Properties

Label 85.2.l.a.36.4
Level $85$
Weight $2$
Character 85.36
Analytic conductor $0.679$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,2,Mod(26,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.l (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.678728417181\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 36.4
Character \(\chi\) \(=\) 85.36
Dual form 85.2.l.a.26.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.213325 + 0.213325i) q^{2} +(0.980249 - 0.406032i) q^{3} -1.90899i q^{4} +(-0.382683 - 0.923880i) q^{5} +(0.295728 + 0.122495i) q^{6} +(-0.960473 + 2.31879i) q^{7} +(0.833883 - 0.833883i) q^{8} +(-1.32529 + 1.32529i) q^{9} +(0.115451 - 0.278722i) q^{10} +(2.25941 + 0.935880i) q^{11} +(-0.775110 - 1.87128i) q^{12} +5.61335i q^{13} +(-0.699548 + 0.289762i) q^{14} +(-0.750250 - 0.750250i) q^{15} -3.46219 q^{16} +(2.76113 - 3.06205i) q^{17} -0.565436 q^{18} +(-5.04243 - 5.04243i) q^{19} +(-1.76367 + 0.730537i) q^{20} +2.66297i q^{21} +(0.282343 + 0.681636i) q^{22} +(0.795280 + 0.329416i) q^{23} +(0.478830 - 1.15600i) q^{24} +(-0.707107 + 0.707107i) q^{25} +(-1.19747 + 1.19747i) q^{26} +(-1.97910 + 4.77798i) q^{27} +(4.42653 + 1.83353i) q^{28} +(-1.43561 - 3.46587i) q^{29} -0.320094i q^{30} +(-2.07626 + 0.860015i) q^{31} +(-2.40634 - 2.40634i) q^{32} +2.59479 q^{33} +(1.24223 - 0.0641935i) q^{34} +2.50984 q^{35} +(2.52997 + 2.52997i) q^{36} +(4.71693 - 1.95382i) q^{37} -2.15135i q^{38} +(2.27920 + 5.50249i) q^{39} +(-1.08952 - 0.451294i) q^{40} +(4.72598 - 11.4095i) q^{41} +(-0.568078 + 0.568078i) q^{42} +(-1.85272 + 1.85272i) q^{43} +(1.78658 - 4.31319i) q^{44} +(1.73158 + 0.717244i) q^{45} +(0.0993804 + 0.239926i) q^{46} +2.30114i q^{47} +(-3.39381 + 1.40576i) q^{48} +(0.495478 + 0.495478i) q^{49} -0.301687 q^{50} +(1.46330 - 4.12268i) q^{51} +10.7158 q^{52} +(1.96204 + 1.96204i) q^{53} +(-1.44145 + 0.597069i) q^{54} -2.44557i q^{55} +(1.13268 + 2.73452i) q^{56} +(-6.99022 - 2.89544i) q^{57} +(0.433105 - 1.04561i) q^{58} +(-5.26206 + 5.26206i) q^{59} +(-1.43222 + 1.43222i) q^{60} +(-0.346822 + 0.837303i) q^{61} +(-0.626380 - 0.259455i) q^{62} +(-1.80017 - 4.34599i) q^{63} +5.89773i q^{64} +(5.18606 - 2.14814i) q^{65} +(0.553532 + 0.553532i) q^{66} -6.69889 q^{67} +(-5.84541 - 5.27096i) q^{68} +0.913326 q^{69} +(0.535411 + 0.535411i) q^{70} +(0.222439 - 0.0921372i) q^{71} +2.21028i q^{72} +(-2.47116 - 5.96591i) q^{73} +(1.42304 + 0.589441i) q^{74} +(-0.406032 + 0.980249i) q^{75} +(-9.62592 + 9.62592i) q^{76} +(-4.34022 + 4.34022i) q^{77} +(-0.687606 + 1.66003i) q^{78} +(13.5899 + 5.62912i) q^{79} +(1.32492 + 3.19865i) q^{80} -0.135560i q^{81} +(3.44210 - 1.42577i) q^{82} +(-9.82767 - 9.82767i) q^{83} +5.08358 q^{84} +(-3.88561 - 1.37916i) q^{85} -0.790460 q^{86} +(-2.81451 - 2.81451i) q^{87} +(2.66450 - 1.10367i) q^{88} -0.395163i q^{89} +(0.216383 + 0.522395i) q^{90} +(-13.0162 - 5.39148i) q^{91} +(0.628850 - 1.51818i) q^{92} +(-1.68606 + 1.68606i) q^{93} +(-0.490889 + 0.490889i) q^{94} +(-2.72894 + 6.58825i) q^{95} +(-3.33586 - 1.38176i) q^{96} +(3.42855 + 8.27725i) q^{97} +0.211396i q^{98} +(-4.23471 + 1.75407i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{6} - 24 q^{9} - 8 q^{11} + 24 q^{12} - 8 q^{15} - 24 q^{16} - 8 q^{17} + 8 q^{18} - 8 q^{19} - 32 q^{22} - 16 q^{23} - 8 q^{24} + 16 q^{26} + 24 q^{27} + 48 q^{28} - 8 q^{29} + 16 q^{34} - 32 q^{35}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/85\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.213325 + 0.213325i 0.150843 + 0.150843i 0.778495 0.627651i \(-0.215984\pi\)
−0.627651 + 0.778495i \(0.715984\pi\)
\(3\) 0.980249 0.406032i 0.565947 0.234423i −0.0813177 0.996688i \(-0.525913\pi\)
0.647265 + 0.762265i \(0.275913\pi\)
\(4\) 1.90899i 0.954493i
\(5\) −0.382683 0.923880i −0.171141 0.413171i
\(6\) 0.295728 + 0.122495i 0.120731 + 0.0500082i
\(7\) −0.960473 + 2.31879i −0.363025 + 0.876420i 0.631830 + 0.775107i \(0.282304\pi\)
−0.994855 + 0.101312i \(0.967696\pi\)
\(8\) 0.833883 0.833883i 0.294822 0.294822i
\(9\) −1.32529 + 1.32529i −0.441765 + 0.441765i
\(10\) 0.115451 0.278722i 0.0365087 0.0881397i
\(11\) 2.25941 + 0.935880i 0.681239 + 0.282179i 0.696345 0.717707i \(-0.254808\pi\)
−0.0151056 + 0.999886i \(0.504808\pi\)
\(12\) −0.775110 1.87128i −0.223755 0.540192i
\(13\) 5.61335i 1.55686i 0.627729 + 0.778432i \(0.283985\pi\)
−0.627729 + 0.778432i \(0.716015\pi\)
\(14\) −0.699548 + 0.289762i −0.186962 + 0.0774422i
\(15\) −0.750250 0.750250i −0.193714 0.193714i
\(16\) −3.46219 −0.865549
\(17\) 2.76113 3.06205i 0.669673 0.742656i
\(18\) −0.565436 −0.133275
\(19\) −5.04243 5.04243i −1.15681 1.15681i −0.985157 0.171655i \(-0.945089\pi\)
−0.171655 0.985157i \(-0.554911\pi\)
\(20\) −1.76367 + 0.730537i −0.394369 + 0.163353i
\(21\) 2.66297i 0.581108i
\(22\) 0.282343 + 0.681636i 0.0601957 + 0.145325i
\(23\) 0.795280 + 0.329416i 0.165827 + 0.0686880i 0.464053 0.885807i \(-0.346395\pi\)
−0.298226 + 0.954495i \(0.596395\pi\)
\(24\) 0.478830 1.15600i 0.0977407 0.235967i
\(25\) −0.707107 + 0.707107i −0.141421 + 0.141421i
\(26\) −1.19747 + 1.19747i −0.234843 + 0.234843i
\(27\) −1.97910 + 4.77798i −0.380879 + 0.919522i
\(28\) 4.42653 + 1.83353i 0.836536 + 0.346505i
\(29\) −1.43561 3.46587i −0.266586 0.643597i 0.732732 0.680518i \(-0.238245\pi\)
−0.999318 + 0.0369210i \(0.988245\pi\)
\(30\) 0.320094i 0.0584409i
\(31\) −2.07626 + 0.860015i −0.372907 + 0.154463i −0.561263 0.827638i \(-0.689684\pi\)
0.188356 + 0.982101i \(0.439684\pi\)
\(32\) −2.40634 2.40634i −0.425385 0.425385i
\(33\) 2.59479 0.451694
\(34\) 1.24223 0.0641935i 0.213041 0.0110091i
\(35\) 2.50984 0.424240
\(36\) 2.52997 + 2.52997i 0.421661 + 0.421661i
\(37\) 4.71693 1.95382i 0.775459 0.321206i 0.0403776 0.999184i \(-0.487144\pi\)
0.735081 + 0.677979i \(0.237144\pi\)
\(38\) 2.15135i 0.348995i
\(39\) 2.27920 + 5.50249i 0.364965 + 0.881103i
\(40\) −1.08952 0.451294i −0.172268 0.0713559i
\(41\) 4.72598 11.4095i 0.738074 1.78187i 0.124518 0.992217i \(-0.460262\pi\)
0.613556 0.789651i \(-0.289738\pi\)
\(42\) −0.568078 + 0.568078i −0.0876564 + 0.0876564i
\(43\) −1.85272 + 1.85272i −0.282536 + 0.282536i −0.834120 0.551583i \(-0.814024\pi\)
0.551583 + 0.834120i \(0.314024\pi\)
\(44\) 1.78658 4.31319i 0.269337 0.650238i
\(45\) 1.73158 + 0.717244i 0.258129 + 0.106920i
\(46\) 0.0993804 + 0.239926i 0.0146528 + 0.0353751i
\(47\) 2.30114i 0.335655i 0.985816 + 0.167828i \(0.0536752\pi\)
−0.985816 + 0.167828i \(0.946325\pi\)
\(48\) −3.39381 + 1.40576i −0.489855 + 0.202904i
\(49\) 0.495478 + 0.495478i 0.0707826 + 0.0707826i
\(50\) −0.301687 −0.0426650
\(51\) 1.46330 4.12268i 0.204904 0.577291i
\(52\) 10.7158 1.48602
\(53\) 1.96204 + 1.96204i 0.269507 + 0.269507i 0.828902 0.559394i \(-0.188966\pi\)
−0.559394 + 0.828902i \(0.688966\pi\)
\(54\) −1.44145 + 0.597069i −0.196157 + 0.0812508i
\(55\) 2.44557i 0.329761i
\(56\) 1.13268 + 2.73452i 0.151360 + 0.365416i
\(57\) −6.99022 2.89544i −0.925877 0.383511i
\(58\) 0.433105 1.04561i 0.0568695 0.137295i
\(59\) −5.26206 + 5.26206i −0.685062 + 0.685062i −0.961136 0.276075i \(-0.910966\pi\)
0.276075 + 0.961136i \(0.410966\pi\)
\(60\) −1.43222 + 1.43222i −0.184898 + 0.184898i
\(61\) −0.346822 + 0.837303i −0.0444061 + 0.107206i −0.944526 0.328436i \(-0.893478\pi\)
0.900120 + 0.435642i \(0.143478\pi\)
\(62\) −0.626380 0.259455i −0.0795504 0.0329508i
\(63\) −1.80017 4.34599i −0.226800 0.547543i
\(64\) 5.89773i 0.737216i
\(65\) 5.18606 2.14814i 0.643252 0.266444i
\(66\) 0.553532 + 0.553532i 0.0681351 + 0.0681351i
\(67\) −6.69889 −0.818399 −0.409200 0.912445i \(-0.634192\pi\)
−0.409200 + 0.912445i \(0.634192\pi\)
\(68\) −5.84541 5.27096i −0.708860 0.639198i
\(69\) 0.913326 0.109952
\(70\) 0.535411 + 0.535411i 0.0639938 + 0.0639938i
\(71\) 0.222439 0.0921372i 0.0263986 0.0109347i −0.369445 0.929253i \(-0.620452\pi\)
0.395844 + 0.918318i \(0.370452\pi\)
\(72\) 2.21028i 0.260484i
\(73\) −2.47116 5.96591i −0.289228 0.698257i 0.710759 0.703436i \(-0.248352\pi\)
−0.999987 + 0.00517825i \(0.998352\pi\)
\(74\) 1.42304 + 0.589441i 0.165425 + 0.0685211i
\(75\) −0.406032 + 0.980249i −0.0468846 + 0.113189i
\(76\) −9.62592 + 9.62592i −1.10417 + 1.10417i
\(77\) −4.34022 + 4.34022i −0.494614 + 0.494614i
\(78\) −0.687606 + 1.66003i −0.0778560 + 0.187961i
\(79\) 13.5899 + 5.62912i 1.52898 + 0.633325i 0.979366 0.202093i \(-0.0647743\pi\)
0.549615 + 0.835418i \(0.314774\pi\)
\(80\) 1.32492 + 3.19865i 0.148131 + 0.357620i
\(81\) 0.135560i 0.0150623i
\(82\) 3.44210 1.42577i 0.380117 0.157449i
\(83\) −9.82767 9.82767i −1.07873 1.07873i −0.996624 0.0821031i \(-0.973836\pi\)
−0.0821031 0.996624i \(-0.526164\pi\)
\(84\) 5.08358 0.554664
\(85\) −3.88561 1.37916i −0.421453 0.149591i
\(86\) −0.790460 −0.0852375
\(87\) −2.81451 2.81451i −0.301748 0.301748i
\(88\) 2.66450 1.10367i 0.284037 0.117652i
\(89\) 0.395163i 0.0418872i −0.999781 0.0209436i \(-0.993333\pi\)
0.999781 0.0209436i \(-0.00666704\pi\)
\(90\) 0.216383 + 0.522395i 0.0228088 + 0.0550653i
\(91\) −13.0162 5.39148i −1.36447 0.565181i
\(92\) 0.628850 1.51818i 0.0655621 0.158281i
\(93\) −1.68606 + 1.68606i −0.174836 + 0.174836i
\(94\) −0.490889 + 0.490889i −0.0506314 + 0.0506314i
\(95\) −2.72894 + 6.58825i −0.279983 + 0.675940i
\(96\) −3.33586 1.38176i −0.340465 0.141025i
\(97\) 3.42855 + 8.27725i 0.348116 + 0.840427i 0.996842 + 0.0794052i \(0.0253021\pi\)
−0.648726 + 0.761022i \(0.724698\pi\)
\(98\) 0.211396i 0.0213542i
\(99\) −4.23471 + 1.75407i −0.425604 + 0.176291i
\(100\) 1.34986 + 1.34986i 0.134986 + 0.134986i
\(101\) 15.2882 1.52124 0.760619 0.649199i \(-0.224896\pi\)
0.760619 + 0.649199i \(0.224896\pi\)
\(102\) 1.19163 0.567311i 0.117989 0.0561721i
\(103\) −14.7746 −1.45579 −0.727894 0.685690i \(-0.759501\pi\)
−0.727894 + 0.685690i \(0.759501\pi\)
\(104\) 4.68088 + 4.68088i 0.458998 + 0.458998i
\(105\) 2.46027 1.01908i 0.240097 0.0994516i
\(106\) 0.837105i 0.0813068i
\(107\) 0.562841 + 1.35882i 0.0544119 + 0.131362i 0.948748 0.316034i \(-0.102351\pi\)
−0.894336 + 0.447396i \(0.852351\pi\)
\(108\) 9.12109 + 3.77808i 0.877677 + 0.363546i
\(109\) 3.61166 8.71931i 0.345934 0.835158i −0.651157 0.758943i \(-0.725716\pi\)
0.997091 0.0762157i \(-0.0242838\pi\)
\(110\) 0.521701 0.521701i 0.0497423 0.0497423i
\(111\) 3.83046 3.83046i 0.363571 0.363571i
\(112\) 3.32535 8.02809i 0.314216 0.758584i
\(113\) 13.8222 + 5.72534i 1.30028 + 0.538595i 0.922034 0.387109i \(-0.126526\pi\)
0.378249 + 0.925704i \(0.376526\pi\)
\(114\) −0.873517 2.10886i −0.0818124 0.197513i
\(115\) 0.860805i 0.0802705i
\(116\) −6.61630 + 2.74056i −0.614308 + 0.254455i
\(117\) −7.43935 7.43935i −0.687768 0.687768i
\(118\) −2.24505 −0.206674
\(119\) 4.44825 + 9.34350i 0.407771 + 0.856517i
\(120\) −1.25124 −0.114222
\(121\) −3.54909 3.54909i −0.322645 0.322645i
\(122\) −0.252603 + 0.104632i −0.0228696 + 0.00947291i
\(123\) 13.1031i 1.18146i
\(124\) 1.64176 + 3.96355i 0.147434 + 0.355937i
\(125\) 0.923880 + 0.382683i 0.0826343 + 0.0342282i
\(126\) 0.543087 1.31113i 0.0483820 0.116804i
\(127\) 4.21071 4.21071i 0.373640 0.373640i −0.495161 0.868801i \(-0.664891\pi\)
0.868801 + 0.495161i \(0.164891\pi\)
\(128\) −6.07081 + 6.07081i −0.536589 + 0.536589i
\(129\) −1.06386 + 2.56839i −0.0936677 + 0.226134i
\(130\) 1.56457 + 0.648065i 0.137222 + 0.0568390i
\(131\) −1.60241 3.86856i −0.140003 0.337998i 0.838290 0.545225i \(-0.183556\pi\)
−0.978293 + 0.207228i \(0.933556\pi\)
\(132\) 4.95341i 0.431139i
\(133\) 16.5354 6.84920i 1.43380 0.593901i
\(134\) −1.42904 1.42904i −0.123450 0.123450i
\(135\) 5.17165 0.445104
\(136\) −0.250931 4.85585i −0.0215172 0.416386i
\(137\) 7.25998 0.620262 0.310131 0.950694i \(-0.399627\pi\)
0.310131 + 0.950694i \(0.399627\pi\)
\(138\) 0.194835 + 0.194835i 0.0165855 + 0.0165855i
\(139\) 9.60207 3.97731i 0.814437 0.337351i 0.0637140 0.997968i \(-0.479705\pi\)
0.750723 + 0.660617i \(0.229705\pi\)
\(140\) 4.79124i 0.404934i
\(141\) 0.934336 + 2.25569i 0.0786853 + 0.189963i
\(142\) 0.0671069 + 0.0277966i 0.00563149 + 0.00233264i
\(143\) −5.25343 + 12.6829i −0.439314 + 1.06060i
\(144\) 4.58843 4.58843i 0.382369 0.382369i
\(145\) −2.65267 + 2.65267i −0.220292 + 0.220292i
\(146\) 0.745517 1.79984i 0.0616994 0.148956i
\(147\) 0.686873 + 0.284512i 0.0566523 + 0.0234661i
\(148\) −3.72981 9.00455i −0.306588 0.740170i
\(149\) 6.01765i 0.492985i 0.969145 + 0.246492i \(0.0792781\pi\)
−0.969145 + 0.246492i \(0.920722\pi\)
\(150\) −0.295728 + 0.122495i −0.0241461 + 0.0100016i
\(151\) 7.36684 + 7.36684i 0.599505 + 0.599505i 0.940181 0.340676i \(-0.110656\pi\)
−0.340676 + 0.940181i \(0.610656\pi\)
\(152\) −8.40959 −0.682108
\(153\) 0.398806 + 7.71743i 0.0322416 + 0.623917i
\(154\) −1.85175 −0.149218
\(155\) 1.58910 + 1.58910i 0.127640 + 0.127640i
\(156\) 10.5042 4.35097i 0.841006 0.348356i
\(157\) 13.4073i 1.07002i 0.844847 + 0.535008i \(0.179691\pi\)
−0.844847 + 0.535008i \(0.820309\pi\)
\(158\) 1.69823 + 4.09989i 0.135104 + 0.326170i
\(159\) 2.71994 + 1.12664i 0.215706 + 0.0893482i
\(160\) −1.30230 + 3.14403i −0.102956 + 0.248558i
\(161\) −1.52769 + 1.52769i −0.120399 + 0.120399i
\(162\) 0.0289184 0.0289184i 0.00227204 0.00227204i
\(163\) 0.602777 1.45523i 0.0472132 0.113983i −0.898513 0.438946i \(-0.855352\pi\)
0.945727 + 0.324963i \(0.105352\pi\)
\(164\) −21.7806 9.02182i −1.70078 0.704486i
\(165\) −0.992982 2.39727i −0.0773035 0.186627i
\(166\) 4.19297i 0.325438i
\(167\) −16.2648 + 6.73711i −1.25861 + 0.521333i −0.909482 0.415742i \(-0.863522\pi\)
−0.349127 + 0.937075i \(0.613522\pi\)
\(168\) 2.22061 + 2.22061i 0.171324 + 0.171324i
\(169\) −18.5098 −1.42383
\(170\) −0.534688 1.12310i −0.0410087 0.0861382i
\(171\) 13.3654 1.02208
\(172\) 3.53681 + 3.53681i 0.269679 + 0.269679i
\(173\) −17.4086 + 7.21087i −1.32355 + 0.548232i −0.928808 0.370560i \(-0.879166\pi\)
−0.394741 + 0.918792i \(0.629166\pi\)
\(174\) 1.20081i 0.0910333i
\(175\) −0.960473 2.31879i −0.0726050 0.175284i
\(176\) −7.82253 3.24020i −0.589646 0.244239i
\(177\) −3.02156 + 7.29469i −0.227114 + 0.548303i
\(178\) 0.0842980 0.0842980i 0.00631840 0.00631840i
\(179\) 2.34324 2.34324i 0.175142 0.175142i −0.614092 0.789234i \(-0.710478\pi\)
0.789234 + 0.614092i \(0.210478\pi\)
\(180\) 1.36921 3.30556i 0.102055 0.246382i
\(181\) −14.6575 6.07133i −1.08948 0.451278i −0.235656 0.971836i \(-0.575724\pi\)
−0.853826 + 0.520558i \(0.825724\pi\)
\(182\) −1.62654 3.92681i −0.120567 0.291075i
\(183\) 0.961587i 0.0710826i
\(184\) 0.937865 0.388477i 0.0691404 0.0286389i
\(185\) −3.61018 3.61018i −0.265426 0.265426i
\(186\) −0.719356 −0.0527457
\(187\) 9.10425 4.33435i 0.665769 0.316959i
\(188\) 4.39284 0.320380
\(189\) −9.17824 9.17824i −0.667619 0.667619i
\(190\) −1.98759 + 0.823286i −0.144195 + 0.0597274i
\(191\) 27.4943i 1.98941i 0.102748 + 0.994707i \(0.467236\pi\)
−0.102748 + 0.994707i \(0.532764\pi\)
\(192\) 2.39467 + 5.78124i 0.172820 + 0.417225i
\(193\) 13.6376 + 5.64889i 0.981658 + 0.406616i 0.815040 0.579405i \(-0.196715\pi\)
0.166619 + 0.986021i \(0.446715\pi\)
\(194\) −1.03435 + 2.49714i −0.0742618 + 0.179284i
\(195\) 4.21142 4.21142i 0.301586 0.301586i
\(196\) 0.945861 0.945861i 0.0675615 0.0675615i
\(197\) −0.144044 + 0.347754i −0.0102627 + 0.0247764i −0.928928 0.370261i \(-0.879268\pi\)
0.918665 + 0.395037i \(0.129268\pi\)
\(198\) −1.27756 0.529181i −0.0907919 0.0376072i
\(199\) 2.88162 + 6.95685i 0.204273 + 0.493158i 0.992503 0.122223i \(-0.0390022\pi\)
−0.788230 + 0.615381i \(0.789002\pi\)
\(200\) 1.17929i 0.0833883i
\(201\) −6.56658 + 2.71996i −0.463171 + 0.191852i
\(202\) 3.26136 + 3.26136i 0.229469 + 0.229469i
\(203\) 9.41549 0.660838
\(204\) −7.87014 2.79343i −0.551020 0.195579i
\(205\) −12.3496 −0.862532
\(206\) −3.15180 3.15180i −0.219596 0.219596i
\(207\) −1.49055 + 0.617408i −0.103601 + 0.0429128i
\(208\) 19.4345i 1.34754i
\(209\) −6.67383 16.1120i −0.461638 1.11449i
\(210\) 0.742230 + 0.307442i 0.0512187 + 0.0212155i
\(211\) 3.32647 8.03080i 0.229003 0.552863i −0.767053 0.641584i \(-0.778278\pi\)
0.996057 + 0.0887204i \(0.0282778\pi\)
\(212\) 3.74551 3.74551i 0.257243 0.257243i
\(213\) 0.180635 0.180635i 0.0123769 0.0123769i
\(214\) −0.169802 + 0.409938i −0.0116074 + 0.0280228i
\(215\) 2.42069 + 1.00268i 0.165090 + 0.0683824i
\(216\) 2.33394 + 5.63462i 0.158804 + 0.383387i
\(217\) 5.64043i 0.382897i
\(218\) 2.63050 1.08959i 0.178160 0.0737963i
\(219\) −4.84471 4.84471i −0.327375 0.327375i
\(220\) −4.66856 −0.314754
\(221\) 17.1884 + 15.4992i 1.15622 + 1.04259i
\(222\) 1.63426 0.109684
\(223\) 4.57010 + 4.57010i 0.306037 + 0.306037i 0.843370 0.537333i \(-0.180568\pi\)
−0.537333 + 0.843370i \(0.680568\pi\)
\(224\) 7.89101 3.26856i 0.527241 0.218390i
\(225\) 1.87425i 0.124950i
\(226\) 1.72726 + 4.16997i 0.114896 + 0.277382i
\(227\) 2.82763 + 1.17124i 0.187676 + 0.0777381i 0.474543 0.880233i \(-0.342614\pi\)
−0.286866 + 0.957971i \(0.592614\pi\)
\(228\) −5.52736 + 13.3442i −0.366058 + 0.883743i
\(229\) 5.34518 5.34518i 0.353219 0.353219i −0.508087 0.861306i \(-0.669647\pi\)
0.861306 + 0.508087i \(0.169647\pi\)
\(230\) 0.183631 0.183631i 0.0121083 0.0121083i
\(231\) −2.49222 + 6.01676i −0.163976 + 0.395874i
\(232\) −4.08727 1.69300i −0.268342 0.111151i
\(233\) 8.55214 + 20.6467i 0.560270 + 1.35261i 0.909551 + 0.415593i \(0.136426\pi\)
−0.349281 + 0.937018i \(0.613574\pi\)
\(234\) 3.17400i 0.207491i
\(235\) 2.12597 0.880607i 0.138683 0.0574445i
\(236\) 10.0452 + 10.0452i 0.653886 + 0.653886i
\(237\) 15.6071 1.01379
\(238\) −1.04428 + 2.94212i −0.0676904 + 0.190709i
\(239\) −3.45981 −0.223797 −0.111898 0.993720i \(-0.535693\pi\)
−0.111898 + 0.993720i \(0.535693\pi\)
\(240\) 2.59751 + 2.59751i 0.167669 + 0.167669i
\(241\) −16.6541 + 6.89834i −1.07278 + 0.444361i −0.847972 0.530042i \(-0.822176\pi\)
−0.224810 + 0.974403i \(0.572176\pi\)
\(242\) 1.51422i 0.0973376i
\(243\) −5.99235 14.4668i −0.384410 0.928047i
\(244\) 1.59840 + 0.662079i 0.102327 + 0.0423853i
\(245\) 0.268151 0.647374i 0.0171315 0.0413592i
\(246\) 2.79521 2.79521i 0.178216 0.178216i
\(247\) 28.3049 28.3049i 1.80100 1.80100i
\(248\) −1.01421 + 2.44851i −0.0644022 + 0.155481i
\(249\) −13.6239 5.64321i −0.863381 0.357624i
\(250\) 0.115451 + 0.278722i 0.00730173 + 0.0176279i
\(251\) 24.0478i 1.51788i −0.651159 0.758941i \(-0.725717\pi\)
0.651159 0.758941i \(-0.274283\pi\)
\(252\) −8.29643 + 3.43649i −0.522626 + 0.216479i
\(253\) 1.48857 + 1.48857i 0.0935859 + 0.0935859i
\(254\) 1.79650 0.112722
\(255\) −4.36884 + 0.225765i −0.273588 + 0.0141379i
\(256\) 9.20534 0.575334
\(257\) −10.4664 10.4664i −0.652873 0.652873i 0.300811 0.953684i \(-0.402743\pi\)
−0.953684 + 0.300811i \(0.902743\pi\)
\(258\) −0.774848 + 0.320953i −0.0482399 + 0.0199816i
\(259\) 12.8142i 0.796233i
\(260\) −4.10076 9.90012i −0.254319 0.613979i
\(261\) 6.49591 + 2.69070i 0.402087 + 0.166550i
\(262\) 0.483426 1.16709i 0.0298661 0.0721032i
\(263\) 17.3357 17.3357i 1.06896 1.06896i 0.0715243 0.997439i \(-0.477214\pi\)
0.997439 0.0715243i \(-0.0227864\pi\)
\(264\) 2.16375 2.16375i 0.133170 0.133170i
\(265\) 1.06185 2.56353i 0.0652289 0.157477i
\(266\) 4.98852 + 2.06631i 0.305866 + 0.126694i
\(267\) −0.160449 0.387358i −0.00981932 0.0237059i
\(268\) 12.7881i 0.781156i
\(269\) 6.09269 2.52367i 0.371478 0.153871i −0.189131 0.981952i \(-0.560567\pi\)
0.560609 + 0.828081i \(0.310567\pi\)
\(270\) 1.10324 + 1.10324i 0.0671411 + 0.0671411i
\(271\) −26.1956 −1.59127 −0.795634 0.605778i \(-0.792862\pi\)
−0.795634 + 0.605778i \(0.792862\pi\)
\(272\) −9.55957 + 10.6014i −0.579634 + 0.642805i
\(273\) −14.9482 −0.904707
\(274\) 1.54873 + 1.54873i 0.0935624 + 0.0935624i
\(275\) −2.25941 + 0.935880i −0.136248 + 0.0564357i
\(276\) 1.74353i 0.104948i
\(277\) 3.66038 + 8.83695i 0.219931 + 0.530961i 0.994880 0.101063i \(-0.0322245\pi\)
−0.774949 + 0.632024i \(0.782224\pi\)
\(278\) 2.89682 + 1.19990i 0.173740 + 0.0719653i
\(279\) 1.61188 3.89143i 0.0965009 0.232974i
\(280\) 2.09291 2.09291i 0.125075 0.125075i
\(281\) 8.78037 8.78037i 0.523793 0.523793i −0.394922 0.918715i \(-0.629228\pi\)
0.918715 + 0.394922i \(0.129228\pi\)
\(282\) −0.281877 + 0.680511i −0.0167855 + 0.0405238i
\(283\) 15.5612 + 6.44566i 0.925017 + 0.383155i 0.793786 0.608197i \(-0.208107\pi\)
0.131231 + 0.991352i \(0.458107\pi\)
\(284\) −0.175889 0.424633i −0.0104371 0.0251973i
\(285\) 7.56616i 0.448181i
\(286\) −3.82626 + 1.58489i −0.226252 + 0.0937165i
\(287\) 21.9171 + 21.9171i 1.29372 + 1.29372i
\(288\) 6.37822 0.375840
\(289\) −1.75231 16.9094i −0.103077 0.994673i
\(290\) −1.13176 −0.0664591
\(291\) 6.72166 + 6.72166i 0.394031 + 0.394031i
\(292\) −11.3888 + 4.71741i −0.666482 + 0.276066i
\(293\) 20.8806i 1.21986i −0.792456 0.609930i \(-0.791198\pi\)
0.792456 0.609930i \(-0.208802\pi\)
\(294\) 0.0858335 + 0.207220i 0.00500591 + 0.0120853i
\(295\) 6.87521 + 2.84781i 0.400290 + 0.165806i
\(296\) 2.30412 5.56263i 0.133924 0.323321i
\(297\) −8.94323 + 8.94323i −0.518939 + 0.518939i
\(298\) −1.28371 + 1.28371i −0.0743635 + 0.0743635i
\(299\) −1.84913 + 4.46419i −0.106938 + 0.258171i
\(300\) 1.87128 + 0.775110i 0.108038 + 0.0447510i
\(301\) −2.51657 6.07554i −0.145053 0.350188i
\(302\) 3.14306i 0.180863i
\(303\) 14.9863 6.20752i 0.860940 0.356613i
\(304\) 17.4579 + 17.4579i 1.00128 + 1.00128i
\(305\) 0.906291 0.0518941
\(306\) −1.56124 + 1.73139i −0.0892504 + 0.0989772i
\(307\) −29.9529 −1.70950 −0.854751 0.519038i \(-0.826290\pi\)
−0.854751 + 0.519038i \(0.826290\pi\)
\(308\) 8.28541 + 8.28541i 0.472105 + 0.472105i
\(309\) −14.4828 + 5.99898i −0.823899 + 0.341270i
\(310\) 0.677989i 0.0385072i
\(311\) 0.0804873 + 0.194314i 0.00456402 + 0.0110185i 0.926145 0.377167i \(-0.123102\pi\)
−0.921581 + 0.388186i \(0.873102\pi\)
\(312\) 6.48902 + 2.68784i 0.367369 + 0.152169i
\(313\) −12.4082 + 29.9561i −0.701354 + 1.69322i 0.0191979 + 0.999816i \(0.493889\pi\)
−0.720551 + 0.693402i \(0.756111\pi\)
\(314\) −2.86010 + 2.86010i −0.161405 + 0.161405i
\(315\) −3.32627 + 3.32627i −0.187414 + 0.187414i
\(316\) 10.7459 25.9429i 0.604504 1.45940i
\(317\) −30.8937 12.7966i −1.73516 0.718728i −0.999127 0.0417842i \(-0.986696\pi\)
−0.736035 0.676943i \(-0.763304\pi\)
\(318\) 0.339892 + 0.820571i 0.0190602 + 0.0460154i
\(319\) 9.17441i 0.513668i
\(320\) 5.44879 2.25696i 0.304596 0.126168i
\(321\) 1.10345 + 1.10345i 0.0615886 + 0.0615886i
\(322\) −0.651789 −0.0363228
\(323\) −29.3630 + 1.51736i −1.63380 + 0.0844283i
\(324\) −0.258783 −0.0143768
\(325\) −3.96924 3.96924i −0.220174 0.220174i
\(326\) 0.439025 0.181850i 0.0243153 0.0100717i
\(327\) 10.0135i 0.553750i
\(328\) −5.57330 13.4551i −0.307734 0.742935i
\(329\) −5.33585 2.21018i −0.294175 0.121851i
\(330\) 0.299570 0.723225i 0.0164908 0.0398122i
\(331\) 0.626030 0.626030i 0.0344097 0.0344097i −0.689693 0.724102i \(-0.742254\pi\)
0.724102 + 0.689693i \(0.242254\pi\)
\(332\) −18.7609 + 18.7609i −1.02964 + 1.02964i
\(333\) −3.66194 + 8.84071i −0.200673 + 0.484468i
\(334\) −4.90688 2.03250i −0.268493 0.111213i
\(335\) 2.56355 + 6.18896i 0.140062 + 0.338139i
\(336\) 9.21973i 0.502977i
\(337\) 15.8506 6.56551i 0.863434 0.357646i 0.0933847 0.995630i \(-0.470231\pi\)
0.770050 + 0.637984i \(0.220231\pi\)
\(338\) −3.94859 3.94859i −0.214775 0.214775i
\(339\) 15.8739 0.862150
\(340\) −2.63279 + 7.41756i −0.142783 + 0.402274i
\(341\) −5.49600 −0.297625
\(342\) 2.85117 + 2.85117i 0.154174 + 0.154174i
\(343\) −17.8563 + 7.39633i −0.964151 + 0.399364i
\(344\) 3.08990i 0.166596i
\(345\) −0.349515 0.843803i −0.0188172 0.0454288i
\(346\) −5.25194 2.17542i −0.282346 0.116951i
\(347\) 11.8288 28.5572i 0.635003 1.53303i −0.198257 0.980150i \(-0.563528\pi\)
0.833260 0.552882i \(-0.186472\pi\)
\(348\) −5.37287 + 5.37287i −0.288016 + 0.288016i
\(349\) 2.38415 2.38415i 0.127621 0.127621i −0.640411 0.768032i \(-0.721236\pi\)
0.768032 + 0.640411i \(0.221236\pi\)
\(350\) 0.289762 0.699548i 0.0154884 0.0373924i
\(351\) −26.8205 11.1094i −1.43157 0.592976i
\(352\) −3.18487 7.68896i −0.169754 0.409823i
\(353\) 23.7918i 1.26631i −0.774025 0.633155i \(-0.781760\pi\)
0.774025 0.633155i \(-0.218240\pi\)
\(354\) −2.20071 + 0.911565i −0.116967 + 0.0484491i
\(355\) −0.170247 0.170247i −0.00903579 0.00903579i
\(356\) −0.754360 −0.0399810
\(357\) 8.15416 + 7.35282i 0.431564 + 0.389152i
\(358\) 0.999743 0.0528381
\(359\) 22.4244 + 22.4244i 1.18351 + 1.18351i 0.978827 + 0.204688i \(0.0656178\pi\)
0.204688 + 0.978827i \(0.434382\pi\)
\(360\) 2.04203 0.845838i 0.107625 0.0445796i
\(361\) 31.8521i 1.67643i
\(362\) −1.83164 4.42197i −0.0962689 0.232414i
\(363\) −4.92004 2.03795i −0.258235 0.106964i
\(364\) −10.2923 + 24.8477i −0.539461 + 1.30237i
\(365\) −4.56611 + 4.56611i −0.239001 + 0.239001i
\(366\) −0.205130 + 0.205130i −0.0107223 + 0.0107223i
\(367\) −1.72853 + 4.17304i −0.0902286 + 0.217831i −0.962551 0.271099i \(-0.912613\pi\)
0.872323 + 0.488930i \(0.162613\pi\)
\(368\) −2.75341 1.14050i −0.143532 0.0594528i
\(369\) 8.85767 + 21.3843i 0.461112 + 1.11322i
\(370\) 1.54028i 0.0800755i
\(371\) −6.43405 + 2.66507i −0.334039 + 0.138364i
\(372\) 3.21866 + 3.21866i 0.166880 + 0.166880i
\(373\) −5.12748 −0.265491 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(374\) 2.86679 + 1.01754i 0.148238 + 0.0526156i
\(375\) 1.06101 0.0547905
\(376\) 1.91888 + 1.91888i 0.0989586 + 0.0989586i
\(377\) 19.4552 8.05860i 1.00199 0.415039i
\(378\) 3.91589i 0.201412i
\(379\) 2.11629 + 5.10917i 0.108706 + 0.262441i 0.968867 0.247584i \(-0.0796365\pi\)
−0.860160 + 0.510024i \(0.829636\pi\)
\(380\) 12.5769 + 5.20951i 0.645180 + 0.267242i
\(381\) 2.41786 5.83722i 0.123871 0.299050i
\(382\) −5.86521 + 5.86521i −0.300090 + 0.300090i
\(383\) 14.4493 14.4493i 0.738326 0.738326i −0.233928 0.972254i \(-0.575158\pi\)
0.972254 + 0.233928i \(0.0751580\pi\)
\(384\) −3.48596 + 8.41585i −0.177892 + 0.429469i
\(385\) 5.67077 + 2.34891i 0.289009 + 0.119711i
\(386\) 1.70420 + 4.11429i 0.0867413 + 0.209412i
\(387\) 4.91079i 0.249629i
\(388\) 15.8011 6.54505i 0.802181 0.332274i
\(389\) −3.66726 3.66726i −0.185937 0.185937i 0.608000 0.793937i \(-0.291972\pi\)
−0.793937 + 0.608000i \(0.791972\pi\)
\(390\) 1.79680 0.0909845
\(391\) 3.20456 1.52563i 0.162062 0.0771543i
\(392\) 0.826343 0.0417366
\(393\) −3.14152 3.14152i −0.158469 0.158469i
\(394\) −0.104913 + 0.0434563i −0.00528543 + 0.00218930i
\(395\) 14.7096i 0.740120i
\(396\) 3.34850 + 8.08399i 0.168268 + 0.406236i
\(397\) −5.70360 2.36251i −0.286255 0.118571i 0.234936 0.972011i \(-0.424512\pi\)
−0.521191 + 0.853440i \(0.674512\pi\)
\(398\) −0.869348 + 2.09879i −0.0435765 + 0.105203i
\(399\) 13.4278 13.4278i 0.672233 0.672233i
\(400\) 2.44814 2.44814i 0.122407 0.122407i
\(401\) −3.63413 + 8.77356i −0.181480 + 0.438131i −0.988272 0.152705i \(-0.951202\pi\)
0.806792 + 0.590835i \(0.201202\pi\)
\(402\) −1.98105 0.820577i −0.0988058 0.0409267i
\(403\) −4.82757 11.6548i −0.240478 0.580566i
\(404\) 29.1850i 1.45201i
\(405\) −0.125241 + 0.0518767i −0.00622329 + 0.00257777i
\(406\) 2.00856 + 2.00856i 0.0996831 + 0.0996831i
\(407\) 12.4860 0.618910
\(408\) −2.21761 4.65806i −0.109788 0.230608i
\(409\) 14.3886 0.711469 0.355734 0.934587i \(-0.384231\pi\)
0.355734 + 0.934587i \(0.384231\pi\)
\(410\) −2.63447 2.63447i −0.130107 0.130107i
\(411\) 7.11659 2.94779i 0.351035 0.145404i
\(412\) 28.2046i 1.38954i
\(413\) −7.14753 17.2557i −0.351707 0.849096i
\(414\) −0.449680 0.186264i −0.0221006 0.00915436i
\(415\) −5.31870 + 12.8405i −0.261085 + 0.630314i
\(416\) 13.5076 13.5076i 0.662266 0.662266i
\(417\) 7.79750 7.79750i 0.381845 0.381845i
\(418\) 2.01340 4.86079i 0.0984789 0.237749i
\(419\) 19.6078 + 8.12181i 0.957903 + 0.396776i 0.806196 0.591649i \(-0.201523\pi\)
0.151707 + 0.988425i \(0.451523\pi\)
\(420\) −1.94540 4.69661i −0.0949258 0.229171i
\(421\) 20.1672i 0.982887i 0.870909 + 0.491444i \(0.163531\pi\)
−0.870909 + 0.491444i \(0.836469\pi\)
\(422\) 2.42279 1.00355i 0.117939 0.0488521i
\(423\) −3.04968 3.04968i −0.148281 0.148281i
\(424\) 3.27223 0.158914
\(425\) 0.212782 + 4.11761i 0.0103214 + 0.199733i
\(426\) 0.0770678 0.00373395
\(427\) −1.60842 1.60842i −0.0778367 0.0778367i
\(428\) 2.59397 1.07446i 0.125384 0.0519358i
\(429\) 14.5655i 0.703227i
\(430\) 0.302496 + 0.730290i 0.0145877 + 0.0352177i
\(431\) −18.4485 7.64163i −0.888635 0.368085i −0.108795 0.994064i \(-0.534699\pi\)
−0.779839 + 0.625980i \(0.784699\pi\)
\(432\) 6.85204 16.5423i 0.329669 0.795891i
\(433\) 12.8860 12.8860i 0.619263 0.619263i −0.326080 0.945342i \(-0.605728\pi\)
0.945342 + 0.326080i \(0.105728\pi\)
\(434\) 1.20324 1.20324i 0.0577575 0.0577575i
\(435\) −1.52320 + 3.67734i −0.0730321 + 0.176315i
\(436\) −16.6450 6.89460i −0.797152 0.330191i
\(437\) −2.34909 5.67120i −0.112372 0.271290i
\(438\) 2.06699i 0.0987648i
\(439\) 13.6117 5.63815i 0.649651 0.269094i −0.0334251 0.999441i \(-0.510642\pi\)
0.683077 + 0.730347i \(0.260642\pi\)
\(440\) −2.03932 2.03932i −0.0972209 0.0972209i
\(441\) −1.31331 −0.0625386
\(442\) 0.360341 + 6.97307i 0.0171397 + 0.331675i
\(443\) −23.3335 −1.10861 −0.554305 0.832314i \(-0.687016\pi\)
−0.554305 + 0.832314i \(0.687016\pi\)
\(444\) −7.31228 7.31228i −0.347026 0.347026i
\(445\) −0.365083 + 0.151222i −0.0173066 + 0.00716862i
\(446\) 1.94983i 0.0923272i
\(447\) 2.44336 + 5.89879i 0.115567 + 0.279003i
\(448\) −13.6756 5.66461i −0.646110 0.267628i
\(449\) −0.655009 + 1.58133i −0.0309118 + 0.0746277i −0.938582 0.345057i \(-0.887859\pi\)
0.907670 + 0.419685i \(0.137859\pi\)
\(450\) 0.399824 0.399824i 0.0188479 0.0188479i
\(451\) 21.3559 21.3559i 1.00561 1.00561i
\(452\) 10.9296 26.3864i 0.514085 1.24111i
\(453\) 10.2125 + 4.23016i 0.479826 + 0.198750i
\(454\) 0.353348 + 0.853058i 0.0165835 + 0.0400360i
\(455\) 14.0886i 0.660484i
\(456\) −8.24349 + 3.41457i −0.386037 + 0.159902i
\(457\) 9.34572 + 9.34572i 0.437174 + 0.437174i 0.891060 0.453886i \(-0.149963\pi\)
−0.453886 + 0.891060i \(0.649963\pi\)
\(458\) 2.28052 0.106562
\(459\) 9.16585 + 19.2527i 0.427825 + 0.898641i
\(460\) −1.64326 −0.0766176
\(461\) −20.7116 20.7116i −0.964634 0.964634i 0.0347616 0.999396i \(-0.488933\pi\)
−0.999396 + 0.0347616i \(0.988933\pi\)
\(462\) −1.81518 + 0.751871i −0.0844497 + 0.0349802i
\(463\) 9.80371i 0.455617i 0.973706 + 0.227808i \(0.0731560\pi\)
−0.973706 + 0.227808i \(0.926844\pi\)
\(464\) 4.97037 + 11.9995i 0.230744 + 0.557064i
\(465\) 2.20294 + 0.912488i 0.102159 + 0.0423156i
\(466\) −2.58007 + 6.22884i −0.119519 + 0.288545i
\(467\) −9.67459 + 9.67459i −0.447687 + 0.447687i −0.894585 0.446898i \(-0.852529\pi\)
0.446898 + 0.894585i \(0.352529\pi\)
\(468\) −14.2016 + 14.2016i −0.656469 + 0.656469i
\(469\) 6.43410 15.5333i 0.297099 0.717261i
\(470\) 0.641378 + 0.265667i 0.0295846 + 0.0122543i
\(471\) 5.44378 + 13.1424i 0.250836 + 0.605572i
\(472\) 8.77589i 0.403943i
\(473\) −5.91997 + 2.45213i −0.272201 + 0.112749i
\(474\) 3.32938 + 3.32938i 0.152923 + 0.152923i
\(475\) 7.13107 0.327196
\(476\) 17.8366 8.49165i 0.817539 0.389214i
\(477\) −5.20057 −0.238118
\(478\) −0.738063 0.738063i −0.0337582 0.0337582i
\(479\) −10.1719 + 4.21334i −0.464766 + 0.192513i −0.602763 0.797920i \(-0.705934\pi\)
0.137997 + 0.990433i \(0.455934\pi\)
\(480\) 3.61071i 0.164806i
\(481\) 10.9675 + 26.4778i 0.500074 + 1.20728i
\(482\) −5.02431 2.08114i −0.228851 0.0947932i
\(483\) −0.877226 + 2.11781i −0.0399151 + 0.0963637i
\(484\) −6.77516 + 6.77516i −0.307962 + 0.307962i
\(485\) 6.33513 6.33513i 0.287663 0.287663i
\(486\) 1.80781 4.36445i 0.0820041 0.197975i
\(487\) 9.32586 + 3.86290i 0.422595 + 0.175045i 0.583838 0.811870i \(-0.301550\pi\)
−0.161243 + 0.986915i \(0.551550\pi\)
\(488\) 0.409004 + 0.987423i 0.0185147 + 0.0446985i
\(489\) 1.67124i 0.0755760i
\(490\) 0.195304 0.0808976i 0.00882294 0.00365458i
\(491\) −12.0793 12.0793i −0.545132 0.545132i 0.379897 0.925029i \(-0.375959\pi\)
−0.925029 + 0.379897i \(0.875959\pi\)
\(492\) −25.0136 −1.12770
\(493\) −14.5766 5.17382i −0.656497 0.233017i
\(494\) 12.0763 0.543338
\(495\) 3.24110 + 3.24110i 0.145677 + 0.145677i
\(496\) 7.18841 2.97754i 0.322769 0.133695i
\(497\) 0.604284i 0.0271059i
\(498\) −1.70248 4.11016i −0.0762901 0.184180i
\(499\) −28.9724 12.0008i −1.29698 0.537227i −0.375923 0.926651i \(-0.622674\pi\)
−0.921059 + 0.389424i \(0.872674\pi\)
\(500\) 0.730537 1.76367i 0.0326706 0.0788738i
\(501\) −13.2081 + 13.2081i −0.590094 + 0.590094i
\(502\) 5.12999 5.12999i 0.228963 0.228963i
\(503\) −3.31991 + 8.01498i −0.148028 + 0.357370i −0.980449 0.196773i \(-0.936954\pi\)
0.832422 + 0.554143i \(0.186954\pi\)
\(504\) −5.12518 2.12292i −0.228293 0.0945623i
\(505\) −5.85056 14.1245i −0.260346 0.628532i
\(506\) 0.635099i 0.0282336i
\(507\) −18.1442 + 7.51556i −0.805811 + 0.333778i
\(508\) −8.03817 8.03817i −0.356636 0.356636i
\(509\) −14.1196 −0.625840 −0.312920 0.949780i \(-0.601307\pi\)
−0.312920 + 0.949780i \(0.601307\pi\)
\(510\) −0.980144 0.883821i −0.0434015 0.0391363i
\(511\) 16.2072 0.716963
\(512\) 14.1053 + 14.1053i 0.623374 + 0.623374i
\(513\) 34.0721 14.1131i 1.50432 0.623109i
\(514\) 4.46546i 0.196963i
\(515\) 5.65401 + 13.6500i 0.249145 + 0.601490i
\(516\) 4.90301 + 2.03089i 0.215843 + 0.0894051i
\(517\) −2.15359 + 5.19922i −0.0947147 + 0.228662i
\(518\) −2.73358 + 2.73358i −0.120106 + 0.120106i
\(519\) −14.1369 + 14.1369i −0.620541 + 0.620541i
\(520\) 2.53328 6.11587i 0.111091 0.268199i
\(521\) −16.2808 6.74373i −0.713275 0.295448i −0.00361608 0.999993i \(-0.501151\pi\)
−0.709659 + 0.704545i \(0.751151\pi\)
\(522\) 0.811747 + 1.95973i 0.0355292 + 0.0857751i
\(523\) 26.3853i 1.15375i 0.816833 + 0.576875i \(0.195728\pi\)
−0.816833 + 0.576875i \(0.804272\pi\)
\(524\) −7.38502 + 3.05898i −0.322616 + 0.133632i
\(525\) −1.88301 1.88301i −0.0821811 0.0821811i
\(526\) 7.39626 0.322492
\(527\) −3.09942 + 8.73223i −0.135013 + 0.380382i
\(528\) −8.98366 −0.390963
\(529\) −15.7395 15.7395i −0.684326 0.684326i
\(530\) 0.773384 0.320346i 0.0335937 0.0139150i
\(531\) 13.9476i 0.605272i
\(532\) −13.0750 31.5659i −0.566874 1.36856i
\(533\) 64.0457 + 26.5286i 2.77413 + 1.14908i
\(534\) 0.0484053 0.116861i 0.00209470 0.00505706i
\(535\) 1.04000 1.04000i 0.0449629 0.0449629i
\(536\) −5.58609 + 5.58609i −0.241282 + 0.241282i
\(537\) 1.34553 3.24839i 0.0580638 0.140178i
\(538\) 1.83808 + 0.761359i 0.0792454 + 0.0328245i
\(539\) 0.655783 + 1.58320i 0.0282466 + 0.0681932i
\(540\) 9.87260i 0.424849i
\(541\) −4.07266 + 1.68695i −0.175097 + 0.0725277i −0.468510 0.883458i \(-0.655209\pi\)
0.293413 + 0.955986i \(0.405209\pi\)
\(542\) −5.58816 5.58816i −0.240032 0.240032i
\(543\) −16.8331 −0.722379
\(544\) −14.0125 + 0.724113i −0.600783 + 0.0310461i
\(545\) −9.43771 −0.404267
\(546\) −3.18882 3.18882i −0.136469 0.136469i
\(547\) −20.9386 + 8.67306i −0.895271 + 0.370833i −0.782400 0.622776i \(-0.786005\pi\)
−0.112871 + 0.993610i \(0.536005\pi\)
\(548\) 13.8592i 0.592035i
\(549\) −0.650032 1.56932i −0.0277427 0.0669768i
\(550\) −0.681636 0.282343i −0.0290650 0.0120391i
\(551\) −10.2374 + 24.7154i −0.436130 + 1.05291i
\(552\) 0.761607 0.761607i 0.0324162 0.0324162i
\(553\) −26.1055 + 26.1055i −1.11012 + 1.11012i
\(554\) −1.10429 + 2.66599i −0.0469167 + 0.113267i
\(555\) −5.00473 2.07303i −0.212439 0.0879951i
\(556\) −7.59262 18.3302i −0.321999 0.777374i
\(557\) 11.4954i 0.487076i −0.969891 0.243538i \(-0.921692\pi\)
0.969891 0.243538i \(-0.0783080\pi\)
\(558\) 1.17399 0.486284i 0.0496991 0.0205860i
\(559\) −10.4000 10.4000i −0.439871 0.439871i
\(560\) −8.68955 −0.367200
\(561\) 7.16455 7.94537i 0.302487 0.335454i
\(562\) 3.74614 0.158021
\(563\) 9.57715 + 9.57715i 0.403629 + 0.403629i 0.879510 0.475881i \(-0.157871\pi\)
−0.475881 + 0.879510i \(0.657871\pi\)
\(564\) 4.30607 1.78363i 0.181318 0.0751045i
\(565\) 14.9610i 0.629415i
\(566\) 1.94457 + 4.69461i 0.0817364 + 0.197329i
\(567\) 0.314336 + 0.130202i 0.0132009 + 0.00546797i
\(568\) 0.108656 0.262320i 0.00455912 0.0110067i
\(569\) −11.2263 + 11.2263i −0.470632 + 0.470632i −0.902119 0.431487i \(-0.857989\pi\)
0.431487 + 0.902119i \(0.357989\pi\)
\(570\) −1.61405 + 1.61405i −0.0676051 + 0.0676051i
\(571\) 1.35486 3.27093i 0.0566993 0.136884i −0.892991 0.450074i \(-0.851398\pi\)
0.949691 + 0.313190i \(0.101398\pi\)
\(572\) 24.2115 + 10.0287i 1.01233 + 0.419322i
\(573\) 11.1636 + 26.9512i 0.466364 + 1.12590i
\(574\) 9.35092i 0.390300i
\(575\) −0.795280 + 0.329416i −0.0331655 + 0.0137376i
\(576\) −7.81622 7.81622i −0.325676 0.325676i
\(577\) 18.5078 0.770492 0.385246 0.922814i \(-0.374117\pi\)
0.385246 + 0.922814i \(0.374117\pi\)
\(578\) 3.23339 3.98101i 0.134491 0.165588i
\(579\) 15.6619 0.650887
\(580\) 5.06390 + 5.06390i 0.210267 + 0.210267i
\(581\) 32.2275 13.3491i 1.33702 0.553813i
\(582\) 2.86779i 0.118874i
\(583\) 2.59683 + 6.26931i 0.107550 + 0.259648i
\(584\) −7.03554 2.91422i −0.291133 0.120591i
\(585\) −4.02615 + 9.71998i −0.166461 + 0.401872i
\(586\) 4.45436 4.45436i 0.184008 0.184008i
\(587\) −9.70579 + 9.70579i −0.400601 + 0.400601i −0.878445 0.477844i \(-0.841418\pi\)
0.477844 + 0.878445i \(0.341418\pi\)
\(588\) 0.543129 1.31123i 0.0223983 0.0540742i
\(589\) 14.8059 + 6.13282i 0.610068 + 0.252699i
\(590\) 0.859145 + 2.07416i 0.0353705 + 0.0853918i
\(591\) 0.399372i 0.0164280i
\(592\) −16.3309 + 6.76450i −0.671197 + 0.278019i
\(593\) −14.3711 14.3711i −0.590150 0.590150i 0.347522 0.937672i \(-0.387023\pi\)
−0.937672 + 0.347522i \(0.887023\pi\)
\(594\) −3.81563 −0.156557
\(595\) 6.92999 7.68525i 0.284102 0.315065i
\(596\) 11.4876 0.470550
\(597\) 5.64942 + 5.64942i 0.231215 + 0.231215i
\(598\) −1.34679 + 0.557858i −0.0550742 + 0.0228125i
\(599\) 26.7277i 1.09206i −0.837764 0.546032i \(-0.816138\pi\)
0.837764 0.546032i \(-0.183862\pi\)
\(600\) 0.478830 + 1.15600i 0.0195481 + 0.0471934i
\(601\) 25.5537 + 10.5847i 1.04236 + 0.431758i 0.837157 0.546962i \(-0.184216\pi\)
0.205199 + 0.978720i \(0.434216\pi\)
\(602\) 0.759216 1.83291i 0.0309433 0.0747038i
\(603\) 8.87800 8.87800i 0.361540 0.361540i
\(604\) 14.0632 14.0632i 0.572223 0.572223i
\(605\) −1.92075 + 4.63711i −0.0780898 + 0.188525i
\(606\) 4.52117 + 1.87273i 0.183660 + 0.0760744i
\(607\) −9.03844 21.8207i −0.366859 0.885676i −0.994261 0.106981i \(-0.965882\pi\)
0.627402 0.778696i \(-0.284118\pi\)
\(608\) 24.2676i 0.984180i
\(609\) 9.22953 3.82300i 0.373999 0.154916i
\(610\) 0.193334 + 0.193334i 0.00782788 + 0.00782788i
\(611\) −12.9171 −0.522570
\(612\) 14.7325 0.761315i 0.595524 0.0307744i
\(613\) 12.0396 0.486275 0.243137 0.969992i \(-0.421823\pi\)
0.243137 + 0.969992i \(0.421823\pi\)
\(614\) −6.38969 6.38969i −0.257867 0.257867i
\(615\) −12.1057 + 5.01433i −0.488147 + 0.202197i
\(616\) 7.23847i 0.291646i
\(617\) 5.94989 + 14.3643i 0.239534 + 0.578285i 0.997235 0.0743165i \(-0.0236775\pi\)
−0.757701 + 0.652602i \(0.773678\pi\)
\(618\) −4.36928 1.80981i −0.175758 0.0728014i
\(619\) 12.8172 30.9434i 0.515166 1.24372i −0.425676 0.904876i \(-0.639964\pi\)
0.940842 0.338845i \(-0.110036\pi\)
\(620\) 3.03357 3.03357i 0.121831 0.121831i
\(621\) −3.14788 + 3.14788i −0.126320 + 0.126320i
\(622\) −0.0242820 + 0.0586218i −0.000973618 + 0.00235052i
\(623\) 0.916299 + 0.379543i 0.0367107 + 0.0152061i
\(624\) −7.89105 19.0507i −0.315895 0.762637i
\(625\) 1.00000i 0.0400000i
\(626\) −9.03735 + 3.74339i −0.361205 + 0.149616i
\(627\) −13.0840 13.0840i −0.522525 0.522525i
\(628\) 25.5942 1.02132
\(629\) 7.04138 19.8382i 0.280758 0.791002i
\(630\) −1.41915 −0.0565404
\(631\) −0.385100 0.385100i −0.0153306 0.0153306i 0.699400 0.714731i \(-0.253451\pi\)
−0.714731 + 0.699400i \(0.753451\pi\)
\(632\) 16.0264 6.63836i 0.637496 0.264060i
\(633\) 9.22284i 0.366575i
\(634\) −3.86056 9.32021i −0.153322 0.370153i
\(635\) −5.50155 2.27882i −0.218322 0.0904321i
\(636\) 2.15074 5.19233i 0.0852822 0.205889i
\(637\) −2.78130 + 2.78130i −0.110199 + 0.110199i
\(638\) 1.95713 1.95713i 0.0774835 0.0774835i
\(639\) −0.172688 + 0.416906i −0.00683144 + 0.0164926i
\(640\) 7.93189 + 3.28550i 0.313536 + 0.129871i
\(641\) 4.75450 + 11.4784i 0.187792 + 0.453369i 0.989534 0.144301i \(-0.0460933\pi\)
−0.801742 + 0.597670i \(0.796093\pi\)
\(642\) 0.470786i 0.0185805i
\(643\) 35.4438 14.6813i 1.39777 0.578975i 0.448597 0.893734i \(-0.351924\pi\)
0.949171 + 0.314760i \(0.101924\pi\)
\(644\) 2.91634 + 2.91634i 0.114920 + 0.114920i
\(645\) 2.78000 0.109462
\(646\) −6.58754 5.94016i −0.259183 0.233712i
\(647\) 19.6602 0.772923 0.386462 0.922305i \(-0.373697\pi\)
0.386462 + 0.922305i \(0.373697\pi\)
\(648\) −0.113041 0.113041i −0.00444069 0.00444069i
\(649\) −16.8138 + 6.96452i −0.660001 + 0.273381i
\(650\) 1.69348i 0.0664236i
\(651\) −2.29020 5.52902i −0.0897599 0.216700i
\(652\) −2.77802 1.15069i −0.108796 0.0450646i
\(653\) 11.9119 28.7578i 0.466147 1.12538i −0.499684 0.866208i \(-0.666551\pi\)
0.965831 0.259171i \(-0.0834494\pi\)
\(654\) 2.13614 2.13614i 0.0835296 0.0835296i
\(655\) −2.96087 + 2.96087i −0.115691 + 0.115691i
\(656\) −16.3623 + 39.5020i −0.638839 + 1.54229i
\(657\) 11.1816 + 4.63158i 0.436236 + 0.180695i
\(658\) −0.666782 1.60975i −0.0259939 0.0627548i
\(659\) 4.15956i 0.162033i 0.996713 + 0.0810167i \(0.0258167\pi\)
−0.996713 + 0.0810167i \(0.974183\pi\)
\(660\) −4.57635 + 1.89559i −0.178134 + 0.0737857i
\(661\) 4.85106 + 4.85106i 0.188685 + 0.188685i 0.795127 0.606443i \(-0.207404\pi\)
−0.606443 + 0.795127i \(0.707404\pi\)
\(662\) 0.267095 0.0103810
\(663\) 23.1421 + 8.21405i 0.898764 + 0.319007i
\(664\) −16.3903 −0.636066
\(665\) −12.6557 12.6557i −0.490766 0.490766i
\(666\) −2.66713 + 1.10476i −0.103349 + 0.0428086i
\(667\) 3.22925i 0.125037i
\(668\) 12.8610 + 31.0493i 0.497608 + 1.20133i
\(669\) 6.33545 + 2.62423i 0.244943 + 0.101459i
\(670\) −0.773390 + 1.86713i −0.0298787 + 0.0721335i
\(671\) −1.56723 + 1.56723i −0.0605023 + 0.0605023i
\(672\) 6.40801 6.40801i 0.247195 0.247195i
\(673\) −6.61298 + 15.9651i −0.254912 + 0.615411i −0.998588 0.0531290i \(-0.983081\pi\)
0.743676 + 0.668540i \(0.233081\pi\)
\(674\) 4.78190 + 1.98073i 0.184192 + 0.0762948i
\(675\) −1.97910 4.77798i −0.0761757 0.183904i
\(676\) 35.3348i 1.35903i
\(677\) 7.51469 3.11269i 0.288813 0.119630i −0.233573 0.972339i \(-0.575042\pi\)
0.522386 + 0.852709i \(0.325042\pi\)
\(678\) 3.38629 + 3.38629i 0.130050 + 0.130050i
\(679\) −22.4862 −0.862942
\(680\) −4.39020 + 2.09009i −0.168356 + 0.0801511i
\(681\) 3.24734 0.124438
\(682\) −1.17243 1.17243i −0.0448948 0.0448948i
\(683\) −26.9190 + 11.1502i −1.03003 + 0.426652i −0.832723 0.553690i \(-0.813219\pi\)
−0.197306 + 0.980342i \(0.563219\pi\)
\(684\) 25.5143i 0.975566i
\(685\) −2.77827 6.70735i −0.106152 0.256275i
\(686\) −5.38702 2.23138i −0.205677 0.0851943i
\(687\) 3.06929 7.40992i 0.117101 0.282706i
\(688\) 6.41446 6.41446i 0.244549 0.244549i
\(689\) −11.0136 + 11.0136i −0.419587 + 0.419587i
\(690\) 0.105444 0.254564i 0.00401418 0.00969110i
\(691\) 34.5393 + 14.3066i 1.31394 + 0.544250i 0.926031 0.377448i \(-0.123198\pi\)
0.387906 + 0.921699i \(0.373198\pi\)
\(692\) 13.7654 + 33.2327i 0.523283 + 1.26332i
\(693\) 11.5041i 0.437006i
\(694\) 8.61534 3.56859i 0.327034 0.135462i
\(695\) −7.34910 7.34910i −0.278767 0.278767i
\(696\) −4.69395 −0.177924
\(697\) −21.8875 45.9744i −0.829048 1.74140i
\(698\) 1.01720 0.0385015
\(699\) 16.7665 + 16.7665i 0.634166 + 0.634166i
\(700\) −4.42653 + 1.83353i −0.167307 + 0.0693009i
\(701\) 14.6423i 0.553031i 0.961009 + 0.276515i \(0.0891797\pi\)
−0.961009 + 0.276515i \(0.910820\pi\)
\(702\) −3.35156 8.09139i −0.126497 0.305390i
\(703\) −33.6368 13.9328i −1.26863 0.525486i
\(704\) −5.51956 + 13.3254i −0.208026 + 0.502220i
\(705\) 1.72643 1.72643i 0.0650210 0.0650210i
\(706\) 5.07538 5.07538i 0.191014 0.191014i
\(707\) −14.6840 + 35.4502i −0.552247 + 1.33324i
\(708\) 13.9255 + 5.76812i 0.523351 + 0.216779i
\(709\) −10.8526 26.2006i −0.407579 0.983983i −0.985773 0.168083i \(-0.946242\pi\)
0.578194 0.815899i \(-0.303758\pi\)
\(710\) 0.0726360i 0.00272598i
\(711\) −25.4708 + 10.5504i −0.955231 + 0.395670i
\(712\) −0.329520 0.329520i −0.0123493 0.0123493i
\(713\) −1.93451 −0.0724480
\(714\) 0.170946 + 3.30802i 0.00639748 + 0.123800i
\(715\) 13.7279 0.513393
\(716\) −4.47321 4.47321i −0.167172 0.167172i
\(717\) −3.39148 + 1.40480i −0.126657 + 0.0524631i
\(718\) 9.56736i 0.357051i
\(719\) −4.83536 11.6736i −0.180329 0.435352i 0.807706 0.589586i \(-0.200709\pi\)
−0.988034 + 0.154234i \(0.950709\pi\)
\(720\) −5.99507 2.48324i −0.223423 0.0925449i
\(721\) 14.1906 34.2593i 0.528487 1.27588i
\(722\) −6.79485 + 6.79485i −0.252878 + 0.252878i
\(723\) −13.5242 + 13.5242i −0.502969 + 0.502969i
\(724\) −11.5901 + 27.9809i −0.430742 + 1.03990i
\(725\) 3.46587 + 1.43561i 0.128719 + 0.0533173i
\(726\) −0.614822 1.48431i −0.0228182 0.0550879i
\(727\) 15.0242i 0.557218i 0.960405 + 0.278609i \(0.0898734\pi\)
−0.960405 + 0.278609i \(0.910127\pi\)
\(728\) −15.3498 + 6.35811i −0.568903 + 0.235647i
\(729\) −11.4604 11.4604i −0.424460 0.424460i
\(730\) −1.94813 −0.0721035
\(731\) 0.557517 + 10.7887i 0.0206205 + 0.399035i
\(732\) 1.83566 0.0678478
\(733\) −1.24931 1.24931i −0.0461442 0.0461442i 0.683658 0.729802i \(-0.260388\pi\)
−0.729802 + 0.683658i \(0.760388\pi\)
\(734\) −1.25895 + 0.521475i −0.0464688 + 0.0192480i
\(735\) 0.743466i 0.0274231i
\(736\) −1.12103 2.70640i −0.0413216 0.0997592i
\(737\) −15.1356 6.26935i −0.557526 0.230935i
\(738\) −2.67224 + 6.45136i −0.0983665 + 0.237478i
\(739\) −13.9406 + 13.9406i −0.512812 + 0.512812i −0.915387 0.402575i \(-0.868115\pi\)
0.402575 + 0.915387i \(0.368115\pi\)
\(740\) −6.89179 + 6.89179i −0.253347 + 0.253347i
\(741\) 16.2532 39.2386i 0.597075 1.44147i
\(742\) −1.94107 0.804017i −0.0712589 0.0295164i
\(743\) −10.8535 26.2027i −0.398176 0.961282i −0.988099 0.153822i \(-0.950842\pi\)
0.589922 0.807460i \(-0.299158\pi\)
\(744\) 2.81195i 0.103091i
\(745\) 5.55958 2.30285i 0.203687 0.0843700i
\(746\) −1.09382 1.09382i −0.0400475 0.0400475i
\(747\) 26.0491 0.953087
\(748\) −8.27422 17.3799i −0.302535 0.635472i
\(749\) −3.69141 −0.134881
\(750\) 0.226341 + 0.226341i 0.00826479 + 0.00826479i
\(751\) 16.5853 6.86987i 0.605207 0.250685i −0.0589704 0.998260i \(-0.518782\pi\)
0.664178 + 0.747575i \(0.268782\pi\)
\(752\) 7.96698i 0.290526i
\(753\) −9.76418 23.5728i −0.355826 0.859041i
\(754\) 5.86937 + 2.43117i 0.213750 + 0.0885381i
\(755\) 3.98690 9.62524i 0.145098 0.350298i
\(756\) −17.5211 + 17.5211i −0.637237 + 0.637237i
\(757\) −31.0649 + 31.0649i −1.12907 + 1.12907i −0.138743 + 0.990328i \(0.544306\pi\)
−0.990328 + 0.138743i \(0.955694\pi\)
\(758\) −0.638456 + 1.54137i −0.0231898 + 0.0559851i
\(759\) 2.06358 + 0.854764i 0.0749033 + 0.0310260i
\(760\) 3.21821 + 7.76945i 0.116737 + 0.281828i
\(761\) 13.2781i 0.481331i −0.970608 0.240666i \(-0.922634\pi\)
0.970608 0.240666i \(-0.0773657\pi\)
\(762\) 1.76101 0.729435i 0.0637948 0.0264247i
\(763\) 16.7493 + 16.7493i 0.606367 + 0.606367i
\(764\) 52.4861 1.89888
\(765\) 6.97736 3.32178i 0.252267 0.120099i
\(766\) 6.16480 0.222743
\(767\) −29.5378 29.5378i −1.06655 1.06655i
\(768\) 9.02353 3.73767i 0.325609 0.134871i
\(769\) 24.8906i 0.897578i 0.893638 + 0.448789i \(0.148144\pi\)
−0.893638 + 0.448789i \(0.851856\pi\)
\(770\) 0.708635 + 1.71080i 0.0255374 + 0.0616528i
\(771\) −14.5093 6.00995i −0.522540 0.216443i
\(772\) 10.7836 26.0340i 0.388112 0.936985i
\(773\) −37.9750 + 37.9750i −1.36587 + 1.36587i −0.499624 + 0.866242i \(0.666529\pi\)
−0.866242 + 0.499624i \(0.833471\pi\)
\(774\) 1.04759 1.04759i 0.0376549 0.0376549i
\(775\) 0.860015 2.07626i 0.0308926 0.0745814i
\(776\) 9.76127 + 4.04325i 0.350409 + 0.145144i
\(777\) 5.20296 + 12.5611i 0.186655 + 0.450626i
\(778\) 1.56463i 0.0560949i
\(779\) −81.3621 + 33.7013i −2.91510 + 1.20747i
\(780\) −8.03954 8.03954i −0.287862 0.287862i
\(781\) 0.588811 0.0210693
\(782\) 1.00907 + 0.358158i 0.0360841 + 0.0128077i
\(783\) 19.4011 0.693339
\(784\) −1.71544 1.71544i −0.0612658 0.0612658i
\(785\) 12.3867 5.13073i 0.442100 0.183124i
\(786\) 1.34033i 0.0478079i
\(787\) 19.6997 + 47.5592i 0.702217 + 1.69530i 0.718588 + 0.695436i \(0.244789\pi\)
−0.0163714 + 0.999866i \(0.505211\pi\)
\(788\) 0.663857 + 0.274979i 0.0236489 + 0.00979571i
\(789\) 9.95443 24.0321i 0.354387 0.855566i
\(790\) 3.13792 3.13792i 0.111642 0.111642i
\(791\) −26.5517 + 26.5517i −0.944070 + 0.944070i
\(792\) −2.06856 + 4.99394i −0.0735031 + 0.177452i
\(793\) −4.70008 1.94684i −0.166905 0.0691342i
\(794\) −0.712737 1.72070i −0.0252941 0.0610654i
\(795\) 2.94405i 0.104415i
\(796\) 13.2805 5.50097i 0.470716 0.194977i
\(797\) 13.3772 + 13.3772i 0.473846 + 0.473846i 0.903157 0.429311i \(-0.141244\pi\)
−0.429311 + 0.903157i \(0.641244\pi\)
\(798\) 5.72898 0.202804
\(799\) 7.04620 + 6.35374i 0.249276 + 0.224779i
\(800\) 3.40308 0.120317
\(801\) 0.523707 + 0.523707i 0.0185043 + 0.0185043i
\(802\) −2.64687 + 1.09637i −0.0934642 + 0.0387141i
\(803\) 15.7922i 0.557294i
\(804\) 5.19237 + 12.5355i 0.183121 + 0.442093i
\(805\) 1.99602 + 0.826780i 0.0703506 + 0.0291402i
\(806\) 1.45641 3.51609i 0.0513000 0.123849i
\(807\) 4.94766 4.94766i 0.174166 0.174166i
\(808\) 12.7486 12.7486i 0.448495 0.448495i
\(809\) 11.5703 27.9333i 0.406791 0.982081i −0.579185 0.815196i \(-0.696629\pi\)
0.985976 0.166885i \(-0.0533709\pi\)
\(810\) −0.0377837 0.0156505i −0.00132758 0.000549903i
\(811\) −6.57121 15.8643i −0.230746 0.557071i 0.765519 0.643413i \(-0.222482\pi\)
−0.996266 + 0.0863422i \(0.972482\pi\)
\(812\) 17.9740i 0.630765i
\(813\) −25.6782 + 10.6362i −0.900573 + 0.373030i
\(814\) 2.66358 + 2.66358i 0.0933586 + 0.0933586i
\(815\) −1.57513 −0.0551745
\(816\) −5.06624 + 14.2735i −0.177354 + 0.499673i
\(817\) 18.6844 0.653683
\(818\) 3.06944 + 3.06944i 0.107320 + 0.107320i
\(819\) 24.3956 10.1050i 0.852450 0.353096i
\(820\) 23.5752i 0.823280i
\(821\) −16.7555 40.4514i −0.584771 1.41176i −0.888443 0.458986i \(-0.848213\pi\)
0.303672 0.952777i \(-0.401787\pi\)
\(822\) 2.14698 + 0.889309i 0.0748846 + 0.0310182i
\(823\) 9.67025 23.3460i 0.337084 0.813792i −0.660909 0.750466i \(-0.729829\pi\)
0.997993 0.0633260i \(-0.0201708\pi\)
\(824\) −12.3203 + 12.3203i −0.429199 + 0.429199i
\(825\) −1.83479 + 1.83479i −0.0638792 + 0.0638792i
\(826\) 2.15632 5.20581i 0.0750278 0.181133i
\(827\) −20.3879 8.44496i −0.708958 0.293660i −0.00108492 0.999999i \(-0.500345\pi\)
−0.707874 + 0.706339i \(0.750345\pi\)
\(828\) 1.17862 + 2.84544i 0.0409599 + 0.0988860i
\(829\) 20.9555i 0.727816i 0.931435 + 0.363908i \(0.118558\pi\)
−0.931435 + 0.363908i \(0.881442\pi\)
\(830\) −3.87380 + 1.60458i −0.134462 + 0.0556958i
\(831\) 7.17617 + 7.17617i 0.248939 + 0.248939i
\(832\) −33.1060 −1.14774
\(833\) 2.88526 0.149099i 0.0999684 0.00516597i
\(834\) 3.32680 0.115198
\(835\) 12.4486 + 12.4486i 0.430800 + 0.430800i
\(836\) −30.7576 + 12.7402i −1.06378 + 0.440630i
\(837\) 11.6224i 0.401728i
\(838\) 2.45024 + 5.91541i 0.0846422 + 0.204344i
\(839\) 18.6855 + 7.73980i 0.645096 + 0.267207i 0.681152 0.732142i \(-0.261479\pi\)
−0.0360558 + 0.999350i \(0.511479\pi\)
\(840\) 1.20178 2.90137i 0.0414655 0.100107i
\(841\) 10.5548 10.5548i 0.363958 0.363958i
\(842\) −4.30216 + 4.30216i −0.148262 + 0.148262i
\(843\) 5.04183 12.1721i 0.173650 0.419228i
\(844\) −15.3307 6.35018i −0.527704 0.218582i
\(845\) 7.08338 + 17.1008i 0.243676 + 0.588285i
\(846\) 1.30115i 0.0447343i
\(847\) 11.6384 4.82078i 0.399900 0.165644i
\(848\) −6.79298 6.79298i −0.233272 0.233272i
\(849\) 17.8710 0.613331
\(850\) −0.832997 + 0.923780i −0.0285716 + 0.0316854i
\(851\) 4.39490 0.150655
\(852\) −0.344829 0.344829i −0.0118137 0.0118137i
\(853\) 10.6192 4.39863i 0.363595 0.150606i −0.193404 0.981119i \(-0.561953\pi\)
0.556999 + 0.830513i \(0.311953\pi\)
\(854\) 0.686230i 0.0234823i
\(855\) −5.11472 12.3480i −0.174920 0.422293i
\(856\) 1.60244 + 0.663753i 0.0547703 + 0.0226866i
\(857\) −10.7482 + 25.9484i −0.367151 + 0.886380i 0.627064 + 0.778968i \(0.284256\pi\)
−0.994215 + 0.107412i \(0.965744\pi\)
\(858\) −3.10717 + 3.10717i −0.106077 + 0.106077i
\(859\) −2.22749 + 2.22749i −0.0760011 + 0.0760011i −0.744086 0.668084i \(-0.767115\pi\)
0.668084 + 0.744086i \(0.267115\pi\)
\(860\) 1.91411 4.62106i 0.0652705 0.157577i
\(861\) 30.3833 + 12.5852i 1.03546 + 0.428901i
\(862\) −2.30538 5.56568i −0.0785216 0.189568i
\(863\) 34.5368i 1.17565i 0.808989 + 0.587823i \(0.200015\pi\)
−0.808989 + 0.587823i \(0.799985\pi\)
\(864\) 16.2598 6.73504i 0.553171 0.229131i
\(865\) 13.3239 + 13.3239i 0.453028 + 0.453028i
\(866\) 5.49781 0.186823
\(867\) −8.58348 15.8640i −0.291510 0.538769i
\(868\) −10.7675 −0.365473
\(869\) 25.4370 + 25.4370i 0.862892 + 0.862892i
\(870\) −1.10941 + 0.459531i −0.0376124 + 0.0155795i
\(871\) 37.6032i 1.27414i
\(872\) −4.25919 10.2826i −0.144234 0.348212i
\(873\) −15.5136 6.42595i −0.525057 0.217486i
\(874\) 0.708688 1.71093i 0.0239717 0.0578729i
\(875\) −1.77472 + 1.77472i −0.0599966 + 0.0599966i
\(876\) −9.24848 + 9.24848i −0.312477 + 0.312477i
\(877\) −6.05591 + 14.6203i −0.204493 + 0.493691i −0.992539 0.121926i \(-0.961093\pi\)
0.788046 + 0.615617i \(0.211093\pi\)
\(878\) 4.10647 + 1.70096i 0.138587 + 0.0574045i
\(879\) −8.47821 20.4682i −0.285963 0.690376i
\(880\) 8.46705i 0.285424i
\(881\) 29.1623 12.0794i 0.982504 0.406967i 0.167152 0.985931i \(-0.446543\pi\)
0.815353 + 0.578965i \(0.196543\pi\)
\(882\) −0.280162 0.280162i −0.00943353 0.00943353i
\(883\) −20.2779 −0.682406 −0.341203 0.939990i \(-0.610834\pi\)
−0.341203 + 0.939990i \(0.610834\pi\)
\(884\) 29.5878 32.8124i 0.995144 1.10360i
\(885\) 7.89572 0.265412
\(886\) −4.97762 4.97762i −0.167226 0.167226i
\(887\) 45.1215 18.6899i 1.51503 0.627547i 0.538443 0.842662i \(-0.319013\pi\)
0.976589 + 0.215115i \(0.0690126\pi\)
\(888\) 6.38831i 0.214378i
\(889\) 5.71946 + 13.8080i 0.191825 + 0.463106i
\(890\) −0.110141 0.0456218i −0.00369192 0.00152925i
\(891\) 0.126868 0.306287i 0.00425024 0.0102610i
\(892\) 8.72426 8.72426i 0.292110 0.292110i
\(893\) 11.6033 11.6033i 0.388290 0.388290i
\(894\) −0.737129 + 1.77959i −0.0246533 + 0.0595183i
\(895\) −3.06159 1.26815i −0.102338 0.0423897i
\(896\) −8.24607 19.9078i −0.275482 0.665072i
\(897\) 5.12682i 0.171180i
\(898\) −0.477067 + 0.197608i −0.0159199 + 0.00659425i
\(899\) 5.96141 + 5.96141i 0.198824 + 0.198824i
\(900\) −3.57791 −0.119264
\(901\) 11.4253 0.590416i 0.380633 0.0196696i
\(902\) 9.11148 0.303379
\(903\) −4.93373 4.93373i −0.164184 0.164184i
\(904\) 16.3004 6.75183i 0.542142 0.224563i
\(905\) 15.8652i 0.527375i
\(906\) 1.27618 + 3.08098i 0.0423984 + 0.102359i
\(907\) −38.5317 15.9603i −1.27942 0.529955i −0.363608 0.931552i \(-0.618455\pi\)
−0.915816 + 0.401598i \(0.868455\pi\)
\(908\) 2.23588 5.39790i 0.0742004 0.179136i
\(909\) −20.2614 + 20.2614i −0.672029 + 0.672029i
\(910\) −3.00545 + 3.00545i −0.0996297 + 0.0996297i
\(911\) 2.44973 5.91417i 0.0811632 0.195945i −0.878088 0.478498i \(-0.841181\pi\)
0.959252 + 0.282553i \(0.0911813\pi\)
\(912\) 24.2015 + 10.0246i 0.801392 + 0.331947i
\(913\) −13.0073 31.4023i −0.430478 1.03926i
\(914\) 3.98735i 0.131890i
\(915\) 0.888391 0.367983i 0.0293693 0.0121652i
\(916\) −10.2039 10.2039i −0.337145 0.337145i
\(917\) 10.5094 0.347052
\(918\) −2.15178 + 6.06239i −0.0710195 + 0.200089i
\(919\) −23.6812 −0.781170 −0.390585 0.920567i \(-0.627727\pi\)
−0.390585 + 0.920567i \(0.627727\pi\)
\(920\) −0.717811 0.717811i −0.0236655 0.0236655i
\(921\) −29.3613 + 12.1618i −0.967488 + 0.400746i
\(922\) 8.83658i 0.291017i
\(923\) 0.517199 + 1.24863i 0.0170238 + 0.0410991i
\(924\) 11.4859 + 4.75762i 0.377859 + 0.156514i
\(925\) −1.95382 + 4.71693i −0.0642411 + 0.155092i
\(926\) −2.09137 + 2.09137i −0.0687268 + 0.0687268i
\(927\) 19.5807 19.5807i 0.643116 0.643116i
\(928\) −4.88550 + 11.7946i −0.160374 + 0.387178i
\(929\) 50.7164 + 21.0074i 1.66395 + 0.689232i 0.998369 0.0570920i \(-0.0181828\pi\)
0.665583 + 0.746324i \(0.268183\pi\)
\(930\) 0.275286 + 0.664598i 0.00902697 + 0.0217930i
\(931\) 4.99683i 0.163764i
\(932\) 39.4142 16.3259i 1.29106 0.534773i
\(933\) 0.157795 + 0.157795i 0.00516598 + 0.00516598i
\(934\) −4.12766 −0.135061
\(935\) −7.48847 6.75255i −0.244899 0.220832i
\(936\) −12.4071 −0.405539
\(937\) 4.78966 + 4.78966i 0.156471 + 0.156471i 0.781001 0.624530i \(-0.214709\pi\)
−0.624530 + 0.781001i \(0.714709\pi\)
\(938\) 4.68619 1.94108i 0.153010 0.0633786i
\(939\) 34.4025i 1.12268i
\(940\) −1.68107 4.05845i −0.0548303 0.132372i
\(941\) −23.2992 9.65084i −0.759532 0.314608i −0.0309078 0.999522i \(-0.509840\pi\)
−0.728624 + 0.684914i \(0.759840\pi\)
\(942\) −1.64232 + 3.96490i −0.0535096 + 0.129184i
\(943\) 7.51696 7.51696i 0.244786 0.244786i
\(944\) 18.2183 18.2183i 0.592954 0.592954i
\(945\) −4.96723 + 11.9920i −0.161584 + 0.390098i
\(946\) −1.78598 0.739776i −0.0580671 0.0240522i
\(947\) 9.37621 + 22.6362i 0.304686 + 0.735577i 0.999860 + 0.0167354i \(0.00532731\pi\)
−0.695174 + 0.718841i \(0.744673\pi\)
\(948\) 29.7937i 0.967654i
\(949\) 33.4888 13.8715i 1.08709 0.450288i
\(950\) 1.52123 + 1.52123i 0.0493553 + 0.0493553i
\(951\) −35.4793 −1.15050
\(952\) 11.5007 + 4.08206i 0.372740 + 0.132300i
\(953\) 30.3936 0.984545 0.492272 0.870441i \(-0.336166\pi\)
0.492272 + 0.870441i \(0.336166\pi\)
\(954\) −1.10941 1.10941i −0.0359185 0.0359185i
\(955\) 25.4014 10.5216i 0.821969 0.340471i
\(956\) 6.60473i 0.213612i
\(957\) −3.72511 8.99320i −0.120416 0.290709i
\(958\) −3.06873 1.27111i −0.0991462 0.0410677i
\(959\) −6.97302 + 16.8344i −0.225171 + 0.543610i
\(960\) 4.42477 4.42477i 0.142809 0.142809i
\(961\) −18.3491 + 18.3491i −0.591906 + 0.591906i
\(962\) −3.30874 + 7.98801i −0.106678 + 0.257544i
\(963\) −2.54677 1.05491i −0.0820684 0.0339939i
\(964\) 13.1688 + 31.7923i 0.424139 + 1.02396i
\(965\) 14.7613i 0.475182i
\(966\) −0.638915 + 0.264647i −0.0205568 + 0.00851489i
\(967\) −31.0785 31.0785i −0.999416 0.999416i 0.000584066 1.00000i \(-0.499814\pi\)
−1.00000 0.000584066i \(0.999814\pi\)
\(968\) −5.91906 −0.190246
\(969\) −28.1669 + 13.4097i −0.904852 + 0.430782i
\(970\) 2.70288 0.0867843
\(971\) 29.9769 + 29.9769i 0.962005 + 0.962005i 0.999304 0.0372988i \(-0.0118753\pi\)
−0.0372988 + 0.999304i \(0.511875\pi\)
\(972\) −27.6169 + 11.4393i −0.885814 + 0.366916i
\(973\) 26.0853i 0.836255i
\(974\) 1.16538 + 2.81349i 0.0373413 + 0.0901500i
\(975\) −5.50249 2.27920i −0.176221 0.0729929i
\(976\) 1.20077 2.89891i 0.0384356 0.0927918i
\(977\) 16.7792 16.7792i 0.536813 0.536813i −0.385778 0.922591i \(-0.626067\pi\)
0.922591 + 0.385778i \(0.126067\pi\)
\(978\) 0.356517 0.356517i 0.0114001 0.0114001i
\(979\) 0.369825 0.892837i 0.0118197 0.0285352i
\(980\) −1.23583 0.511896i −0.0394770 0.0163519i
\(981\) 6.76915 + 16.3422i 0.216122 + 0.521765i
\(982\) 5.15363i 0.164459i
\(983\) −25.9264 + 10.7391i −0.826925 + 0.342524i −0.755685 0.654935i \(-0.772696\pi\)
−0.0712405 + 0.997459i \(0.522696\pi\)
\(984\) −10.9264 10.9264i −0.348322 0.348322i
\(985\) 0.376406 0.0119933
\(986\) −2.00585 4.21325i −0.0638791 0.134177i
\(987\) −6.12786 −0.195052
\(988\) −54.0337 54.0337i −1.71904 1.71904i
\(989\) −2.08374 + 0.863114i −0.0662591 + 0.0274454i
\(990\) 1.38282i 0.0439488i
\(991\) 17.0472 + 41.1557i 0.541523 + 1.30735i 0.923648 + 0.383242i \(0.125193\pi\)
−0.382124 + 0.924111i \(0.624807\pi\)
\(992\) 7.06567 + 2.92670i 0.224335 + 0.0929227i
\(993\) 0.359477 0.867854i 0.0114076 0.0275405i
\(994\) −0.128909 + 0.128909i −0.00408874 + 0.00408874i
\(995\) 5.32454 5.32454i 0.168799 0.168799i
\(996\) −10.7728 + 26.0079i −0.341349 + 0.824090i
\(997\) −18.9837 7.86332i −0.601221 0.249034i 0.0612487 0.998123i \(-0.480492\pi\)
−0.662470 + 0.749089i \(0.730492\pi\)
\(998\) −3.62047 8.74058i −0.114604 0.276678i
\(999\) 26.4042i 0.835392i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.2.l.a.36.4 yes 24
3.2 odd 2 765.2.be.b.631.3 24
5.2 odd 4 425.2.n.c.274.3 24
5.3 odd 4 425.2.n.f.274.4 24
5.4 even 2 425.2.m.b.376.3 24
17.3 odd 16 1445.2.a.p.1.7 12
17.5 odd 16 1445.2.d.j.866.12 24
17.9 even 8 inner 85.2.l.a.26.4 24
17.12 odd 16 1445.2.d.j.866.11 24
17.14 odd 16 1445.2.a.q.1.7 12
51.26 odd 8 765.2.be.b.451.3 24
85.9 even 8 425.2.m.b.26.3 24
85.14 odd 16 7225.2.a.bq.1.6 12
85.43 odd 8 425.2.n.c.349.3 24
85.54 odd 16 7225.2.a.bs.1.6 12
85.77 odd 8 425.2.n.f.349.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.26.4 24 17.9 even 8 inner
85.2.l.a.36.4 yes 24 1.1 even 1 trivial
425.2.m.b.26.3 24 85.9 even 8
425.2.m.b.376.3 24 5.4 even 2
425.2.n.c.274.3 24 5.2 odd 4
425.2.n.c.349.3 24 85.43 odd 8
425.2.n.f.274.4 24 5.3 odd 4
425.2.n.f.349.4 24 85.77 odd 8
765.2.be.b.451.3 24 51.26 odd 8
765.2.be.b.631.3 24 3.2 odd 2
1445.2.a.p.1.7 12 17.3 odd 16
1445.2.a.q.1.7 12 17.14 odd 16
1445.2.d.j.866.11 24 17.12 odd 16
1445.2.d.j.866.12 24 17.5 odd 16
7225.2.a.bq.1.6 12 85.14 odd 16
7225.2.a.bs.1.6 12 85.54 odd 16