \(0.759495\pi\)
\(182\) 0 0
\(183\) 1.85410 5.70634i 0.137059 0.421825i
\(184\) 0 0
\(185\) −4.04508 + 2.93893i −0.297401 + 0.216074i
\(186\) 0 0
\(187\) 0 0
\(188\) −16.0000 −1.16692
\(189\) −7.28115 + 5.29007i −0.529626 + 0.384796i
\(190\) 0 0
\(191\) 1.54508 4.75528i 0.111798 0.344080i −0.879467 0.475959i \(-0.842101\pi\)
0.991266 + 0.131879i \(0.0421010\pi\)
\(192\) −19.4164 14.1068i −1.40126 1.01807i
\(193\) −11.3262 8.22899i −0.815280 0.592336i 0.100076 0.994980i \(-0.468091\pi\)
−0.915357 + 0.402644i \(0.868091\pi\)
\(194\) 0 0
\(195\) −3.70820 11.4127i −0.265550 0.817279i
\(196\) 1.61803 1.17557i 0.115574 0.0839693i
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) 2.78115 + 8.55951i 0.196167 + 0.603741i
\(202\) 0 0
\(203\) 8.09017 + 5.87785i 0.567819 + 0.412544i
\(204\) −9.70820 7.05342i −0.679710 0.493838i
\(205\) 0.618034 1.90211i 0.0431654 0.132849i
\(206\) 0 0
\(207\) 24.2705 17.6336i 1.68692 1.22562i
\(208\) −16.0000 −1.10940
\(209\) 0 0
\(210\) 0 0
\(211\) 1.61803 1.17557i 0.111390 0.0809296i −0.530696 0.847562i \(-0.678069\pi\)
0.642086 + 0.766633i \(0.278069\pi\)
\(212\) 3.70820 + 11.4127i 0.254680 + 0.783826i
\(213\) −0.927051 + 2.85317i −0.0635205 + 0.195496i
\(214\) 0 0
\(215\) −6.47214 4.70228i −0.441396 0.320693i
\(216\) 0 0
\(217\) −0.309017 0.951057i −0.0209774 0.0645619i
\(218\) 0 0
\(219\) −30.0000 −2.02721
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) 0 0
\(223\) 0.309017 + 0.951057i 0.0206933 + 0.0636875i 0.960870 0.277000i \(-0.0893402\pi\)
−0.940177 + 0.340687i \(0.889340\pi\)
\(224\) 0 0
\(225\) 19.4164 + 14.1068i 1.29443 + 0.940456i
\(226\) 0 0
\(227\) 1.23607 3.80423i 0.0820407 0.252495i −0.901620 0.432530i \(-0.857621\pi\)
0.983660 + 0.180035i \(0.0576210\pi\)
\(228\) −11.1246 34.2380i −0.736745 2.26747i
\(229\) 5.66312 4.11450i 0.374229 0.271894i −0.384733 0.923028i \(-0.625707\pi\)
0.758963 + 0.651134i \(0.225707\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.85410 + 3.52671i −0.318003 + 0.231043i −0.735323 0.677717i \(-0.762969\pi\)
0.417320 + 0.908760i \(0.362969\pi\)
\(234\) 0 0
\(235\) −2.47214 + 7.60845i −0.161264 + 0.496321i
\(236\) 4.85410 + 3.52671i 0.315975 + 0.229569i
\(237\) 14.5623 + 10.5801i 0.945923 + 0.687254i
\(238\) 0 0
\(239\) 1.23607 + 3.80423i 0.0799546 + 0.246075i 0.983042 0.183383i \(-0.0587048\pi\)
−0.903087 + 0.429458i \(0.858705\pi\)
\(240\) −9.70820 + 7.05342i −0.626662 + 0.455296i
\(241\) −12.0000 −0.772988 −0.386494 0.922292i \(-0.626314\pi\)
−0.386494 + 0.922292i \(0.626314\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −3.23607 + 2.35114i −0.207168 + 0.150516i
\(245\) −0.309017 0.951057i −0.0197424 0.0607608i
\(246\) 0 0
\(247\) −19.4164 14.1068i −1.23544 0.897597i
\(248\) 0 0
\(249\) −11.1246 + 34.2380i −0.704994 + 2.16975i
\(250\) 0 0
\(251\) 16.9894 12.3435i 1.07236 0.779114i 0.0960240 0.995379i \(-0.469387\pi\)
0.976335 + 0.216265i \(0.0693875\pi\)
\(252\) 12.0000 0.755929
\(253\) 0 0
\(254\) 0 0
\(255\) −4.85410 + 3.52671i −0.303976 + 0.220851i
\(256\) 4.94427 + 15.2169i 0.309017 + 0.951057i
\(257\) −1.85410 + 5.70634i −0.115656 + 0.355952i −0.992083 0.125582i \(-0.959920\pi\)
0.876428 + 0.481534i \(0.159920\pi\)
\(258\) 0 0
\(259\) −4.04508 2.93893i −0.251349 0.182616i
\(260\) −2.47214 + 7.60845i −0.153315 + 0.471856i
\(261\) 18.5410 + 57.0634i 1.14766 + 3.53214i
\(262\) 0 0
\(263\) 18.0000 1.10993 0.554964 0.831875i \(-0.312732\pi\)
0.554964 + 0.831875i \(0.312732\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 0 0
\(267\) 13.9058 + 42.7975i 0.851019 + 2.61917i
\(268\) 1.85410 5.70634i 0.113257 0.348570i
\(269\) 14.5623 + 10.5801i 0.887879 + 0.645082i 0.935324 0.353792i \(-0.115108\pi\)
−0.0474448 + 0.998874i \(0.515108\pi\)
\(270\) 0 0
\(271\) 4.94427 15.2169i 0.300343 0.924361i −0.681031 0.732255i \(-0.738468\pi\)
0.981374 0.192106i \(-0.0615319\pi\)
\(272\) 2.47214 + 7.60845i 0.149895 + 0.461330i
\(273\) 9.70820 7.05342i 0.587567 0.426893i
\(274\) 0 0
\(275\) 0 0
\(276\) −30.0000 −1.80579
\(277\) −19.4164 + 14.1068i −1.16662 + 0.847598i −0.990600 0.136789i \(-0.956322\pi\)
−0.176019 + 0.984387i \(0.556322\pi\)
\(278\) 0 0
\(279\) 1.85410 5.70634i 0.111002 0.341630i
\(280\) 0 0
\(281\) 3.23607 + 2.35114i 0.193048 + 0.140257i 0.680111 0.733110i \(-0.261932\pi\)
−0.487063 + 0.873367i \(0.661932\pi\)
\(282\) 0 0
\(283\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(284\) 1.61803 1.17557i 0.0960127 0.0697573i
\(285\) −18.0000 −1.06623
\(286\) 0 0
\(287\) 2.00000 0.118056
\(288\) 0 0
\(289\) −4.01722 12.3637i −0.236307 0.727279i
\(290\) 0 0
\(291\) −12.1353 8.81678i −0.711381 0.516849i
\(292\) 16.1803 + 11.7557i 0.946883 + 0.687951i
\(293\) −1.85410 + 5.70634i −0.108318 + 0.333368i −0.990495 0.137550i \(-0.956077\pi\)
0.882177 + 0.470918i \(0.156077\pi\)
\(294\) 0 0
\(295\) 2.42705 1.76336i 0.141308 0.102667i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −16.1803 + 11.7557i −0.935733 + 0.679850i
\(300\) −7.41641 22.8254i −0.428187 1.31782i
\(301\) 2.47214 7.60845i 0.142492 0.438544i
\(302\) 0 0
\(303\) −29.1246 21.1603i −1.67317 1.21563i
\(304\) −7.41641 + 22.8254i −0.425360 + 1.30912i
\(305\) 0.618034 + 1.90211i 0.0353885 + 0.108915i
\(306\) 0 0
\(307\) −28.0000 −1.59804 −0.799022 0.601302i \(-0.794649\pi\)
−0.799022 + 0.601302i \(0.794649\pi\)
\(308\) 0 0
\(309\) 36.0000 2.04797
\(310\) 0 0
\(311\) 2.47214 + 7.60845i 0.140182 + 0.431436i 0.996360 0.0852452i \(-0.0271674\pi\)
−0.856178 + 0.516681i \(0.827167\pi\)
\(312\) 0 0
\(313\) 18.6074 + 13.5191i 1.05175 + 0.764142i 0.972545 0.232716i \(-0.0747612\pi\)
0.0792071 + 0.996858i \(0.474761\pi\)
\(314\) 0 0
\(315\) 1.85410 5.70634i 0.104467 0.321516i
\(316\) −3.70820 11.4127i −0.208603 0.642013i
\(317\) −7.28115 + 5.29007i −0.408950 + 0.297120i −0.773177 0.634191i \(-0.781333\pi\)
0.364226 + 0.931310i \(0.381333\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 8.00000 0.447214
\(321\) −24.2705 + 17.6336i −1.35465 + 0.984209i
\(322\) 0 0
\(323\) −3.70820 + 11.4127i −0.206330 + 0.635018i
\(324\) 14.5623 + 10.5801i 0.809017 + 0.587785i
\(325\) −12.9443 9.40456i −0.718019 0.521671i
\(326\) 0 0
\(327\) −3.70820 11.4127i −0.205064 0.631123i
\(328\) 0 0
\(329\) −8.00000 −0.441054
\(330\) 0 0
\(331\) −17.0000 −0.934405 −0.467202 0.884150i \(-0.654738\pi\)
−0.467202 + 0.884150i \(0.654738\pi\)
\(332\) 19.4164 14.1068i 1.06561 0.774214i
\(333\) −9.27051 28.5317i −0.508021 1.56353i
\(334\) 0 0
\(335\) −2.42705 1.76336i −0.132604 0.0963424i
\(336\) −9.70820 7.05342i −0.529626 0.384796i
\(337\) −5.56231 + 17.1190i −0.302998 + 0.932532i 0.677419 + 0.735598i \(0.263099\pi\)
−0.980417 + 0.196934i \(0.936901\pi\)
\(338\) 0 0
\(339\) −46.1140 + 33.5038i −2.50457 + 1.81967i
\(340\) 4.00000 0.216930
\(341\) 0 0
\(342\) 0 0
\(343\) 0.809017 0.587785i 0.0436828 0.0317374i
\(344\) 0 0
\(345\) −4.63525 + 14.2658i −0.249554 + 0.768047i
\(346\) 0 0
\(347\) −11.3262 8.22899i −0.608024 0.441756i 0.240694 0.970601i \(-0.422625\pi\)
−0.848718 + 0.528846i \(0.822625\pi\)
\(348\) 18.5410 57.0634i 0.993903 3.05892i
\(349\) −10.5066 32.3359i −0.562404 1.73090i −0.675541 0.737323i \(-0.736090\pi\)
0.113136 0.993579i \(-0.463910\pi\)
\(350\) 0 0
\(351\) 36.0000 1.92154
\(352\) 0 0
\(353\) 9.00000 0.479022 0.239511 0.970894i \(-0.423013\pi\)
0.239511 + 0.970894i \(0.423013\pi\)
\(354\) 0 0
\(355\) −0.309017 0.951057i −0.0164009 0.0504768i
\(356\) 9.27051 28.5317i 0.491336 1.51218i
\(357\) −4.85410 3.52671i −0.256906 0.186653i
\(358\) 0 0
\(359\) 2.47214 7.60845i 0.130474 0.401559i −0.864384 0.502832i \(-0.832292\pi\)
0.994859 + 0.101273i \(0.0322915\pi\)
\(360\) 0 0
\(361\) −13.7533 + 9.99235i −0.723857 + 0.525913i
\(362\) 0 0
\(363\) 0 0
\(364\) −8.00000 −0.419314
\(365\) 8.09017 5.87785i 0.423459 0.307661i
\(366\) 0 0
\(367\) −3.39919 + 10.4616i −0.177436 + 0.546092i −0.999736 0.0229617i \(-0.992690\pi\)
0.822300 + 0.569054i \(0.192690\pi\)
\(368\) 16.1803 + 11.7557i 0.843459 + 0.612808i
\(369\) 9.70820 + 7.05342i 0.505389 + 0.367187i
\(370\) 0 0
\(371\) 1.85410 + 5.70634i 0.0962602 + 0.296258i
\(372\) −4.85410 + 3.52671i −0.251673 + 0.182851i
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) 0 0
\(375\) −27.0000 −1.39427
\(376\) 0 0
\(377\) −12.3607 38.0423i −0.636607 1.95928i
\(378\) 0 0
\(379\) 23.4615 + 17.0458i 1.20514 + 0.875583i 0.994780 0.102042i \(-0.0325377\pi\)
0.210356 + 0.977625i \(0.432538\pi\)
\(380\) 9.70820 + 7.05342i 0.498020 + 0.361833i
\(381\) −1.85410 + 5.70634i −0.0949885 + 0.292345i
\(382\) 0 0
\(383\) −13.7533 + 9.99235i −0.702760 + 0.510585i −0.880830 0.473433i \(-0.843015\pi\)
0.178070 + 0.984018i \(0.443015\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 38.8328 28.2137i 1.97398 1.43418i
\(388\) 3.09017 + 9.51057i 0.156880 + 0.482826i
\(389\) 2.78115 8.55951i 0.141010 0.433984i −0.855466 0.517858i \(-0.826729\pi\)
0.996476 + 0.0838742i \(0.0267294\pi\)
\(390\) 0 0
\(391\) 8.09017 + 5.87785i 0.409137 + 0.297256i
\(392\) 0 0
\(393\) −16.6869 51.3571i −0.841744 2.59062i
\(394\) 0 0
\(395\) −6.00000 −0.301893
\(396\) 0 0
\(397\) 18.0000 0.903394 0.451697 0.892171i \(-0.350819\pi\)
0.451697 + 0.892171i \(0.350819\pi\)
\(398\) 0 0
\(399\) −5.56231 17.1190i −0.278464 0.857023i
\(400\) −4.94427 + 15.2169i −0.247214 + 0.760845i
\(401\) 4.85410 + 3.52671i 0.242402 + 0.176116i 0.702353 0.711829i \(-0.252133\pi\)
−0.459951 + 0.887945i \(0.652133\pi\)
\(402\) 0 0
\(403\) −1.23607 + 3.80423i −0.0615729 + 0.189502i
\(404\) 7.41641 + 22.8254i 0.368980 + 1.13560i
\(405\) 7.28115 5.29007i 0.361803 0.262866i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 21.0344 15.2824i 1.04009 0.755667i 0.0697838 0.997562i \(-0.477769\pi\)
0.970302 + 0.241895i \(0.0777690\pi\)
\(410\) 0 0
\(411\) 2.78115 8.55951i 0.137184 0.422209i
\(412\) −19.4164 14.1068i −0.956578 0.694994i
\(413\) 2.42705 + 1.76336i 0.119427 + 0.0867691i
\(414\) 0 0
\(415\) −3.70820 11.4127i −0.182029 0.560226i
\(416\) 0 0
\(417\) 30.0000 1.46911
\(418\) 0 0
\(419\) 16.0000 0.781651 0.390826 0.920465i \(-0.372190\pi\)
0.390826 + 0.920465i \(0.372190\pi\)
\(420\) −4.85410 + 3.52671i −0.236856 + 0.172086i
\(421\) 6.79837 + 20.9232i 0.331332 + 1.01974i 0.968501 + 0.249012i \(0.0801057\pi\)
−0.637168 + 0.770725i \(0.719894\pi\)
\(422\) 0 0
\(423\) −38.8328 28.2137i −1.88812 1.37180i
\(424\) 0 0
\(425\) −2.47214 + 7.60845i −0.119916 + 0.369064i
\(426\) 0 0
\(427\) −1.61803 + 1.17557i −0.0783022 + 0.0568898i
\(428\) 20.0000 0.966736
\(429\) 0 0
\(430\) 0 0
\(431\) 16.1803 11.7557i 0.779380 0.566252i −0.125413 0.992105i \(-0.540026\pi\)
0.904793 + 0.425852i \(0.140026\pi\)
\(432\) −11.1246 34.2380i −0.535233 1.64728i
\(433\) −7.72542 + 23.7764i −0.371260 + 1.14262i 0.574707 + 0.818359i \(0.305116\pi\)
−0.945967 + 0.324262i \(0.894884\pi\)
\(434\) 0 0
\(435\) −24.2705 17.6336i −1.16368 0.845464i
\(436\) −2.47214 + 7.60845i −0.118394 + 0.364379i
\(437\) 9.27051 + 28.5317i 0.443469 + 1.36486i
\(438\) 0 0
\(439\) −14.0000 −0.668184 −0.334092 0.942541i \(-0.608430\pi\)
−0.334092 + 0.942541i \(0.608430\pi\)
\(440\) 0 0
\(441\) 6.00000 0.285714
\(442\) 0 0
\(443\) −12.0517 37.0912i −0.572592 1.76226i −0.644237 0.764826i \(-0.722825\pi\)
0.0716450 0.997430i \(-0.477175\pi\)
\(444\) −9.27051 + 28.5317i −0.439959 + 1.35405i
\(445\) −12.1353 8.81678i −0.575266 0.417955i
\(446\) 0 0
\(447\) 20.3951 62.7697i 0.964656 2.96891i
\(448\) 2.47214 + 7.60845i 0.116797 + 0.359466i
\(449\) −12.1353 + 8.81678i −0.572698 + 0.416090i −0.836084 0.548601i \(-0.815161\pi\)
0.263386 + 0.964690i \(0.415161\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 38.0000 1.78737
\(453\) 14.5623 10.5801i 0.684197 0.497098i
\(454\) 0 0
\(455\) −1.23607 + 3.80423i −0.0579478 + 0.178345i
\(456\) 0 0
\(457\) −6.47214 4.70228i −0.302754 0.219963i 0.426027 0.904710i \(-0.359913\pi\)
−0.728781 + 0.684747i \(0.759913\pi\)
\(458\) 0 0
\(459\) −5.56231 17.1190i −0.259626 0.799047i
\(460\) 8.09017 5.87785i 0.377206 0.274056i
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 0 0
\(463\) 13.0000 0.604161 0.302081 0.953282i \(-0.402319\pi\)
0.302081 + 0.953282i \(0.402319\pi\)
\(464\) −32.3607 + 23.5114i −1.50231 + 1.09149i
\(465\) 0.927051 + 2.85317i 0.0429910 + 0.132313i
\(466\) 0 0
\(467\) −2.42705 1.76336i −0.112311 0.0815984i 0.530212 0.847865i \(-0.322112\pi\)
−0.642523 + 0.766267i \(0.722112\pi\)
\(468\) −38.8328 28.2137i −1.79505 1.30418i
\(469\) 0.927051 2.85317i 0.0428072 0.131747i
\(470\) 0 0
\(471\) 16.9894 12.3435i 0.782828 0.568758i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −19.4164 + 14.1068i −0.890886 + 0.647266i
\(476\) 1.23607 + 3.80423i 0.0566551 + 0.174366i
\(477\) −11.1246 + 34.2380i −0.509361 + 1.56765i
\(478\) 0 0
\(479\) 22.6525 + 16.4580i 1.03502 + 0.751985i 0.969307 0.245854i \(-0.0790684\pi\)
0.0657112 + 0.997839i \(0.479068\pi\)
\(480\) 0 0
\(481\) 6.18034 + 19.0211i 0.281799 + 0.867289i
\(482\) 0 0
\(483\) −15.0000 −0.682524
\(484\) 0 0
\(485\) 5.00000 0.227038
\(486\) 0 0
\(487\) −4.01722 12.3637i −0.182038 0.560254i 0.817847 0.575436i \(-0.195167\pi\)
−0.999885 + 0.0151813i \(0.995167\pi\)
\(488\) 0 0
\(489\) 9.70820 + 7.05342i 0.439020 + 0.318967i
\(490\) 0 0
\(491\) −9.27051 + 28.5317i −0.418372 + 1.28762i 0.490827 + 0.871257i \(0.336695\pi\)
−0.909200 + 0.416361i \(0.863305\pi\)
\(492\) −3.70820 11.4127i −0.167179 0.514523i
\(493\) −16.1803 + 11.7557i −0.728726 + 0.529450i
\(494\) 0 0
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) 0.809017 0.587785i 0.0362894 0.0263658i
\(498\) 0 0
\(499\) 13.5967 41.8465i 0.608674 1.87331i 0.139444 0.990230i \(-0.455468\pi\)
0.469230 0.883076i \(-0.344532\pi\)
\(500\) 14.5623 + 10.5801i 0.651246 + 0.473158i
\(501\) −4.85410 3.52671i −0.216865 0.157562i
\(502\) 0 0
\(503\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(504\) 0 0
\(505\) 12.0000 0.533993
\(506\) 0 0
\(507\) −9.00000 −0.399704
\(508\) 3.23607 2.35114i 0.143577 0.104315i
\(509\) −9.57953 29.4828i −0.424605 1.30680i −0.903372 0.428858i \(-0.858916\pi\)
0.478767 0.877942i \(-0.341084\pi\)
\(510\) 0 0
\(511\) 8.09017 + 5.87785i 0.357888 + 0.260021i
\(512\) 0 0
\(513\) 16.6869 51.3571i 0.736745 2.26747i
\(514\) 0 0
\(515\) −9.70820 + 7.05342i −0.427795 + 0.310811i
\(516\) −48.0000 −2.11308
\(517\) 0 0
\(518\) 0 0
\(519\) 38.8328 28.2137i 1.70457 1.23844i
\(520\) 0 0
\(521\) 2.16312 6.65740i 0.0947680 0.291666i −0.892425 0.451195i \(-0.850998\pi\)
0.987193 + 0.159530i \(0.0509977\pi\)
\(522\) 0 0
\(523\) −25.8885 18.8091i −1.13203 0.822466i −0.146038 0.989279i \(-0.546652\pi\)
−0.985989 + 0.166813i \(0.946652\pi\)
\(524\) −11.1246 + 34.2380i −0.485981 + 1.49570i
\(525\) −3.70820 11.4127i −0.161839 0.498090i
\(526\) 0 0
\(527\) 2.00000 0.0871214
\(528\) 0 0
\(529\) 2.00000 0.0869565
\(530\) 0 0
\(531\) 5.56231 + 17.1190i 0.241384 + 0.742902i
\(532\) −3.70820 + 11.4127i −0.160771 + 0.494802i
\(533\) −6.47214 4.70228i −0.280339 0.203678i
\(534\) 0 0
\(535\) 3.09017 9.51057i 0.133600 0.411178i
\(536\) 0 0
\(537\) 2.42705 1.76336i 0.104735 0.0760944i
\(538\) 0 0
\(539\) 0 0
\(540\) −18.0000 −0.774597
\(541\) −25.8885 + 18.8091i −1.11304 + 0.808668i −0.983139 0.182860i \(-0.941464\pi\)
−0.129896 + 0.991528i \(0.541464\pi\)
\(542\) 0 0
\(543\) −4.63525 + 14.2658i −0.198918 + 0.612206i
\(544\) 0 0
\(545\) 3.23607 + 2.35114i 0.138618 + 0.100712i
\(546\) 0 0
\(547\) −7.41641 22.8254i −0.317103 0.975942i −0.974880 0.222730i \(-0.928503\pi\)
0.657778 0.753212i \(-0.271497\pi\)
\(548\) −4.85410 + 3.52671i −0.207357 + 0.150654i
\(549\) −12.0000 −0.512148
\(550\) 0 0
\(551\) −60.0000 −2.55609
\(552\) 0 0
\(553\) −1.85410 5.70634i −0.0788444 0.242658i
\(554\) 0 0
\(555\) 12.1353 + 8.81678i 0.515113 + 0.374251i
\(556\) −16.1803 11.7557i −0.686199 0.498553i
\(557\) 4.32624 13.3148i 0.183309 0.564166i −0.816607 0.577195i \(-0.804147\pi\)
0.999915 + 0.0130289i \(0.00414735\pi\)
\(558\) 0 0
\(559\) −25.8885 + 18.8091i −1.09497 + 0.795541i
\(560\) 4.00000 0.169031
\(561\) 0 0
\(562\) 0 0
\(563\) −16.1803 + 11.7557i −0.681920 + 0.495444i −0.873994 0.485937i \(-0.838479\pi\)
0.192074 + 0.981380i \(0.438479\pi\)
\(564\) 14.8328 + 45.6507i 0.624574 + 1.92224i
\(565\) 5.87132 18.0701i 0.247008 0.760214i
\(566\) 0 0
\(567\) 7.28115 + 5.29007i 0.305780 + 0.222162i
\(568\) 0 0
\(569\) −5.56231 17.1190i −0.233184 0.717667i −0.997357 0.0726553i \(-0.976853\pi\)
0.764173 0.645011i \(-0.223147\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) 0 0
\(573\) −15.0000 −0.626634
\(574\) 0 0
\(575\) 6.18034 + 19.0211i 0.257738 + 0.793236i
\(576\) −14.8328 + 45.6507i −0.618034 + 1.90211i
\(577\) 20.2254 + 14.6946i 0.841995 + 0.611746i 0.922927 0.384974i \(-0.125790\pi\)
−0.0809319 + 0.996720i \(0.525790\pi\)
\(578\) 0 0
\(579\) −12.9787 + 39.9444i −0.539377 + 1.66003i
\(580\) 6.18034 + 19.0211i 0.256625 + 0.789809i
\(581\) 9.70820 7.05342i 0.402764 0.292625i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −19.4164 + 14.1068i −0.802770 + 0.583246i
\(586\) 0 0
\(587\) 11.1246 34.2380i 0.459162 1.41315i −0.407017 0.913421i \(-0.633431\pi\)
0.866179 0.499734i \(-0.166569\pi\)
\(588\) −4.85410 3.52671i −0.200180 0.145439i
\(589\) 4.85410 + 3.52671i 0.200010 + 0.145316i
\(590\) 0 0
\(591\) −16.6869 51.3571i −0.686408 2.11255i
\(592\) 16.1803 11.7557i 0.665008 0.483157i
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) 0 0
\(595\) 2.00000 0.0819920
\(596\) −35.5967 + 25.8626i −1.45810 + 1.05937i
\(597\) 7.41641 + 22.8254i 0.303533 + 0.934180i
\(598\) 0 0
\(599\) 38.8328 + 28.2137i 1.58667 + 1.15278i 0.908511 + 0.417861i \(0.137220\pi\)
0.678155 + 0.734919i \(0.262780\pi\)
\(600\) 0 0
\(601\) 2.47214 7.60845i 0.100841 0.310355i −0.887891 0.460053i \(-0.847830\pi\)
0.988732 + 0.149698i \(0.0478302\pi\)
\(602\) 0 0
\(603\) 14.5623 10.5801i 0.593023 0.430856i
\(604\) −12.0000 −0.488273
\(605\) 0 0
\(606\) 0 0
\(607\) 8.09017 5.87785i 0.328370 0.238575i −0.411369 0.911469i \(-0.634949\pi\)
0.739739 + 0.672894i \(0.234949\pi\)
\(608\) 0 0
\(609\) 9.27051 28.5317i 0.375660 1.15616i
\(610\) 0 0
\(611\) 25.8885 + 18.8091i 1.04734 + 0.760936i
\(612\) −7.41641 + 22.8254i −0.299791 + 0.922660i
\(613\) 4.94427 + 15.2169i 0.199697 + 0.614605i 0.999890 + 0.0148615i \(0.00473072\pi\)
−0.800192 + 0.599744i \(0.795269\pi\)
\(614\) 0 0
\(615\) −6.00000 −0.241943
\(616\) 0 0
\(617\) −30.0000 −1.20775 −0.603877 0.797077i \(-0.706378\pi\)
−0.603877 + 0.797077i \(0.706378\pi\)
\(618\) 0 0
\(619\) 5.25329 + 16.1680i 0.211148 + 0.649845i 0.999405 + 0.0344993i \(0.0109837\pi\)
−0.788257 + 0.615346i \(0.789016\pi\)
\(620\) 0.618034 1.90211i 0.0248208 0.0763907i
\(621\) −36.4058 26.4503i −1.46091 1.06142i
\(622\) 0 0
\(623\) 4.63525 14.2658i 0.185708 0.571549i
\(624\) 14.8328 + 45.6507i 0.593788 + 1.82749i
\(625\) −8.89919 + 6.46564i −0.355967 + 0.258626i
\(626\) 0 0
\(627\) 0 0
\(628\) −14.0000 −0.558661
\(629\) 8.09017 5.87785i 0.322576 0.234365i
\(630\) 0 0
\(631\) 8.34346 25.6785i 0.332148 1.02225i −0.635962 0.771720i \(-0.719397\pi\)
0.968110 0.250526i \(-0.0806035\pi\)
\(632\) 0 0
\(633\) −4.85410 3.52671i −0.192933 0.140174i
\(634\) 0 0
\(635\) −0.618034 1.90211i −0.0245259 0.0754831i
\(636\) 29.1246 21.1603i 1.15487 0.839059i
\(637\) −4.00000 −0.158486
\(638\) 0 0
\(639\) 6.00000 0.237356
\(640\) 0 0
\(641\) 4.63525 + 14.2658i 0.183082 + 0.563467i 0.999910 0.0134135i \(-0.00426978\pi\)
−0.816828 + 0.576881i \(0.804270\pi\)
\(642\) 0 0
\(643\) 23.4615 + 17.0458i 0.925231 + 0.672220i 0.944821 0.327588i \(-0.106236\pi\)
−0.0195896 + 0.999808i \(0.506236\pi\)
\(644\) 8.09017 + 5.87785i 0.318797 + 0.231620i
\(645\) −7.41641 + 22.8254i −0.292021 + 0.898748i
\(646\) 0 0
\(647\) 16.9894 12.3435i 0.667921 0.485273i −0.201408 0.979507i \(-0.564552\pi\)
0.869328 + 0.494235i \(0.164552\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −2.42705 + 1.76336i −0.0951236 + 0.0691114i
\(652\) −2.47214 7.60845i −0.0968163 0.297970i
\(653\) −5.25329 + 16.1680i −0.205577 + 0.632701i 0.794112 + 0.607771i \(0.207936\pi\)
−0.999689 + 0.0249299i \(0.992064\pi\)
\(654\) 0 0
\(655\) 14.5623 + 10.5801i 0.568996 + 0.413400i
\(656\) −2.47214 + 7.60845i −0.0965207 + 0.297060i
\(657\) 18.5410 + 57.0634i 0.723354 + 2.22625i
\(658\) 0 0
\(659\) −2.00000 −0.0779089 −0.0389545 0.999241i \(-0.512403\pi\)
−0.0389545 + 0.999241i \(0.512403\pi\)
\(660\) 0 0
\(661\) 35.0000 1.36134 0.680671 0.732589i \(-0.261688\pi\)
0.680671 + 0.732589i \(0.261688\pi\)
\(662\) 0 0
\(663\) 7.41641 + 22.8254i 0.288029 + 0.886463i
\(664\) 0 0
\(665\) 4.85410 + 3.52671i 0.188234 + 0.136760i
\(666\) 0 0
\(667\) −15.4508 + 47.5528i −0.598259 + 1.84125i
\(668\) 1.23607 + 3.80423i 0.0478249 + 0.147190i
\(669\) 2.42705 1.76336i 0.0938352 0.0681753i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −3.23607 + 2.35114i −0.124741 + 0.0906298i −0.648407 0.761294i \(-0.724564\pi\)
0.523665 + 0.851924i \(0.324564\pi\)
\(674\) 0 0
\(675\) 11.1246 34.2380i 0.428187 1.31782i
\(676\) 4.85410 + 3.52671i 0.186696 + 0.135643i
\(677\) −30.7426 22.3358i −1.18154 0.858436i −0.189192 0.981940i \(-0.560587\pi\)
−0.992344 + 0.123504i \(0.960587\pi\)
\(678\) 0 0
\(679\) 1.54508 + 4.75528i 0.0592949 + 0.182491i
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) −58.2492 + 42.3205i −2.22721 + 1.61817i
\(685\) 0.927051 + 2.85317i 0.0354208 + 0.109014i
\(686\) 0 0
\(687\) −16.9894 12.3435i −0.648184 0.470934i
\(688\) 25.8885 + 18.8091i 0.986991 + 0.717091i
\(689\) 7.41641 22.8254i 0.282543 0.869577i
\(690\) 0 0
\(691\) −12.1353 + 8.81678i −0.461647 + 0.335406i −0.794177 0.607687i \(-0.792098\pi\)
0.332530 + 0.943093i \(0.392098\pi\)
\(692\) −32.0000 −1.21646
\(693\) 0 0
\(694\) 0 0
\(695\) −8.09017 + 5.87785i −0.306878 + 0.222960i
\(696\) 0 0
\(697\) −1.23607 + 3.80423i −0.0468194 + 0.144095i
\(698\) 0 0
\(699\) 14.5623 + 10.5801i 0.550797 + 0.400177i
\(700\) −2.47214 + 7.60845i −0.0934380 + 0.287572i
\(701\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(702\) 0 0
\(703\) 30.0000 1.13147
\(704\) 0 0
\(705\) 24.0000 0.903892
\(706\) 0 0
\(707\) 3.70820 + 11.4127i 0.139461 + 0.429218i
\(708\) 5.56231 17.1190i 0.209044 0.643372i
\(709\) −31.5517 22.9236i −1.18495 0.860915i −0.192226 0.981351i \(-0.561571\pi\)
−0.992721 + 0.120436i \(0.961571\pi\)
\(710\) 0 0
\(711\) 11.1246 34.2380i 0.417206 1.28403i
\(712\) 0 0
\(713\) 4.04508 2.93893i 0.151490 0.110064i
\(714\) 0 0
\(715\) 0 0
\(716\) −2.00000 −0.0747435
\(717\) 9.70820 7.05342i 0.362560 0.263415i
\(718\) 0 0
\(719\) −3.39919 + 10.4616i −0.126768 + 0.390153i −0.994219 0.107370i \(-0.965757\pi\)
0.867451 + 0.497523i \(0.165757\pi\)
\(720\) 19.4164 + 14.1068i 0.723607 + 0.525731i
\(721\) −9.70820 7.05342i −0.361552 0.262683i
\(722\) 0 0
\(723\) 11.1246 + 34.2380i 0.413729 + 1.27333i
\(724\) 8.09017 5.87785i 0.300669 0.218449i
\(725\) −40.0000 −1.48556
\(726\) 0 0
\(727\) −19.0000 −0.704671 −0.352335 0.935874i \(-0.614612\pi\)
−0.352335 + 0.935874i \(0.614612\pi\)
\(728\) 0 0
\(729\) −8.34346 25.6785i −0.309017 0.951057i
\(730\) 0 0
\(731\) 12.9443 + 9.40456i 0.478761 + 0.347840i
\(732\) 9.70820 + 7.05342i 0.358826 + 0.260702i
\(733\) −1.23607 + 3.80423i −0.0456552 + 0.140512i −0.971286 0.237917i \(-0.923536\pi\)
0.925630 + 0.378429i \(0.123536\pi\)
\(734\) 0 0
\(735\) −2.42705 + 1.76336i −0.0895231 + 0.0650424i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 14.5623 10.5801i 0.535683 0.389197i −0.286796 0.957992i \(-0.592590\pi\)
0.822479 + 0.568795i \(0.192590\pi\)
\(740\) −3.09017 9.51057i −0.113597 0.349615i
\(741\) −22.2492 + 68.4761i −0.817346 + 2.51553i
\(742\) 0 0
\(743\) 19.4164 + 14.1068i 0.712319 + 0.517530i 0.883921 0.467636i \(-0.154894\pi\)
−0.171602 + 0.985166i \(0.554894\pi\)
\(744\) 0 0
\(745\) 6.79837 + 20.9232i 0.249073 + 0.766568i
\(746\) 0 0
\(747\) 72.0000 2.63434
\(748\) 0 0
\(749\) 10.0000 0.365392
\(750\) 0 0
\(751\) −7.10739 21.8743i −0.259352 0.798205i −0.992941 0.118611i \(-0.962156\pi\)
0.733588 0.679594i \(-0.237844\pi\)
\(752\) 9.88854 30.4338i 0.360598 1.10981i
\(753\) −50.9681 37.0305i −1.85738 1.34947i
\(754\) 0 0
\(755\) −1.85410 + 5.70634i −0.0674777 + 0.207675i
\(756\) −5.56231 17.1190i −0.202299 0.622613i
\(757\) −30.7426 + 22.3358i −1.11736 + 0.811810i −0.983807 0.179232i \(-0.942639\pi\)
−0.133554 + 0.991042i \(0.542639\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 38.8328 28.2137i 1.40769 1.02275i 0.414035 0.910261i \(-0.364119\pi\)
0.993653 0.112485i \(-0.0358809\pi\)
\(762\) 0 0
\(763\) −1.23607 + 3.80423i −0.0447487 + 0.137722i
\(764\) 8.09017 + 5.87785i 0.292692 + 0.212653i
\(765\) 9.70820 + 7.05342i 0.351001 + 0.255017i
\(766\) 0 0
\(767\) −3.70820 11.4127i −0.133895 0.412088i
\(768\) 38.8328 28.2137i 1.40126 1.01807i
\(769\) 40.0000 1.44244 0.721218 0.692708i \(-0.243582\pi\)
0.721218 + 0.692708i \(0.243582\pi\)
\(770\) 0 0
\(771\) 18.0000 0.648254
\(772\) 22.6525 16.4580i 0.815280 0.592336i
\(773\) −1.85410 5.70634i −0.0666874 0.205243i 0.912160 0.409834i \(-0.134413\pi\)
−0.978847 + 0.204591i \(0.934413\pi\)
\(774\) 0 0
\(775\) 3.23607 + 2.35114i 0.116243 + 0.0844555i
\(776\) 0 0
\(777\) −4.63525 + 14.2658i −0.166289 + 0.511784i
\(778\) 0 0
\(779\) −9.70820 + 7.05342i −0.347833 + 0.252715i
\(780\) 24.0000 0.859338
\(781\) 0 0
\(782\) 0 0
\(783\) 72.8115 52.9007i 2.60207 1.89052i
\(784\) 1.23607 + 3.80423i 0.0441453 + 0.135865i
\(785\) −2.16312 + 6.65740i −0.0772050 + 0.237613i
\(786\) 0 0
\(787\) 17.7984 + 12.9313i 0.634444 + 0.460950i 0.857937 0.513755i \(-0.171746\pi\)
−0.223493 + 0.974705i \(0.571746\pi\)
\(788\) −11.1246 + 34.2380i −0.396298 + 1.21968i
\(789\) −16.6869 51.3571i −0.594070 1.82836i
\(790\) 0 0
\(791\) 19.0000 0.675562
\(792\) 0 0
\(793\) 8.00000 0.284088
\(794\) 0 0
\(795\) −5.56231 17.1190i −0.197275 0.607149i
\(796\) 4.94427 15.2169i 0.175245 0.539349i
\(797\) −18.6074 13.5191i −0.659108 0.478870i 0.207254 0.978287i \(-0.433547\pi\)
−0.866361 + 0.499417i \(0.833547\pi\)
\(798\) 0 0
\(799\) 4.94427 15.2169i 0.174916 0.538335i
\(800\) 0 0
\(801\) 72.8115 52.9007i 2.57267 1.86915i
\(802\) 0 0
\(803\) 0 0
\(804\) −18.0000 −0.634811
\(805\) 4.04508 2.93893i 0.142571 0.103584i
\(806\) 0 0
\(807\) 16.6869 51.3571i 0.587407 1.80785i
\(808\) 0 0
\(809\) −24.2705 17.6336i −0.853306 0.619963i 0.0727498 0.997350i \(-0.476823\pi\)
−0.926055 + 0.377387i \(0.876823\pi\)
\(810\) 0 0
\(811\) −6.79837 20.9232i −0.238723 0.734714i −0.996606 0.0823233i \(-0.973766\pi\)
0.757882 0.652391i \(-0.226234\pi\)
\(812\) −16.1803 + 11.7557i −0.567819 + 0.412544i
\(813\) −48.0000 −1.68343
\(814\) 0 0
\(815\) −4.00000 −0.140114
\(816\) 19.4164 14.1068i 0.679710 0.493838i
\(817\) 14.8328 + 45.6507i 0.518935 + 1.59712i
\(818\) 0 0
\(819\) −19.4164 14.1068i −0.678464 0.492933i
\(820\) 3.23607 + 2.35114i 0.113008 + 0.0821054i
\(821\) 5.56231 17.1190i 0.194126 0.597458i −0.805860 0.592106i \(-0.798297\pi\)
0.999986 0.00535152i \(-0.00170345\pi\)
\(822\) 0 0
\(823\) 20.2254 14.6946i 0.705014 0.512223i −0.176547 0.984292i \(-0.556493\pi\)
0.881561 + 0.472070i \(0.156493\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −16.1803 + 11.7557i −0.562646 + 0.408786i −0.832426 0.554136i \(-0.813049\pi\)
0.269781 + 0.962922i \(0.413049\pi\)
\(828\) 18.5410 + 57.0634i 0.644345 + 1.98309i
\(829\) −8.96149 + 27.5806i −0.311246 + 0.957915i 0.666027 + 0.745928i \(0.267994\pi\)
−0.977272 + 0.211987i \(0.932006\pi\)
\(830\) 0 0
\(831\) 58.2492 + 42.3205i 2.02064 + 1.46808i
\(832\) 9.88854 30.4338i 0.342824 1.05510i
\(833\) 0.618034 + 1.90211i 0.0214136 + 0.0659043i
\(834\) 0 0
\(835\) 2.00000 0.0692129
\(836\) 0 0
\(837\) −9.00000 −0.311086
\(838\) 0 0
\(839\) 13.9058 + 42.7975i 0.480080 + 1.47754i 0.838982 + 0.544160i \(0.183151\pi\)
−0.358901 + 0.933376i \(0.616849\pi\)
\(840\) 0 0
\(841\) −57.4402 41.7328i −1.98070 1.43906i
\(842\) 0 0
\(843\) 3.70820 11.4127i 0.127717 0.393074i
\(844\) 1.23607 + 3.80423i 0.0425472 + 0.130947i
\(845\) 2.42705 1.76336i 0.0834931 0.0606613i
\(846\) 0 0
\(847\) 0 0
\(848\) −24.0000 −0.824163
\(849\) 0 0
\(850\) 0 0
\(851\) 7.72542 23.7764i 0.264824 0.815045i
\(852\) −4.85410 3.52671i −0.166299 0.120823i
\(853\) 27.5066 + 19.9847i 0.941807 + 0.684263i 0.948855 0.315712i \(-0.102243\pi\)
−0.00704774 + 0.999975i \(0.502243\pi\)
\(854\) 0 0
\(855\) 11.1246 + 34.2380i 0.380454 + 1.17092i
\(856\) 0 0
\(857\) −28.0000 −0.956462 −0.478231 0.878234i \(-0.658722\pi\)
−0.478231 + 0.878234i \(0.658722\pi\)
\(858\) 0 0
\(859\) 55.0000 1.87658 0.938288 0.345855i \(-0.112411\pi\)
0.938288 + 0.345855i \(0.112411\pi\)
\(860\) 12.9443 9.40456i 0.441396 0.320693i
\(861\) −1.85410 5.70634i −0.0631876 0.194472i
\(862\) 0 0
\(863\) −42.0689 30.5648i −1.43204 1.04044i −0.989632 0.143626i \(-0.954124\pi\)
−0.442409 0.896813i \(-0.645876\pi\)
\(864\) 0 0
\(865\) −4.94427 + 15.2169i −0.168110 + 0.517390i
\(866\) 0 0
\(867\) −31.5517 + 22.9236i −1.07155 + 0.778527i
\(868\) 2.00000 0.0678844
\(869\) 0 0
\(870\) 0 0
\(871\) −9.70820 + 7.05342i −0.328950 + 0.238996i
\(872\) 0 0
\(873\) −9.27051 + 28.5317i −0.313759 + 0.965652i
\(874\) 0 0
\(875\) 7.28115 + 5.29007i 0.246148 + 0.178837i
\(876\) 18.5410 57.0634i 0.626443 1.92799i
\(877\) −11.7426 36.1401i −0.396521 1.22037i −0.927771 0.373151i \(-0.878277\pi\)
0.531250 0.847215i \(-0.321723\pi\)
\(878\) 0 0
\(879\) 18.0000 0.607125
\(880\) 0 0
\(881\) 27.0000 0.909653 0.454827 0.890580i \(-0.349701\pi\)
0.454827 + 0.890580i \(0.349701\pi\)
\(882\) 0 0
\(883\) −13.5967 41.8465i −0.457567 1.40825i −0.868095 0.496398i \(-0.834656\pi\)
0.410528 0.911848i \(-0.365344\pi\)
\(884\) 4.94427 15.2169i 0.166294 0.511800i
\(885\) −7.28115 5.29007i −0.244753 0.177824i
\(886\) 0 0
\(887\) −0.618034 + 1.90211i −0.0207516 + 0.0638667i −0.960896 0.276909i \(-0.910690\pi\)
0.940144 + 0.340776i \(0.110690\pi\)
\(888\) 0 0
\(889\) 1.61803 1.17557i 0.0542671 0.0394274i
\(890\) 0 0
\(891\) 0 0
\(892\) −2.00000 −0.0669650
\(893\) 38.8328 28.2137i 1.29949 0.944135i
\(894\) 0 0
\(895\) −0.309017 + 0.951057i −0.0103293 + 0.0317903i
\(896\) 0 0
\(897\) 48.5410 + 35.2671i 1.62074 + 1.17753i
\(898\) 0 0
\(899\) 3.09017 + 9.51057i 0.103063 + 0.317195i
\(900\) −38.8328 + 28.2137i −1.29443 + 0.940456i
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) −24.0000 −0.798670
\(904\) 0 0
\(905\) −1.54508 4.75528i −0.0513604 0.158071i
\(906\) 0 0
\(907\) 32.3607 + 23.5114i 1.07452 + 0.780684i 0.976719 0.214523i \(-0.0688195\pi\)
0.0977997 + 0.995206i \(0.468820\pi\)
\(908\) 6.47214 + 4.70228i 0.214785 + 0.156051i
\(909\) −22.2492 + 68.4761i −0.737960 + 2.27121i
\(910\) 0 0
\(911\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(912\) 72.0000 2.38416
\(913\) 0 0
\(914\) 0 0
\(915\) 4.85410 3.52671i 0.160472 0.116589i
\(916\) 4.32624 + 13.3148i 0.142943 + 0.439933i
\(917\) −5.56231 + 17.1190i −0.183684 + 0.565320i
\(918\) 0 0
\(919\) −38.8328 28.2137i −1.28098 0.930684i −0.281394 0.959592i \(-0.590797\pi\)
−0.999582 + 0.0289084i \(0.990797\pi\)
\(920\) 0 0
\(921\) 25.9574 + 79.8887i 0.855326 + 2.63242i
\(922\) 0 0
\(923\) −4.00000 −0.131662
\(924\) 0 0
\(925\) 20.0000 0.657596
\(926\) 0 0
\(927\) −22.2492 68.4761i −0.730760 2.24905i
\(928\) 0 0
\(929\) 24.2705 + 17.6336i 0.796290 + 0.578538i 0.909823 0.414996i \(-0.136217\pi\)
−0.113534 + 0.993534i \(0.536217\pi\)
\(930\) 0 0
\(931\) −1.85410 + 5.70634i −0.0607657 + 0.187018i
\(932\) −3.70820 11.4127i −0.121466 0.373835i
\(933\) 19.4164 14.1068i 0.635665 0.461837i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −29.1246 + 21.1603i −0.951460 + 0.691276i −0.951152 0.308724i \(-0.900098\pi\)
−0.000307959 1.00000i \(0.500098\pi\)
\(938\) 0 0
\(939\) 21.3222 65.6229i 0.695823 2.14152i
\(940\) −12.9443 9.40456i −0.422196 0.306743i
\(941\) −46.9230 34.0915i −1.52965 1.11135i −0.956435 0.291944i \(-0.905698\pi\)
−0.573210 0.819408i \(-0.694302\pi\)
\(942\) 0 0
\(943\) 3.09017 + 9.51057i 0.100630 + 0.309707i
\(944\) −9.70820 + 7.05342i −0.315975 + 0.229569i
\(945\) −9.00000 −0.292770
\(946\) 0 0
\(947\) 5.00000 0.162478 0.0812391 0.996695i \(-0.474112\pi\)
0.0812391 + 0.996695i \(0.474112\pi\)
\(948\) −29.1246 + 21.1603i −0.945923 + 0.687254i
\(949\) −12.3607 38.0423i −0.401245 1.23490i
\(950\) 0 0
\(951\) 21.8435 + 15.8702i 0.708323 + 0.514627i
\(952\) 0 0
\(953\) 13.5967 41.8465i 0.440442 1.35554i −0.446964 0.894552i \(-0.647495\pi\)
0.887406 0.460989i \(-0.152505\pi\)
\(954\) 0 0
\(955\) 4.04508 2.93893i 0.130896 0.0951014i
\(956\) −8.00000 −0.258738
\(957\) 0 0
\(958\) 0 0
\(959\) −2.42705 + 1.76336i −0.0783736 + 0.0569417i
\(960\) −7.41641 22.8254i −0.239364 0.736685i
\(961\) −9.27051 + 28.5317i −0.299049 + 0.920377i
\(962\) 0 0
\(963\) 48.5410 + 35.2671i 1.56421 + 1.13647i
\(964\) 7.41641 22.8254i 0.238866 0.735155i
\(965\) −4.32624 13.3148i −0.139267 0.428618i
\(966\) 0 0
\(967\) −34.0000 −1.09337 −0.546683 0.837340i \(-0.684110\pi\)
−0.546683 + 0.837340i \(0.684110\pi\)
\(968\) 0 0
\(969\) 36.0000 1.15649
\(970\) 0 0
\(971\) 8.96149 + 27.5806i 0.287588 + 0.885105i 0.985611 + 0.169029i \(0.0540633\pi\)
−0.698023 + 0.716075i \(0.745937\pi\)
\(972\) 0 0
\(973\) −8.09017 5.87785i −0.259359 0.188435i
\(974\) 0 0
\(975\) −14.8328 + 45.6507i −0.475030 + 1.46199i
\(976\) −2.47214 7.60845i −0.0791311 0.243541i
\(977\) 25.0795 18.2213i 0.802365 0.582952i −0.109242 0.994015i \(-0.534842\pi\)
0.911607 + 0.411063i \(0.134842\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 2.00000 0.0638877
\(981\) −19.4164 + 14.1068i −0.619918 + 0.450397i
\(982\) 0 0
\(983\) −8.34346 + 25.6785i −0.266115 + 0.819018i 0.725319 + 0.688412i \(0.241692\pi\)
−0.991434 + 0.130605i \(0.958308\pi\)
\(984\) 0 0
\(985\) 14.5623 + 10.5801i 0.463994 + 0.337111i
\(986\) 0 0
\(987\) 7.41641 + 22.8254i 0.236067 + 0.726539i
\(988\) 38.8328 28.2137i 1.23544 0.897597i
\(989\) 40.0000 1.27193
\(990\) 0 0
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 0 0
\(993\) 15.7599 + 48.5039i 0.500124 + 1.53922i
\(994\) 0 0
\(995\) −6.47214 4.70228i −0.205181 0.149072i
\(996\) −58.2492 42.3205i −1.84570 1.34098i
\(997\) −3.70820 + 11.4127i −0.117440 + 0.361443i −0.992448 0.122665i \(-0.960856\pi\)
0.875008 + 0.484108i \(0.160856\pi\)
\(998\) 0 0
\(999\) −36.4058 + 26.4503i −1.15183 + 0.836852i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 847.2.f.i.729.1 4
11.2 odd 10 847.2.a.b.1.1 1
11.3 even 5 inner 847.2.f.i.148.1 4
11.4 even 5 inner 847.2.f.i.323.1 4
11.5 even 5 inner 847.2.f.i.372.1 4
11.6 odd 10 847.2.f.h.372.1 4
11.7 odd 10 847.2.f.h.323.1 4
11.8 odd 10 847.2.f.h.148.1 4
11.9 even 5 77.2.a.a.1.1 1
11.10 odd 2 847.2.f.h.729.1 4
33.2 even 10 7623.2.a.j.1.1 1
33.20 odd 10 693.2.a.c.1.1 1
44.31 odd 10 1232.2.a.l.1.1 1
55.9 even 10 1925.2.a.h.1.1 1
55.42 odd 20 1925.2.b.e.1849.2 2
55.53 odd 20 1925.2.b.e.1849.1 2
77.9 even 15 539.2.e.f.67.1 2
77.13 even 10 5929.2.a.f.1.1 1
77.20 odd 10 539.2.a.c.1.1 1
77.31 odd 30 539.2.e.c.177.1 2
77.53 even 15 539.2.e.f.177.1 2
77.75 odd 30 539.2.e.c.67.1 2
88.53 even 10 4928.2.a.bj.1.1 1
88.75 odd 10 4928.2.a.a.1.1 1
231.20 even 10 4851.2.a.j.1.1 1
308.251 even 10 8624.2.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.2.a.a.1.1 1 11.9 even 5
539.2.a.c.1.1 1 77.20 odd 10
539.2.e.c.67.1 2 77.75 odd 30
539.2.e.c.177.1 2 77.31 odd 30
539.2.e.f.67.1 2 77.9 even 15
539.2.e.f.177.1 2 77.53 even 15
693.2.a.c.1.1 1 33.20 odd 10
847.2.a.b.1.1 1 11.2 odd 10
847.2.f.h.148.1 4 11.8 odd 10
847.2.f.h.323.1 4 11.7 odd 10
847.2.f.h.372.1 4 11.6 odd 10
847.2.f.h.729.1 4 11.10 odd 2
847.2.f.i.148.1 4 11.3 even 5 inner
847.2.f.i.323.1 4 11.4 even 5 inner
847.2.f.i.372.1 4 11.5 even 5 inner
847.2.f.i.729.1 4 1.1 even 1 trivial
1232.2.a.l.1.1 1 44.31 odd 10
1925.2.a.h.1.1 1 55.9 even 10
1925.2.b.e.1849.1 2 55.53 odd 20
1925.2.b.e.1849.2 2 55.42 odd 20
4851.2.a.j.1.1 1 231.20 even 10
4928.2.a.a.1.1 1 88.75 odd 10
4928.2.a.bj.1.1 1 88.53 even 10
5929.2.a.f.1.1 1 77.13 even 10
7623.2.a.j.1.1 1 33.2 even 10
8624.2.a.a.1.1 1 308.251 even 10