L(s) = 1 | + (0.213 + 0.213i)2-s + (0.980 − 0.406i)3-s − 1.90i·4-s + (−0.382 − 0.923i)5-s + (0.295 + 0.122i)6-s + (−0.960 + 2.31i)7-s + (0.833 − 0.833i)8-s + (−1.32 + 1.32i)9-s + (0.115 − 0.278i)10-s + (2.25 + 0.935i)11-s + (−0.775 − 1.87i)12-s + 5.61i·13-s + (−0.699 + 0.289i)14-s + (−0.750 − 0.750i)15-s − 3.46·16-s + (2.76 − 3.06i)17-s + ⋯ |
L(s) = 1 | + (0.150 + 0.150i)2-s + (0.565 − 0.234i)3-s − 0.954i·4-s + (−0.171 − 0.413i)5-s + (0.120 + 0.0500i)6-s + (−0.363 + 0.876i)7-s + (0.294 − 0.294i)8-s + (−0.441 + 0.441i)9-s + (0.0365 − 0.0881i)10-s + (0.681 + 0.282i)11-s + (−0.223 − 0.540i)12-s + 1.55i·13-s + (−0.186 + 0.0774i)14-s + (−0.193 − 0.193i)15-s − 0.865·16-s + (0.669 − 0.742i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.925 + 0.377i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.925 + 0.377i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.11238 - 0.218319i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.11238 - 0.218319i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.382 + 0.923i)T \) |
| 17 | \( 1 + (-2.76 + 3.06i)T \) |
good | 2 | \( 1 + (-0.213 - 0.213i)T + 2iT^{2} \) |
| 3 | \( 1 + (-0.980 + 0.406i)T + (2.12 - 2.12i)T^{2} \) |
| 7 | \( 1 + (0.960 - 2.31i)T + (-4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (-2.25 - 0.935i)T + (7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 - 5.61iT - 13T^{2} \) |
| 19 | \( 1 + (5.04 + 5.04i)T + 19iT^{2} \) |
| 23 | \( 1 + (-0.795 - 0.329i)T + (16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (1.43 + 3.46i)T + (-20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (2.07 - 0.860i)T + (21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (-4.71 + 1.95i)T + (26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (-4.72 + 11.4i)T + (-28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (1.85 - 1.85i)T - 43iT^{2} \) |
| 47 | \( 1 - 2.30iT - 47T^{2} \) |
| 53 | \( 1 + (-1.96 - 1.96i)T + 53iT^{2} \) |
| 59 | \( 1 + (5.26 - 5.26i)T - 59iT^{2} \) |
| 61 | \( 1 + (0.346 - 0.837i)T + (-43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + 6.69T + 67T^{2} \) |
| 71 | \( 1 + (-0.222 + 0.0921i)T + (50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (2.47 + 5.96i)T + (-51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (-13.5 - 5.62i)T + (55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (9.82 + 9.82i)T + 83iT^{2} \) |
| 89 | \( 1 + 0.395iT - 89T^{2} \) |
| 97 | \( 1 + (-3.42 - 8.27i)T + (-68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.24802959558016495347739827000, −13.38729402654983503156907229571, −12.06357102849648184375988677131, −11.04176385105724015416144635446, −9.311363724320658618405204762104, −8.965573362980959817892945584535, −7.16731934356936293449752271708, −5.90954251001310487501644889958, −4.52284321921065619763693254788, −2.20005399702633186438631002513,
3.18196813149302897793044728956, 3.91157390401259137900895050355, 6.22325757238837303957906756774, 7.71825536198955041337226755347, 8.500528347406063545162550398691, 9.999887615695134279543608455228, 11.05814860759571933107578131959, 12.36674382202784426789171796136, 13.16919810305998613209454708086, 14.39141701119390157032858222471