L(s) = 1 | + (0.213 − 0.213i)2-s + (0.980 + 0.406i)3-s + 1.90i·4-s + (−0.382 + 0.923i)5-s + (0.295 − 0.122i)6-s + (−0.960 − 2.31i)7-s + (0.833 + 0.833i)8-s + (−1.32 − 1.32i)9-s + (0.115 + 0.278i)10-s + (2.25 − 0.935i)11-s + (−0.775 + 1.87i)12-s − 5.61i·13-s + (−0.699 − 0.289i)14-s + (−0.750 + 0.750i)15-s − 3.46·16-s + (2.76 + 3.06i)17-s + ⋯ |
L(s) = 1 | + (0.150 − 0.150i)2-s + (0.565 + 0.234i)3-s + 0.954i·4-s + (−0.171 + 0.413i)5-s + (0.120 − 0.0500i)6-s + (−0.363 − 0.876i)7-s + (0.294 + 0.294i)8-s + (−0.441 − 0.441i)9-s + (0.0365 + 0.0881i)10-s + (0.681 − 0.282i)11-s + (−0.223 + 0.540i)12-s − 1.55i·13-s + (−0.186 − 0.0774i)14-s + (−0.193 + 0.193i)15-s − 0.865·16-s + (0.669 + 0.742i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.925 - 0.377i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.925 - 0.377i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.11238 + 0.218319i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.11238 + 0.218319i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.382 - 0.923i)T \) |
| 17 | \( 1 + (-2.76 - 3.06i)T \) |
good | 2 | \( 1 + (-0.213 + 0.213i)T - 2iT^{2} \) |
| 3 | \( 1 + (-0.980 - 0.406i)T + (2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (0.960 + 2.31i)T + (-4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-2.25 + 0.935i)T + (7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + 5.61iT - 13T^{2} \) |
| 19 | \( 1 + (5.04 - 5.04i)T - 19iT^{2} \) |
| 23 | \( 1 + (-0.795 + 0.329i)T + (16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (1.43 - 3.46i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (2.07 + 0.860i)T + (21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (-4.71 - 1.95i)T + (26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (-4.72 - 11.4i)T + (-28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (1.85 + 1.85i)T + 43iT^{2} \) |
| 47 | \( 1 + 2.30iT - 47T^{2} \) |
| 53 | \( 1 + (-1.96 + 1.96i)T - 53iT^{2} \) |
| 59 | \( 1 + (5.26 + 5.26i)T + 59iT^{2} \) |
| 61 | \( 1 + (0.346 + 0.837i)T + (-43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + 6.69T + 67T^{2} \) |
| 71 | \( 1 + (-0.222 - 0.0921i)T + (50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (2.47 - 5.96i)T + (-51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-13.5 + 5.62i)T + (55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (9.82 - 9.82i)T - 83iT^{2} \) |
| 89 | \( 1 - 0.395iT - 89T^{2} \) |
| 97 | \( 1 + (-3.42 + 8.27i)T + (-68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.39141701119390157032858222471, −13.16919810305998613209454708086, −12.36674382202784426789171796136, −11.05814860759571933107578131959, −9.999887615695134279543608455228, −8.500528347406063545162550398691, −7.71825536198955041337226755347, −6.22325757238837303957906756774, −3.91157390401259137900895050355, −3.18196813149302897793044728956,
2.20005399702633186438631002513, 4.52284321921065619763693254788, 5.90954251001310487501644889958, 7.16731934356936293449752271708, 8.965573362980959817892945584535, 9.311363724320658618405204762104, 11.04176385105724015416144635446, 12.06357102849648184375988677131, 13.38729402654983503156907229571, 14.24802959558016495347739827000