L(s) = 1 | + (−0.707 + 0.707i)2-s + (−1.36 − 0.564i)3-s − 1.00i·4-s + (1.36 − 0.564i)6-s + (−1.35 − 3.27i)7-s + (0.707 + 0.707i)8-s + (−0.581 − 0.581i)9-s + (−4.35 + 1.80i)11-s + (−0.564 + 1.36i)12-s + 5.47i·13-s + (3.27 + 1.35i)14-s − 1.00·16-s + (−2.52 − 3.25i)17-s + 0.822·18-s + (0.857 − 0.857i)19-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (−0.787 − 0.326i)3-s − 0.500i·4-s + (0.556 − 0.230i)6-s + (−0.513 − 1.23i)7-s + (0.250 + 0.250i)8-s + (−0.193 − 0.193i)9-s + (−1.31 + 0.543i)11-s + (−0.163 + 0.393i)12-s + 1.51i·13-s + (0.876 + 0.362i)14-s − 0.250·16-s + (−0.613 − 0.789i)17-s + 0.193·18-s + (0.196 − 0.196i)19-s + ⋯ |
Λ(s)=(=(850s/2ΓC(s)L(s)(0.0784−0.996i)Λ(2−s)
Λ(s)=(=(850s/2ΓC(s+1/2)L(s)(0.0784−0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
850
= 2⋅52⋅17
|
Sign: |
0.0784−0.996i
|
Analytic conductor: |
6.78728 |
Root analytic conductor: |
2.60524 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ850(451,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 850, ( :1/2), 0.0784−0.996i)
|
Particular Values
L(1) |
≈ |
0.311153+0.287620i |
L(21) |
≈ |
0.311153+0.287620i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 5 | 1 |
| 17 | 1+(2.52+3.25i)T |
good | 3 | 1+(1.36+0.564i)T+(2.12+2.12i)T2 |
| 7 | 1+(1.35+3.27i)T+(−4.94+4.94i)T2 |
| 11 | 1+(4.35−1.80i)T+(7.77−7.77i)T2 |
| 13 | 1−5.47iT−13T2 |
| 19 | 1+(−0.857+0.857i)T−19iT2 |
| 23 | 1+(−5.28+2.18i)T+(16.2−16.2i)T2 |
| 29 | 1+(1.77−4.29i)T+(−20.5−20.5i)T2 |
| 31 | 1+(−6.72−2.78i)T+(21.9+21.9i)T2 |
| 37 | 1+(−8.58−3.55i)T+(26.1+26.1i)T2 |
| 41 | 1+(−0.0547−0.132i)T+(−28.9+28.9i)T2 |
| 43 | 1+(−0.587−0.587i)T+43iT2 |
| 47 | 1+5.85iT−47T2 |
| 53 | 1+(6.54−6.54i)T−53iT2 |
| 59 | 1+(3.33+3.33i)T+59iT2 |
| 61 | 1+(−4.76−11.4i)T+(−43.1+43.1i)T2 |
| 67 | 1+8.66T+67T2 |
| 71 | 1+(−4.75−1.96i)T+(50.2+50.2i)T2 |
| 73 | 1+(6.17−14.9i)T+(−51.6−51.6i)T2 |
| 79 | 1+(−9.34+3.87i)T+(55.8−55.8i)T2 |
| 83 | 1+(2.40−2.40i)T−83iT2 |
| 89 | 1+2.24iT−89T2 |
| 97 | 1+(1.66−4.02i)T+(−68.5−68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.39136314373745539695713119847, −9.547920109272276048067065633042, −8.752994766607752852590070609224, −7.50241731393607983268213750826, −6.91922700656965797873005662451, −6.42282177425362199198629516088, −5.13333097879968832707519385089, −4.40930593169148692764128518556, −2.76846567329703591282255697690, −0.999144926813167731873336595678,
0.33230148423982085485867774265, 2.47058128529420839207777419673, 3.13822349389428564592013926372, 4.78019039079649257255423248709, 5.68697122384459393275189414103, 6.14746364039288646483713668571, 7.84495313551074021322823287595, 8.247232803089244709464875038218, 9.313037006437104917018778361587, 10.11967174917034704168827246090