L(s) = 1 | + (−0.707 + 0.707i)2-s + (−1.36 − 0.564i)3-s − 1.00i·4-s + (1.36 − 0.564i)6-s + (−1.35 − 3.27i)7-s + (0.707 + 0.707i)8-s + (−0.581 − 0.581i)9-s + (−4.35 + 1.80i)11-s + (−0.564 + 1.36i)12-s + 5.47i·13-s + (3.27 + 1.35i)14-s − 1.00·16-s + (−2.52 − 3.25i)17-s + 0.822·18-s + (0.857 − 0.857i)19-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (−0.787 − 0.326i)3-s − 0.500i·4-s + (0.556 − 0.230i)6-s + (−0.513 − 1.23i)7-s + (0.250 + 0.250i)8-s + (−0.193 − 0.193i)9-s + (−1.31 + 0.543i)11-s + (−0.163 + 0.393i)12-s + 1.51i·13-s + (0.876 + 0.362i)14-s − 0.250·16-s + (−0.613 − 0.789i)17-s + 0.193·18-s + (0.196 − 0.196i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0784 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0784 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.311153 + 0.287620i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.311153 + 0.287620i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 \) |
| 17 | \( 1 + (2.52 + 3.25i)T \) |
good | 3 | \( 1 + (1.36 + 0.564i)T + (2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (1.35 + 3.27i)T + (-4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (4.35 - 1.80i)T + (7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 - 5.47iT - 13T^{2} \) |
| 19 | \( 1 + (-0.857 + 0.857i)T - 19iT^{2} \) |
| 23 | \( 1 + (-5.28 + 2.18i)T + (16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (1.77 - 4.29i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (-6.72 - 2.78i)T + (21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (-8.58 - 3.55i)T + (26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (-0.0547 - 0.132i)T + (-28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (-0.587 - 0.587i)T + 43iT^{2} \) |
| 47 | \( 1 + 5.85iT - 47T^{2} \) |
| 53 | \( 1 + (6.54 - 6.54i)T - 53iT^{2} \) |
| 59 | \( 1 + (3.33 + 3.33i)T + 59iT^{2} \) |
| 61 | \( 1 + (-4.76 - 11.4i)T + (-43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + 8.66T + 67T^{2} \) |
| 71 | \( 1 + (-4.75 - 1.96i)T + (50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (6.17 - 14.9i)T + (-51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-9.34 + 3.87i)T + (55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (2.40 - 2.40i)T - 83iT^{2} \) |
| 89 | \( 1 + 2.24iT - 89T^{2} \) |
| 97 | \( 1 + (1.66 - 4.02i)T + (-68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39136314373745539695713119847, −9.547920109272276048067065633042, −8.752994766607752852590070609224, −7.50241731393607983268213750826, −6.91922700656965797873005662451, −6.42282177425362199198629516088, −5.13333097879968832707519385089, −4.40930593169148692764128518556, −2.76846567329703591282255697690, −0.999144926813167731873336595678,
0.33230148423982085485867774265, 2.47058128529420839207777419673, 3.13822349389428564592013926372, 4.78019039079649257255423248709, 5.68697122384459393275189414103, 6.14746364039288646483713668571, 7.84495313551074021322823287595, 8.247232803089244709464875038218, 9.313037006437104917018778361587, 10.11967174917034704168827246090