Properties

Label 850.2.l.e.451.2
Level $850$
Weight $2$
Character 850.451
Analytic conductor $6.787$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(151,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.151");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.l (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 28x^{14} + 286x^{12} + 1412x^{10} + 3709x^{8} + 5264x^{6} + 3780x^{4} + 1072x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 451.2
Root \(2.47571i\) of defining polynomial
Character \(\chi\) \(=\) 850.451
Dual form 850.2.l.e.801.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(-1.36338 - 0.564729i) q^{3} -1.00000i q^{4} +(1.36338 - 0.564729i) q^{6} +(-1.35785 - 3.27815i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-0.581445 - 0.581445i) q^{9} +O(q^{10})\) \(q+(-0.707107 + 0.707107i) q^{2} +(-1.36338 - 0.564729i) q^{3} -1.00000i q^{4} +(1.36338 - 0.564729i) q^{6} +(-1.35785 - 3.27815i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-0.581445 - 0.581445i) q^{9} +(-4.35013 + 1.80188i) q^{11} +(-0.564729 + 1.36338i) q^{12} +5.47699i q^{13} +(3.27815 + 1.35785i) q^{14} -1.00000 q^{16} +(-2.52894 - 3.25645i) q^{17} +0.822287 q^{18} +(0.857748 - 0.857748i) q^{19} +5.23617i q^{21} +(1.80188 - 4.35013i) q^{22} +(5.28485 - 2.18906i) q^{23} +(-0.564729 - 1.36338i) q^{24} +(-3.87282 - 3.87282i) q^{26} +(2.15856 + 5.21121i) q^{27} +(-3.27815 + 1.35785i) q^{28} +(-1.77710 + 4.29029i) q^{29} +(6.72892 + 2.78721i) q^{31} +(0.707107 - 0.707107i) q^{32} +6.94843 q^{33} +(4.09089 + 0.514430i) q^{34} +(-0.581445 + 0.581445i) q^{36} +(8.58444 + 3.55579i) q^{37} +1.21304i q^{38} +(3.09302 - 7.46720i) q^{39} +(0.0547598 + 0.132202i) q^{41} +(-3.70253 - 3.70253i) q^{42} +(0.587013 + 0.587013i) q^{43} +(1.80188 + 4.35013i) q^{44} +(-2.18906 + 5.28485i) q^{46} -5.85635i q^{47} +(1.36338 + 0.564729i) q^{48} +(-3.95275 + 3.95275i) q^{49} +(1.60888 + 5.86793i) q^{51} +5.47699 q^{52} +(-6.54226 + 6.54226i) q^{53} +(-5.21121 - 2.15856i) q^{54} +(1.35785 - 3.27815i) q^{56} +(-1.65383 + 0.685038i) q^{57} +(-1.77710 - 4.29029i) q^{58} +(-3.33507 - 3.33507i) q^{59} +(4.76261 + 11.4980i) q^{61} +(-6.72892 + 2.78721i) q^{62} +(-1.11655 + 2.69558i) q^{63} +1.00000i q^{64} +(-4.91328 + 4.91328i) q^{66} -8.66703 q^{67} +(-3.25645 + 2.52894i) q^{68} -8.44146 q^{69} +(4.75235 + 1.96849i) q^{71} -0.822287i q^{72} +(-6.17351 + 14.9042i) q^{73} +(-8.58444 + 3.55579i) q^{74} +(-0.857748 - 0.857748i) q^{76} +(11.8137 + 11.8137i) q^{77} +(3.09302 + 7.46720i) q^{78} +(9.34587 - 3.87118i) q^{79} -5.85698i q^{81} +(-0.132202 - 0.0547598i) q^{82} +(-2.40841 + 2.40841i) q^{83} +5.23617 q^{84} -0.830161 q^{86} +(4.84570 - 4.84570i) q^{87} +(-4.35013 - 1.80188i) q^{88} -2.24175i q^{89} +(17.9544 - 7.43696i) q^{91} +(-2.18906 - 5.28485i) q^{92} +(-7.60004 - 7.60004i) q^{93} +(4.14106 + 4.14106i) q^{94} +(-1.36338 + 0.564729i) q^{96} +(-1.66675 + 4.02389i) q^{97} -5.59004i q^{98} +(3.57705 + 1.48166i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 8 q^{11} - 8 q^{14} - 16 q^{16} - 8 q^{18} + 8 q^{22} - 8 q^{23} + 24 q^{27} + 8 q^{28} + 8 q^{29} + 32 q^{31} - 16 q^{33} + 16 q^{34} + 8 q^{37} - 32 q^{39} - 32 q^{41} - 32 q^{42} + 16 q^{43} + 8 q^{44} - 24 q^{46} - 8 q^{49} - 8 q^{51} + 8 q^{52} + 40 q^{53} + 16 q^{57} + 8 q^{58} + 16 q^{59} - 24 q^{61} - 32 q^{62} - 56 q^{63} - 8 q^{66} - 16 q^{67} - 16 q^{69} + 8 q^{71} - 16 q^{73} - 8 q^{74} - 24 q^{77} - 32 q^{78} + 40 q^{79} - 16 q^{82} - 32 q^{83} + 16 q^{84} + 32 q^{87} - 8 q^{88} + 24 q^{91} - 24 q^{92} + 32 q^{93} + 40 q^{94} - 24 q^{97} - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) −1.36338 0.564729i −0.787145 0.326046i −0.0473502 0.998878i \(-0.515078\pi\)
−0.739795 + 0.672832i \(0.765078\pi\)
\(4\) 1.00000i 0.500000i
\(5\) 0 0
\(6\) 1.36338 0.564729i 0.556596 0.230550i
\(7\) −1.35785 3.27815i −0.513221 1.23902i −0.941999 0.335615i \(-0.891056\pi\)
0.428779 0.903410i \(-0.358944\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) −0.581445 0.581445i −0.193815 0.193815i
\(10\) 0 0
\(11\) −4.35013 + 1.80188i −1.31161 + 0.543288i −0.925354 0.379103i \(-0.876232\pi\)
−0.386258 + 0.922391i \(0.626232\pi\)
\(12\) −0.564729 + 1.36338i −0.163023 + 0.393573i
\(13\) 5.47699i 1.51904i 0.650481 + 0.759522i \(0.274567\pi\)
−0.650481 + 0.759522i \(0.725433\pi\)
\(14\) 3.27815 + 1.35785i 0.876123 + 0.362902i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −2.52894 3.25645i −0.613358 0.789805i
\(18\) 0.822287 0.193815
\(19\) 0.857748 0.857748i 0.196781 0.196781i −0.601838 0.798619i \(-0.705565\pi\)
0.798619 + 0.601838i \(0.205565\pi\)
\(20\) 0 0
\(21\) 5.23617i 1.14263i
\(22\) 1.80188 4.35013i 0.384162 0.927450i
\(23\) 5.28485 2.18906i 1.10197 0.456450i 0.243803 0.969825i \(-0.421605\pi\)
0.858165 + 0.513375i \(0.171605\pi\)
\(24\) −0.564729 1.36338i −0.115275 0.278298i
\(25\) 0 0
\(26\) −3.87282 3.87282i −0.759522 0.759522i
\(27\) 2.15856 + 5.21121i 0.415414 + 1.00290i
\(28\) −3.27815 + 1.35785i −0.619512 + 0.256610i
\(29\) −1.77710 + 4.29029i −0.329999 + 0.796687i 0.668593 + 0.743629i \(0.266897\pi\)
−0.998591 + 0.0530586i \(0.983103\pi\)
\(30\) 0 0
\(31\) 6.72892 + 2.78721i 1.20855 + 0.500598i 0.893752 0.448561i \(-0.148063\pi\)
0.314798 + 0.949159i \(0.398063\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 6.94843 1.20957
\(34\) 4.09089 + 0.514430i 0.701581 + 0.0882239i
\(35\) 0 0
\(36\) −0.581445 + 0.581445i −0.0969075 + 0.0969075i
\(37\) 8.58444 + 3.55579i 1.41127 + 0.584569i 0.952652 0.304063i \(-0.0983432\pi\)
0.458622 + 0.888631i \(0.348343\pi\)
\(38\) 1.21304i 0.196781i
\(39\) 3.09302 7.46720i 0.495279 1.19571i
\(40\) 0 0
\(41\) 0.0547598 + 0.132202i 0.00855205 + 0.0206465i 0.928098 0.372336i \(-0.121443\pi\)
−0.919546 + 0.392983i \(0.871443\pi\)
\(42\) −3.70253 3.70253i −0.571313 0.571313i
\(43\) 0.587013 + 0.587013i 0.0895186 + 0.0895186i 0.750448 0.660929i \(-0.229838\pi\)
−0.660929 + 0.750448i \(0.729838\pi\)
\(44\) 1.80188 + 4.35013i 0.271644 + 0.655806i
\(45\) 0 0
\(46\) −2.18906 + 5.28485i −0.322759 + 0.779209i
\(47\) 5.85635i 0.854236i −0.904196 0.427118i \(-0.859529\pi\)
0.904196 0.427118i \(-0.140471\pi\)
\(48\) 1.36338 + 0.564729i 0.196786 + 0.0815116i
\(49\) −3.95275 + 3.95275i −0.564679 + 0.564679i
\(50\) 0 0
\(51\) 1.60888 + 5.86793i 0.225288 + 0.821675i
\(52\) 5.47699 0.759522
\(53\) −6.54226 + 6.54226i −0.898648 + 0.898648i −0.995317 0.0966687i \(-0.969181\pi\)
0.0966687 + 0.995317i \(0.469181\pi\)
\(54\) −5.21121 2.15856i −0.709156 0.293742i
\(55\) 0 0
\(56\) 1.35785 3.27815i 0.181451 0.438061i
\(57\) −1.65383 + 0.685038i −0.219055 + 0.0907355i
\(58\) −1.77710 4.29029i −0.233344 0.563343i
\(59\) −3.33507 3.33507i −0.434189 0.434189i 0.455861 0.890051i \(-0.349331\pi\)
−0.890051 + 0.455861i \(0.849331\pi\)
\(60\) 0 0
\(61\) 4.76261 + 11.4980i 0.609790 + 1.47216i 0.863229 + 0.504812i \(0.168438\pi\)
−0.253439 + 0.967351i \(0.581562\pi\)
\(62\) −6.72892 + 2.78721i −0.854574 + 0.353976i
\(63\) −1.11655 + 2.69558i −0.140672 + 0.339611i
\(64\) 1.00000i 0.125000i
\(65\) 0 0
\(66\) −4.91328 + 4.91328i −0.604783 + 0.604783i
\(67\) −8.66703 −1.05885 −0.529423 0.848358i \(-0.677592\pi\)
−0.529423 + 0.848358i \(0.677592\pi\)
\(68\) −3.25645 + 2.52894i −0.394903 + 0.306679i
\(69\) −8.44146 −1.01623
\(70\) 0 0
\(71\) 4.75235 + 1.96849i 0.564000 + 0.233617i 0.646421 0.762981i \(-0.276265\pi\)
−0.0824206 + 0.996598i \(0.526265\pi\)
\(72\) 0.822287i 0.0969075i
\(73\) −6.17351 + 14.9042i −0.722555 + 1.74440i −0.0566159 + 0.998396i \(0.518031\pi\)
−0.665939 + 0.746006i \(0.731969\pi\)
\(74\) −8.58444 + 3.55579i −0.997921 + 0.413353i
\(75\) 0 0
\(76\) −0.857748 0.857748i −0.0983905 0.0983905i
\(77\) 11.8137 + 11.8137i 1.34629 + 1.34629i
\(78\) 3.09302 + 7.46720i 0.350215 + 0.845494i
\(79\) 9.34587 3.87118i 1.05149 0.435542i 0.211068 0.977471i \(-0.432306\pi\)
0.840424 + 0.541929i \(0.182306\pi\)
\(80\) 0 0
\(81\) 5.85698i 0.650776i
\(82\) −0.132202 0.0547598i −0.0145993 0.00604721i
\(83\) −2.40841 + 2.40841i −0.264358 + 0.264358i −0.826822 0.562464i \(-0.809853\pi\)
0.562464 + 0.826822i \(0.309853\pi\)
\(84\) 5.23617 0.571313
\(85\) 0 0
\(86\) −0.830161 −0.0895186
\(87\) 4.84570 4.84570i 0.519514 0.519514i
\(88\) −4.35013 1.80188i −0.463725 0.192081i
\(89\) 2.24175i 0.237625i −0.992917 0.118813i \(-0.962091\pi\)
0.992917 0.118813i \(-0.0379088\pi\)
\(90\) 0 0
\(91\) 17.9544 7.43696i 1.88213 0.779605i
\(92\) −2.18906 5.28485i −0.228225 0.550984i
\(93\) −7.60004 7.60004i −0.788087 0.788087i
\(94\) 4.14106 + 4.14106i 0.427118 + 0.427118i
\(95\) 0 0
\(96\) −1.36338 + 0.564729i −0.139149 + 0.0576374i
\(97\) −1.66675 + 4.02389i −0.169233 + 0.408564i −0.985628 0.168929i \(-0.945969\pi\)
0.816395 + 0.577493i \(0.195969\pi\)
\(98\) 5.59004i 0.564679i
\(99\) 3.57705 + 1.48166i 0.359507 + 0.148913i
\(100\) 0 0
\(101\) −10.7393 −1.06860 −0.534301 0.845294i \(-0.679425\pi\)
−0.534301 + 0.845294i \(0.679425\pi\)
\(102\) −5.28690 3.01160i −0.523482 0.298193i
\(103\) 7.43306 0.732401 0.366200 0.930536i \(-0.380658\pi\)
0.366200 + 0.930536i \(0.380658\pi\)
\(104\) −3.87282 + 3.87282i −0.379761 + 0.379761i
\(105\) 0 0
\(106\) 9.25215i 0.898648i
\(107\) −6.01999 + 14.5335i −0.581974 + 1.40501i 0.309046 + 0.951047i \(0.399990\pi\)
−0.891020 + 0.453963i \(0.850010\pi\)
\(108\) 5.21121 2.15856i 0.501449 0.207707i
\(109\) 2.46089 + 5.94112i 0.235711 + 0.569056i 0.996830 0.0795553i \(-0.0253500\pi\)
−0.761120 + 0.648611i \(0.775350\pi\)
\(110\) 0 0
\(111\) −9.69577 9.69577i −0.920281 0.920281i
\(112\) 1.35785 + 3.27815i 0.128305 + 0.309756i
\(113\) 8.90782 3.68974i 0.837978 0.347102i 0.0779218 0.996959i \(-0.475172\pi\)
0.760056 + 0.649858i \(0.225172\pi\)
\(114\) 0.685038 1.65383i 0.0641597 0.154895i
\(115\) 0 0
\(116\) 4.29029 + 1.77710i 0.398344 + 0.164999i
\(117\) 3.18457 3.18457i 0.294414 0.294414i
\(118\) 4.71650 0.434189
\(119\) −7.24121 + 12.7120i −0.663800 + 1.16531i
\(120\) 0 0
\(121\) 7.89864 7.89864i 0.718058 0.718058i
\(122\) −11.4980 4.76261i −1.04098 0.431187i
\(123\) 0.211165i 0.0190401i
\(124\) 2.78721 6.72892i 0.250299 0.604275i
\(125\) 0 0
\(126\) −1.11655 2.69558i −0.0994699 0.240142i
\(127\) −2.26692 2.26692i −0.201157 0.201157i 0.599339 0.800496i \(-0.295430\pi\)
−0.800496 + 0.599339i \(0.795430\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) −0.468816 1.13182i −0.0412769 0.0996513i
\(130\) 0 0
\(131\) −1.36747 + 3.30136i −0.119476 + 0.288441i −0.972292 0.233771i \(-0.924893\pi\)
0.852815 + 0.522213i \(0.174893\pi\)
\(132\) 6.94843i 0.604783i
\(133\) −3.97653 1.64713i −0.344808 0.142824i
\(134\) 6.12852 6.12852i 0.529423 0.529423i
\(135\) 0 0
\(136\) 0.514430 4.09089i 0.0441120 0.350791i
\(137\) −3.30950 −0.282750 −0.141375 0.989956i \(-0.545152\pi\)
−0.141375 + 0.989956i \(0.545152\pi\)
\(138\) 5.96902 5.96902i 0.508116 0.508116i
\(139\) −1.66295 0.688816i −0.141049 0.0584246i 0.311042 0.950396i \(-0.399322\pi\)
−0.452092 + 0.891972i \(0.649322\pi\)
\(140\) 0 0
\(141\) −3.30725 + 7.98440i −0.278520 + 0.672408i
\(142\) −4.75235 + 1.96849i −0.398808 + 0.165192i
\(143\) −9.86889 23.8256i −0.825278 1.99240i
\(144\) 0.581445 + 0.581445i 0.0484538 + 0.0484538i
\(145\) 0 0
\(146\) −6.17351 14.9042i −0.510924 1.23348i
\(147\) 7.62132 3.15686i 0.628596 0.260373i
\(148\) 3.55579 8.58444i 0.292284 0.705637i
\(149\) 4.16768i 0.341430i 0.985320 + 0.170715i \(0.0546077\pi\)
−0.985320 + 0.170715i \(0.945392\pi\)
\(150\) 0 0
\(151\) −3.24744 + 3.24744i −0.264273 + 0.264273i −0.826788 0.562514i \(-0.809834\pi\)
0.562514 + 0.826788i \(0.309834\pi\)
\(152\) 1.21304 0.0983905
\(153\) −0.423009 + 3.36389i −0.0341982 + 0.271954i
\(154\) −16.7071 −1.34629
\(155\) 0 0
\(156\) −7.46720 3.09302i −0.597854 0.247639i
\(157\) 15.5482i 1.24088i −0.784253 0.620442i \(-0.786953\pi\)
0.784253 0.620442i \(-0.213047\pi\)
\(158\) −3.87118 + 9.34587i −0.307975 + 0.743517i
\(159\) 12.6142 5.22495i 1.00037 0.414366i
\(160\) 0 0
\(161\) −14.3521 14.3521i −1.13111 1.13111i
\(162\) 4.14151 + 4.14151i 0.325388 + 0.325388i
\(163\) −3.87956 9.36608i −0.303870 0.733608i −0.999879 0.0155742i \(-0.995042\pi\)
0.696008 0.718034i \(-0.254958\pi\)
\(164\) 0.132202 0.0547598i 0.0103232 0.00427602i
\(165\) 0 0
\(166\) 3.40601i 0.264358i
\(167\) 11.5038 + 4.76501i 0.890187 + 0.368728i 0.780439 0.625232i \(-0.214996\pi\)
0.109748 + 0.993959i \(0.464996\pi\)
\(168\) −3.70253 + 3.70253i −0.285657 + 0.285657i
\(169\) −16.9974 −1.30750
\(170\) 0 0
\(171\) −0.997467 −0.0762782
\(172\) 0.587013 0.587013i 0.0447593 0.0447593i
\(173\) 3.27672 + 1.35726i 0.249125 + 0.103191i 0.503752 0.863849i \(-0.331953\pi\)
−0.254627 + 0.967039i \(0.581953\pi\)
\(174\) 6.85286i 0.519514i
\(175\) 0 0
\(176\) 4.35013 1.80188i 0.327903 0.135822i
\(177\) 2.66354 + 6.43037i 0.200204 + 0.483336i
\(178\) 1.58516 + 1.58516i 0.118813 + 0.118813i
\(179\) −9.26485 9.26485i −0.692487 0.692487i 0.270291 0.962779i \(-0.412880\pi\)
−0.962779 + 0.270291i \(0.912880\pi\)
\(180\) 0 0
\(181\) 1.68821 0.699281i 0.125484 0.0519772i −0.319058 0.947735i \(-0.603366\pi\)
0.444542 + 0.895758i \(0.353366\pi\)
\(182\) −7.43696 + 17.9544i −0.551264 + 1.33087i
\(183\) 18.3656i 1.35763i
\(184\) 5.28485 + 2.18906i 0.389604 + 0.161379i
\(185\) 0 0
\(186\) 10.7481 0.788087
\(187\) 16.8689 + 9.60913i 1.23358 + 0.702689i
\(188\) −5.85635 −0.427118
\(189\) 14.1521 14.1521i 1.02942 1.02942i
\(190\) 0 0
\(191\) 16.8319i 1.21791i 0.793205 + 0.608955i \(0.208411\pi\)
−0.793205 + 0.608955i \(0.791589\pi\)
\(192\) 0.564729 1.36338i 0.0407558 0.0983932i
\(193\) 5.38504 2.23056i 0.387624 0.160559i −0.180356 0.983601i \(-0.557725\pi\)
0.567980 + 0.823042i \(0.307725\pi\)
\(194\) −1.66675 4.02389i −0.119666 0.288899i
\(195\) 0 0
\(196\) 3.95275 + 3.95275i 0.282340 + 0.282340i
\(197\) −1.34760 3.25339i −0.0960123 0.231794i 0.868575 0.495557i \(-0.165036\pi\)
−0.964587 + 0.263763i \(0.915036\pi\)
\(198\) −3.57705 + 1.48166i −0.254210 + 0.105297i
\(199\) −6.42910 + 15.5212i −0.455747 + 1.10027i 0.514356 + 0.857577i \(0.328031\pi\)
−0.970103 + 0.242694i \(0.921969\pi\)
\(200\) 0 0
\(201\) 11.8164 + 4.89452i 0.833466 + 0.345233i
\(202\) 7.59384 7.59384i 0.534301 0.534301i
\(203\) 16.4773 1.15648
\(204\) 5.86793 1.60888i 0.410837 0.112644i
\(205\) 0 0
\(206\) −5.25597 + 5.25597i −0.366200 + 0.366200i
\(207\) −4.34567 1.80003i −0.302045 0.125111i
\(208\) 5.47699i 0.379761i
\(209\) −2.18575 + 5.27687i −0.151192 + 0.365009i
\(210\) 0 0
\(211\) −8.73280 21.0828i −0.601191 1.45140i −0.872357 0.488870i \(-0.837409\pi\)
0.271166 0.962533i \(-0.412591\pi\)
\(212\) 6.54226 + 6.54226i 0.449324 + 0.449324i
\(213\) −5.36758 5.36758i −0.367780 0.367780i
\(214\) −6.01999 14.5335i −0.411518 0.993492i
\(215\) 0 0
\(216\) −2.15856 + 5.21121i −0.146871 + 0.354578i
\(217\) 25.8431i 1.75434i
\(218\) −5.94112 2.46089i −0.402383 0.166673i
\(219\) 16.8336 16.8336i 1.13751 1.13751i
\(220\) 0 0
\(221\) 17.8356 13.8510i 1.19975 0.931717i
\(222\) 13.7119 0.920281
\(223\) 6.41246 6.41246i 0.429410 0.429410i −0.459017 0.888427i \(-0.651798\pi\)
0.888427 + 0.459017i \(0.151798\pi\)
\(224\) −3.27815 1.35785i −0.219031 0.0907255i
\(225\) 0 0
\(226\) −3.68974 + 8.90782i −0.245438 + 0.592540i
\(227\) −14.5491 + 6.02643i −0.965658 + 0.399988i −0.809094 0.587679i \(-0.800042\pi\)
−0.156564 + 0.987668i \(0.550042\pi\)
\(228\) 0.685038 + 1.65383i 0.0453678 + 0.109527i
\(229\) 14.2262 + 14.2262i 0.940092 + 0.940092i 0.998304 0.0582124i \(-0.0185401\pi\)
−0.0582124 + 0.998304i \(0.518540\pi\)
\(230\) 0 0
\(231\) −9.43496 22.7780i −0.620775 1.49868i
\(232\) −4.29029 + 1.77710i −0.281672 + 0.116672i
\(233\) 7.37613 17.8076i 0.483227 1.16661i −0.474841 0.880071i \(-0.657495\pi\)
0.958068 0.286541i \(-0.0925054\pi\)
\(234\) 4.50366i 0.294414i
\(235\) 0 0
\(236\) −3.33507 + 3.33507i −0.217095 + 0.217095i
\(237\) −14.9281 −0.969684
\(238\) −3.86845 14.1091i −0.250755 0.914555i
\(239\) 14.2040 0.918778 0.459389 0.888235i \(-0.348068\pi\)
0.459389 + 0.888235i \(0.348068\pi\)
\(240\) 0 0
\(241\) −4.22633 1.75060i −0.272242 0.112766i 0.242386 0.970180i \(-0.422070\pi\)
−0.514628 + 0.857414i \(0.672070\pi\)
\(242\) 11.1704i 0.718058i
\(243\) 3.16806 7.64838i 0.203231 0.490644i
\(244\) 11.4980 4.76261i 0.736082 0.304895i
\(245\) 0 0
\(246\) 0.149316 + 0.149316i 0.00952007 + 0.00952007i
\(247\) 4.69788 + 4.69788i 0.298919 + 0.298919i
\(248\) 2.78721 + 6.72892i 0.176988 + 0.427287i
\(249\) 4.64367 1.92347i 0.294281 0.121895i
\(250\) 0 0
\(251\) 9.00712i 0.568524i 0.958747 + 0.284262i \(0.0917486\pi\)
−0.958747 + 0.284262i \(0.908251\pi\)
\(252\) 2.69558 + 1.11655i 0.169806 + 0.0703358i
\(253\) −19.0453 + 19.0453i −1.19737 + 1.19737i
\(254\) 3.20591 0.201157
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −20.2643 + 20.2643i −1.26405 + 1.26405i −0.314938 + 0.949112i \(0.601984\pi\)
−0.949112 + 0.314938i \(0.898016\pi\)
\(258\) 1.13182 + 0.468816i 0.0704641 + 0.0291872i
\(259\) 32.9693i 2.04862i
\(260\) 0 0
\(261\) 3.52785 1.46129i 0.218369 0.0904513i
\(262\) −1.36747 3.30136i −0.0844825 0.203959i
\(263\) 4.27498 + 4.27498i 0.263606 + 0.263606i 0.826517 0.562911i \(-0.190319\pi\)
−0.562911 + 0.826517i \(0.690319\pi\)
\(264\) 4.91328 + 4.91328i 0.302392 + 0.302392i
\(265\) 0 0
\(266\) 3.97653 1.64713i 0.243816 0.100992i
\(267\) −1.26598 + 3.05635i −0.0774769 + 0.187046i
\(268\) 8.66703i 0.529423i
\(269\) −15.6073 6.46477i −0.951596 0.394164i −0.147765 0.989022i \(-0.547208\pi\)
−0.803830 + 0.594858i \(0.797208\pi\)
\(270\) 0 0
\(271\) −22.9305 −1.39293 −0.696463 0.717593i \(-0.745244\pi\)
−0.696463 + 0.717593i \(0.745244\pi\)
\(272\) 2.52894 + 3.25645i 0.153339 + 0.197451i
\(273\) −28.6785 −1.73570
\(274\) 2.34017 2.34017i 0.141375 0.141375i
\(275\) 0 0
\(276\) 8.44146i 0.508116i
\(277\) −7.65435 + 18.4792i −0.459905 + 1.11031i 0.508530 + 0.861044i \(0.330189\pi\)
−0.968435 + 0.249265i \(0.919811\pi\)
\(278\) 1.66295 0.688816i 0.0997370 0.0413124i
\(279\) −2.29189 5.53311i −0.137212 0.331259i
\(280\) 0 0
\(281\) 16.4633 + 16.4633i 0.982118 + 0.982118i 0.999843 0.0177247i \(-0.00564226\pi\)
−0.0177247 + 0.999843i \(0.505642\pi\)
\(282\) −3.30725 7.98440i −0.196944 0.475464i
\(283\) 23.2363 9.62478i 1.38125 0.572134i 0.436437 0.899735i \(-0.356240\pi\)
0.944816 + 0.327601i \(0.106240\pi\)
\(284\) 1.96849 4.75235i 0.116808 0.282000i
\(285\) 0 0
\(286\) 23.8256 + 9.86889i 1.40884 + 0.583560i
\(287\) 0.359022 0.359022i 0.0211924 0.0211924i
\(288\) −0.822287 −0.0484538
\(289\) −4.20895 + 16.4707i −0.247585 + 0.968866i
\(290\) 0 0
\(291\) 4.54481 4.54481i 0.266422 0.266422i
\(292\) 14.9042 + 6.17351i 0.872201 + 0.361278i
\(293\) 25.5251i 1.49119i 0.666399 + 0.745595i \(0.267835\pi\)
−0.666399 + 0.745595i \(0.732165\pi\)
\(294\) −3.15686 + 7.62132i −0.184112 + 0.444485i
\(295\) 0 0
\(296\) 3.55579 + 8.58444i 0.206676 + 0.498961i
\(297\) −18.7800 18.7800i −1.08972 1.08972i
\(298\) −2.94700 2.94700i −0.170715 0.170715i
\(299\) 11.9894 + 28.9451i 0.693368 + 1.67394i
\(300\) 0 0
\(301\) 1.12724 2.72139i 0.0649729 0.156858i
\(302\) 4.59258i 0.264273i
\(303\) 14.6417 + 6.06480i 0.841145 + 0.348414i
\(304\) −0.857748 + 0.857748i −0.0491952 + 0.0491952i
\(305\) 0 0
\(306\) −2.07951 2.67774i −0.118878 0.153076i
\(307\) 14.2382 0.812616 0.406308 0.913736i \(-0.366816\pi\)
0.406308 + 0.913736i \(0.366816\pi\)
\(308\) 11.8137 11.8137i 0.673147 0.673147i
\(309\) −10.1341 4.19766i −0.576506 0.238797i
\(310\) 0 0
\(311\) −4.65012 + 11.2264i −0.263684 + 0.636590i −0.999161 0.0409602i \(-0.986958\pi\)
0.735477 + 0.677550i \(0.236958\pi\)
\(312\) 7.46720 3.09302i 0.422747 0.175108i
\(313\) 8.33854 + 20.1310i 0.471322 + 1.13787i 0.963579 + 0.267422i \(0.0861719\pi\)
−0.492257 + 0.870450i \(0.663828\pi\)
\(314\) 10.9943 + 10.9943i 0.620442 + 0.620442i
\(315\) 0 0
\(316\) −3.87118 9.34587i −0.217771 0.525746i
\(317\) −9.47130 + 3.92314i −0.531961 + 0.220346i −0.632462 0.774591i \(-0.717956\pi\)
0.100501 + 0.994937i \(0.467956\pi\)
\(318\) −5.22495 + 12.6142i −0.293001 + 0.707367i
\(319\) 21.8654i 1.22423i
\(320\) 0 0
\(321\) 16.4150 16.4150i 0.916197 0.916197i
\(322\) 20.2970 1.13111
\(323\) −4.96241 0.624023i −0.276116 0.0347216i
\(324\) −5.85698 −0.325388
\(325\) 0 0
\(326\) 9.36608 + 3.87956i 0.518739 + 0.214869i
\(327\) 9.48972i 0.524783i
\(328\) −0.0547598 + 0.132202i −0.00302360 + 0.00729963i
\(329\) −19.1980 + 7.95207i −1.05842 + 0.438412i
\(330\) 0 0
\(331\) −0.209438 0.209438i −0.0115117 0.0115117i 0.701327 0.712839i \(-0.252591\pi\)
−0.712839 + 0.701327i \(0.752591\pi\)
\(332\) 2.40841 + 2.40841i 0.132179 + 0.132179i
\(333\) −2.92388 7.05888i −0.160228 0.386824i
\(334\) −11.5038 + 4.76501i −0.629457 + 0.260730i
\(335\) 0 0
\(336\) 5.23617i 0.285657i
\(337\) 12.9824 + 5.37748i 0.707196 + 0.292930i 0.707144 0.707070i \(-0.249983\pi\)
5.22341e−5 1.00000i \(0.499983\pi\)
\(338\) 12.0190 12.0190i 0.653748 0.653748i
\(339\) −14.2284 −0.772782
\(340\) 0 0
\(341\) −34.2939 −1.85712
\(342\) 0.705316 0.705316i 0.0381391 0.0381391i
\(343\) −4.62206 1.91452i −0.249568 0.103374i
\(344\) 0.830161i 0.0447593i
\(345\) 0 0
\(346\) −3.27672 + 1.35726i −0.176158 + 0.0729669i
\(347\) 4.26669 + 10.3007i 0.229048 + 0.552971i 0.996062 0.0886594i \(-0.0282583\pi\)
−0.767014 + 0.641631i \(0.778258\pi\)
\(348\) −4.84570 4.84570i −0.259757 0.259757i
\(349\) −1.77671 1.77671i −0.0951051 0.0951051i 0.657953 0.753059i \(-0.271422\pi\)
−0.753059 + 0.657953i \(0.771422\pi\)
\(350\) 0 0
\(351\) −28.5418 + 11.8224i −1.52345 + 0.631033i
\(352\) −1.80188 + 4.35013i −0.0960406 + 0.231862i
\(353\) 10.0823i 0.536629i −0.963331 0.268314i \(-0.913533\pi\)
0.963331 0.268314i \(-0.0864666\pi\)
\(354\) −6.43037 2.66354i −0.341770 0.141566i
\(355\) 0 0
\(356\) −2.24175 −0.118813
\(357\) 17.0513 13.2420i 0.902452 0.700838i
\(358\) 13.1025 0.692487
\(359\) −17.4429 + 17.4429i −0.920599 + 0.920599i −0.997072 0.0764723i \(-0.975634\pi\)
0.0764723 + 0.997072i \(0.475634\pi\)
\(360\) 0 0
\(361\) 17.5285i 0.922555i
\(362\) −0.699281 + 1.68821i −0.0367534 + 0.0887306i
\(363\) −15.2294 + 6.30823i −0.799337 + 0.331096i
\(364\) −7.43696 17.9544i −0.389803 0.941067i
\(365\) 0 0
\(366\) 12.9865 + 12.9865i 0.678813 + 0.678813i
\(367\) −11.3939 27.5072i −0.594755 1.43587i −0.878863 0.477073i \(-0.841698\pi\)
0.284108 0.958792i \(-0.408302\pi\)
\(368\) −5.28485 + 2.18906i −0.275492 + 0.114112i
\(369\) 0.0450283 0.108708i 0.00234408 0.00565911i
\(370\) 0 0
\(371\) 30.3299 + 12.5631i 1.57465 + 0.652242i
\(372\) −7.60004 + 7.60004i −0.394043 + 0.394043i
\(373\) −20.8039 −1.07718 −0.538592 0.842567i \(-0.681044\pi\)
−0.538592 + 0.842567i \(0.681044\pi\)
\(374\) −18.7228 + 5.13346i −0.968134 + 0.265445i
\(375\) 0 0
\(376\) 4.14106 4.14106i 0.213559 0.213559i
\(377\) −23.4979 9.73315i −1.21020 0.501283i
\(378\) 20.0142i 1.02942i
\(379\) 3.99706 9.64974i 0.205315 0.495674i −0.787359 0.616494i \(-0.788552\pi\)
0.992674 + 0.120820i \(0.0385524\pi\)
\(380\) 0 0
\(381\) 1.81047 + 4.37087i 0.0927533 + 0.223926i
\(382\) −11.9019 11.9019i −0.608955 0.608955i
\(383\) 14.2495 + 14.2495i 0.728113 + 0.728113i 0.970244 0.242130i \(-0.0778462\pi\)
−0.242130 + 0.970244i \(0.577846\pi\)
\(384\) 0.564729 + 1.36338i 0.0288187 + 0.0695745i
\(385\) 0 0
\(386\) −2.23056 + 5.38504i −0.113532 + 0.274091i
\(387\) 0.682631i 0.0347001i
\(388\) 4.02389 + 1.66675i 0.204282 + 0.0846164i
\(389\) −13.9058 + 13.9058i −0.705051 + 0.705051i −0.965490 0.260440i \(-0.916133\pi\)
0.260440 + 0.965490i \(0.416133\pi\)
\(390\) 0 0
\(391\) −20.4936 11.6739i −1.03641 0.590373i
\(392\) −5.59004 −0.282340
\(393\) 3.72875 3.72875i 0.188090 0.188090i
\(394\) 3.25339 + 1.34760i 0.163903 + 0.0678909i
\(395\) 0 0
\(396\) 1.48166 3.57705i 0.0744564 0.179754i
\(397\) 22.1250 9.16446i 1.11042 0.459951i 0.249338 0.968416i \(-0.419787\pi\)
0.861083 + 0.508465i \(0.169787\pi\)
\(398\) −6.42910 15.5212i −0.322262 0.778009i
\(399\) 4.49132 + 4.49132i 0.224847 + 0.224847i
\(400\) 0 0
\(401\) −8.81734 21.2869i −0.440317 1.06302i −0.975838 0.218497i \(-0.929885\pi\)
0.535521 0.844522i \(-0.320115\pi\)
\(402\) −11.8164 + 4.89452i −0.589350 + 0.244117i
\(403\) −15.2655 + 36.8543i −0.760431 + 1.83584i
\(404\) 10.7393i 0.534301i
\(405\) 0 0
\(406\) −11.6512 + 11.6512i −0.578239 + 0.578239i
\(407\) −43.7505 −2.16863
\(408\) −3.01160 + 5.28690i −0.149097 + 0.261741i
\(409\) 12.7488 0.630389 0.315195 0.949027i \(-0.397930\pi\)
0.315195 + 0.949027i \(0.397930\pi\)
\(410\) 0 0
\(411\) 4.51209 + 1.86897i 0.222565 + 0.0921895i
\(412\) 7.43306i 0.366200i
\(413\) −6.40432 + 15.4614i −0.315136 + 0.760806i
\(414\) 4.34567 1.80003i 0.213578 0.0884669i
\(415\) 0 0
\(416\) 3.87282 + 3.87282i 0.189881 + 0.189881i
\(417\) 1.87823 + 1.87823i 0.0919773 + 0.0919773i
\(418\) −2.18575 5.27687i −0.106909 0.258100i
\(419\) 25.2883 10.4748i 1.23541 0.511725i 0.333136 0.942879i \(-0.391893\pi\)
0.902279 + 0.431153i \(0.141893\pi\)
\(420\) 0 0
\(421\) 33.6813i 1.64153i −0.571268 0.820764i \(-0.693548\pi\)
0.571268 0.820764i \(-0.306452\pi\)
\(422\) 21.0828 + 8.73280i 1.02630 + 0.425106i
\(423\) −3.40514 + 3.40514i −0.165564 + 0.165564i
\(424\) −9.25215 −0.449324
\(425\) 0 0
\(426\) 7.59090 0.367780
\(427\) 31.2251 31.2251i 1.51109 1.51109i
\(428\) 14.5335 + 6.01999i 0.702505 + 0.290987i
\(429\) 38.0565i 1.83739i
\(430\) 0 0
\(431\) −16.7963 + 6.95725i −0.809049 + 0.335119i −0.748575 0.663051i \(-0.769261\pi\)
−0.0604746 + 0.998170i \(0.519261\pi\)
\(432\) −2.15856 5.21121i −0.103854 0.250725i
\(433\) 5.73034 + 5.73034i 0.275382 + 0.275382i 0.831262 0.555880i \(-0.187619\pi\)
−0.555880 + 0.831262i \(0.687619\pi\)
\(434\) 18.2738 + 18.2738i 0.877170 + 0.877170i
\(435\) 0 0
\(436\) 5.94112 2.46089i 0.284528 0.117855i
\(437\) 2.65541 6.41073i 0.127026 0.306667i
\(438\) 23.8064i 1.13751i
\(439\) 22.1522 + 9.17574i 1.05727 + 0.437934i 0.842480 0.538727i \(-0.181095\pi\)
0.214786 + 0.976661i \(0.431095\pi\)
\(440\) 0 0
\(441\) 4.59662 0.218887
\(442\) −2.81753 + 22.4058i −0.134016 + 1.06573i
\(443\) −0.244075 −0.0115964 −0.00579819 0.999983i \(-0.501846\pi\)
−0.00579819 + 0.999983i \(0.501846\pi\)
\(444\) −9.69577 + 9.69577i −0.460141 + 0.460141i
\(445\) 0 0
\(446\) 9.06859i 0.429410i
\(447\) 2.35361 5.68212i 0.111322 0.268755i
\(448\) 3.27815 1.35785i 0.154878 0.0641526i
\(449\) −0.0315454 0.0761574i −0.00148872 0.00359409i 0.923133 0.384480i \(-0.125619\pi\)
−0.924622 + 0.380886i \(0.875619\pi\)
\(450\) 0 0
\(451\) −0.476424 0.476424i −0.0224339 0.0224339i
\(452\) −3.68974 8.90782i −0.173551 0.418989i
\(453\) 6.26141 2.59356i 0.294187 0.121856i
\(454\) 6.02643 14.5491i 0.282835 0.682823i
\(455\) 0 0
\(456\) −1.65383 0.685038i −0.0774476 0.0320799i
\(457\) −17.2461 + 17.2461i −0.806737 + 0.806737i −0.984139 0.177402i \(-0.943231\pi\)
0.177402 + 0.984139i \(0.443231\pi\)
\(458\) −20.1188 −0.940092
\(459\) 11.5112 20.2081i 0.537297 0.943232i
\(460\) 0 0
\(461\) 20.5839 20.5839i 0.958687 0.958687i −0.0404924 0.999180i \(-0.512893\pi\)
0.999180 + 0.0404924i \(0.0128926\pi\)
\(462\) 22.7780 + 9.43496i 1.05973 + 0.438954i
\(463\) 27.9762i 1.30016i 0.759865 + 0.650081i \(0.225265\pi\)
−0.759865 + 0.650081i \(0.774735\pi\)
\(464\) 1.77710 4.29029i 0.0824997 0.199172i
\(465\) 0 0
\(466\) 7.37613 + 17.8076i 0.341693 + 0.824919i
\(467\) −22.1173 22.1173i −1.02347 1.02347i −0.999718 0.0237504i \(-0.992439\pi\)
−0.0237504 0.999718i \(-0.507561\pi\)
\(468\) −3.18457 3.18457i −0.147207 0.147207i
\(469\) 11.7686 + 28.4118i 0.543422 + 1.31194i
\(470\) 0 0
\(471\) −8.78053 + 21.1981i −0.404586 + 0.976756i
\(472\) 4.71650i 0.217095i
\(473\) −3.61131 1.49585i −0.166048 0.0687793i
\(474\) 10.5558 10.5558i 0.484842 0.484842i
\(475\) 0 0
\(476\) 12.7120 + 7.24121i 0.582655 + 0.331900i
\(477\) 7.60792 0.348343
\(478\) −10.0437 + 10.0437i −0.459389 + 0.459389i
\(479\) −11.1564 4.62112i −0.509748 0.211144i 0.112959 0.993600i \(-0.463967\pi\)
−0.622707 + 0.782455i \(0.713967\pi\)
\(480\) 0 0
\(481\) −19.4751 + 47.0169i −0.887986 + 2.14379i
\(482\) 4.22633 1.75060i 0.192504 0.0797378i
\(483\) 11.4623 + 27.6724i 0.521552 + 1.25914i
\(484\) −7.89864 7.89864i −0.359029 0.359029i
\(485\) 0 0
\(486\) 3.16806 + 7.64838i 0.143706 + 0.346937i
\(487\) −4.63377 + 1.91937i −0.209976 + 0.0869749i −0.485192 0.874407i \(-0.661250\pi\)
0.275217 + 0.961382i \(0.411250\pi\)
\(488\) −4.76261 + 11.4980i −0.215593 + 0.520488i
\(489\) 14.9604i 0.676532i
\(490\) 0 0
\(491\) −18.6988 + 18.6988i −0.843865 + 0.843865i −0.989359 0.145494i \(-0.953523\pi\)
0.145494 + 0.989359i \(0.453523\pi\)
\(492\) −0.211165 −0.00952007
\(493\) 18.4653 5.06285i 0.831635 0.228019i
\(494\) −6.64381 −0.298919
\(495\) 0 0
\(496\) −6.72892 2.78721i −0.302138 0.125150i
\(497\) 18.2518i 0.818707i
\(498\) −1.92347 + 4.64367i −0.0861929 + 0.208088i
\(499\) −27.6595 + 11.4569i −1.23821 + 0.512882i −0.903154 0.429317i \(-0.858754\pi\)
−0.335053 + 0.942199i \(0.608754\pi\)
\(500\) 0 0
\(501\) −12.9930 12.9930i −0.580484 0.580484i
\(502\) −6.36899 6.36899i −0.284262 0.284262i
\(503\) −13.0499 31.5052i −0.581865 1.40475i −0.891120 0.453768i \(-0.850080\pi\)
0.309255 0.950979i \(-0.399920\pi\)
\(504\) −2.69558 + 1.11655i −0.120071 + 0.0497349i
\(505\) 0 0
\(506\) 26.9342i 1.19737i
\(507\) 23.1739 + 9.59895i 1.02919 + 0.426304i
\(508\) −2.26692 + 2.26692i −0.100578 + 0.100578i
\(509\) 28.0939 1.24524 0.622620 0.782525i \(-0.286068\pi\)
0.622620 + 0.782525i \(0.286068\pi\)
\(510\) 0 0
\(511\) 57.2409 2.53219
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 6.32141 + 2.61841i 0.279097 + 0.115606i
\(514\) 28.6580i 1.26405i
\(515\) 0 0
\(516\) −1.13182 + 0.468816i −0.0498257 + 0.0206385i
\(517\) 10.5524 + 25.4758i 0.464096 + 1.12043i
\(518\) 23.3129 + 23.3129i 1.02431 + 1.02431i
\(519\) −3.70092 3.70092i −0.162452 0.162452i
\(520\) 0 0
\(521\) 17.6215 7.29907i 0.772013 0.319778i 0.0383252 0.999265i \(-0.487798\pi\)
0.733687 + 0.679487i \(0.237798\pi\)
\(522\) −1.46129 + 3.52785i −0.0639587 + 0.154410i
\(523\) 6.69653i 0.292819i 0.989224 + 0.146409i \(0.0467717\pi\)
−0.989224 + 0.146409i \(0.953228\pi\)
\(524\) 3.30136 + 1.36747i 0.144221 + 0.0597381i
\(525\) 0 0
\(526\) −6.04573 −0.263606
\(527\) −7.94061 28.9611i −0.345899 1.26157i
\(528\) −6.94843 −0.302392
\(529\) 6.87423 6.87423i 0.298879 0.298879i
\(530\) 0 0
\(531\) 3.87832i 0.168305i
\(532\) −1.64713 + 3.97653i −0.0714122 + 0.172404i
\(533\) −0.724069 + 0.299919i −0.0313629 + 0.0129909i
\(534\) −1.26598 3.05635i −0.0547844 0.132261i
\(535\) 0 0
\(536\) −6.12852 6.12852i −0.264712 0.264712i
\(537\) 7.39935 + 17.8636i 0.319305 + 0.770871i
\(538\) 15.6073 6.46477i 0.672880 0.278716i
\(539\) 10.0726 24.3174i 0.433857 1.04742i
\(540\) 0 0
\(541\) −6.32639 2.62047i −0.271993 0.112663i 0.242518 0.970147i \(-0.422027\pi\)
−0.514511 + 0.857484i \(0.672027\pi\)
\(542\) 16.2143 16.2143i 0.696463 0.696463i
\(543\) −2.69657 −0.115721
\(544\) −4.09089 0.514430i −0.175395 0.0220560i
\(545\) 0 0
\(546\) 20.2787 20.2787i 0.867850 0.867850i
\(547\) 3.26202 + 1.35117i 0.139474 + 0.0577719i 0.451329 0.892358i \(-0.350950\pi\)
−0.311855 + 0.950130i \(0.600950\pi\)
\(548\) 3.30950i 0.141375i
\(549\) 3.91624 9.45463i 0.167141 0.403514i
\(550\) 0 0
\(551\) 2.15569 + 5.20429i 0.0918355 + 0.221710i
\(552\) −5.96902 5.96902i −0.254058 0.254058i
\(553\) −25.3806 25.3806i −1.07929 1.07929i
\(554\) −7.65435 18.4792i −0.325202 0.785108i
\(555\) 0 0
\(556\) −0.688816 + 1.66295i −0.0292123 + 0.0705247i
\(557\) 45.7591i 1.93888i 0.245338 + 0.969438i \(0.421101\pi\)
−0.245338 + 0.969438i \(0.578899\pi\)
\(558\) 5.53311 + 2.29189i 0.234235 + 0.0970234i
\(559\) −3.21506 + 3.21506i −0.135983 + 0.135983i
\(560\) 0 0
\(561\) −17.5721 22.6272i −0.741897 0.955322i
\(562\) −23.2826 −0.982118
\(563\) 7.05601 7.05601i 0.297375 0.297375i −0.542610 0.839985i \(-0.682564\pi\)
0.839985 + 0.542610i \(0.182564\pi\)
\(564\) 7.98440 + 3.30725i 0.336204 + 0.139260i
\(565\) 0 0
\(566\) −9.62478 + 23.2363i −0.404560 + 0.976693i
\(567\) −19.2001 + 7.95293i −0.806327 + 0.333992i
\(568\) 1.96849 + 4.75235i 0.0825959 + 0.199404i
\(569\) −9.56020 9.56020i −0.400784 0.400784i 0.477725 0.878509i \(-0.341462\pi\)
−0.878509 + 0.477725i \(0.841462\pi\)
\(570\) 0 0
\(571\) 6.49469 + 15.6796i 0.271794 + 0.656169i 0.999560 0.0296562i \(-0.00944125\pi\)
−0.727766 + 0.685826i \(0.759441\pi\)
\(572\) −23.8256 + 9.86889i −0.996199 + 0.412639i
\(573\) 9.50543 22.9481i 0.397095 0.958673i
\(574\) 0.507734i 0.0211924i
\(575\) 0 0
\(576\) 0.581445 0.581445i 0.0242269 0.0242269i
\(577\) 9.67374 0.402723 0.201361 0.979517i \(-0.435463\pi\)
0.201361 + 0.979517i \(0.435463\pi\)
\(578\) −8.67039 14.6227i −0.360641 0.608226i
\(579\) −8.60150 −0.357466
\(580\) 0 0
\(581\) 11.1654 + 4.62487i 0.463220 + 0.191872i
\(582\) 6.42734i 0.266422i
\(583\) 16.6713 40.2480i 0.690453 1.66690i
\(584\) −14.9042 + 6.17351i −0.616739 + 0.255462i
\(585\) 0 0
\(586\) −18.0489 18.0489i −0.745595 0.745595i
\(587\) −3.24694 3.24694i −0.134015 0.134015i 0.636917 0.770932i \(-0.280209\pi\)
−0.770932 + 0.636917i \(0.780209\pi\)
\(588\) −3.15686 7.62132i −0.130187 0.314298i
\(589\) 8.16245 3.38100i 0.336328 0.139312i
\(590\) 0 0
\(591\) 5.19661i 0.213760i
\(592\) −8.58444 3.55579i −0.352818 0.146142i
\(593\) 0.550724 0.550724i 0.0226155 0.0226155i −0.695709 0.718324i \(-0.744910\pi\)
0.718324 + 0.695709i \(0.244910\pi\)
\(594\) 26.5589 1.08972
\(595\) 0 0
\(596\) 4.16768 0.170715
\(597\) 17.5306 17.5306i 0.717478 0.717478i
\(598\) −28.9451 11.9894i −1.18365 0.490285i
\(599\) 10.4846i 0.428391i 0.976791 + 0.214196i \(0.0687130\pi\)
−0.976791 + 0.214196i \(0.931287\pi\)
\(600\) 0 0
\(601\) −14.1755 + 5.87170i −0.578233 + 0.239512i −0.652579 0.757721i \(-0.726313\pi\)
0.0743464 + 0.997232i \(0.476313\pi\)
\(602\) 1.12724 + 2.72139i 0.0459428 + 0.110916i
\(603\) 5.03940 + 5.03940i 0.205220 + 0.205220i
\(604\) 3.24744 + 3.24744i 0.132137 + 0.132137i
\(605\) 0 0
\(606\) −14.6417 + 6.06480i −0.594779 + 0.246366i
\(607\) −8.27458 + 19.9766i −0.335855 + 0.810825i 0.662250 + 0.749283i \(0.269602\pi\)
−0.998105 + 0.0615418i \(0.980398\pi\)
\(608\) 1.21304i 0.0491952i
\(609\) −22.4647 9.30519i −0.910316 0.377065i
\(610\) 0 0
\(611\) 32.0752 1.29762
\(612\) 3.36389 + 0.423009i 0.135977 + 0.0170991i
\(613\) 18.6071 0.751535 0.375768 0.926714i \(-0.377379\pi\)
0.375768 + 0.926714i \(0.377379\pi\)
\(614\) −10.0679 + 10.0679i −0.406308 + 0.406308i
\(615\) 0 0
\(616\) 16.7071i 0.673147i
\(617\) −2.18286 + 5.26989i −0.0878787 + 0.212158i −0.961709 0.274074i \(-0.911629\pi\)
0.873830 + 0.486231i \(0.161629\pi\)
\(618\) 10.1341 4.19766i 0.407651 0.168855i
\(619\) 11.1868 + 27.0073i 0.449635 + 1.08552i 0.972459 + 0.233075i \(0.0748787\pi\)
−0.522823 + 0.852441i \(0.675121\pi\)
\(620\) 0 0
\(621\) 22.8153 + 22.8153i 0.915546 + 0.915546i
\(622\) −4.65012 11.2264i −0.186453 0.450137i
\(623\) −7.34881 + 3.04397i −0.294424 + 0.121954i
\(624\) −3.09302 + 7.46720i −0.123820 + 0.298927i
\(625\) 0 0
\(626\) −20.1310 8.33854i −0.804597 0.333275i
\(627\) 5.96000 5.96000i 0.238020 0.238020i
\(628\) −15.5482 −0.620442
\(629\) −10.1303 36.9472i −0.403920 1.47318i
\(630\) 0 0
\(631\) 30.9574 30.9574i 1.23239 1.23239i 0.269351 0.963042i \(-0.413191\pi\)
0.963042 0.269351i \(-0.0868092\pi\)
\(632\) 9.34587 + 3.87118i 0.371759 + 0.153987i
\(633\) 33.6755i 1.33848i
\(634\) 3.92314 9.47130i 0.155808 0.376153i
\(635\) 0 0
\(636\) −5.22495 12.6142i −0.207183 0.500184i
\(637\) −21.6492 21.6492i −0.857773 0.857773i
\(638\) 15.4612 + 15.4612i 0.612115 + 0.612115i
\(639\) −1.61866 3.90780i −0.0640333 0.154590i
\(640\) 0 0
\(641\) −16.6913 + 40.2963i −0.659265 + 1.59161i 0.139676 + 0.990197i \(0.455394\pi\)
−0.798941 + 0.601410i \(0.794606\pi\)
\(642\) 23.2143i 0.916197i
\(643\) 5.12401 + 2.12244i 0.202071 + 0.0837007i 0.481424 0.876488i \(-0.340120\pi\)
−0.279353 + 0.960189i \(0.590120\pi\)
\(644\) −14.3521 + 14.3521i −0.565553 + 0.565553i
\(645\) 0 0
\(646\) 3.95020 3.06770i 0.155419 0.120697i
\(647\) 25.3893 0.998155 0.499078 0.866557i \(-0.333672\pi\)
0.499078 + 0.866557i \(0.333672\pi\)
\(648\) 4.14151 4.14151i 0.162694 0.162694i
\(649\) 20.5174 + 8.49858i 0.805378 + 0.333598i
\(650\) 0 0
\(651\) −14.5943 + 35.2338i −0.571996 + 1.38092i
\(652\) −9.36608 + 3.87956i −0.366804 + 0.151935i
\(653\) −15.0457 36.3236i −0.588784 1.42145i −0.884666 0.466226i \(-0.845613\pi\)
0.295882 0.955225i \(-0.404387\pi\)
\(654\) 6.71024 + 6.71024i 0.262391 + 0.262391i
\(655\) 0 0
\(656\) −0.0547598 0.132202i −0.00213801 0.00516162i
\(657\) 12.2555 5.07640i 0.478133 0.198049i
\(658\) 7.95207 19.1980i 0.310004 0.748415i
\(659\) 39.5179i 1.53940i −0.638408 0.769698i \(-0.720407\pi\)
0.638408 0.769698i \(-0.279593\pi\)
\(660\) 0 0
\(661\) −2.21986 + 2.21986i −0.0863427 + 0.0863427i −0.748959 0.662616i \(-0.769446\pi\)
0.662616 + 0.748959i \(0.269446\pi\)
\(662\) 0.296190 0.0115117
\(663\) −32.1386 + 8.81183i −1.24816 + 0.342223i
\(664\) −3.40601 −0.132179
\(665\) 0 0
\(666\) 7.05888 + 2.92388i 0.273526 + 0.113298i
\(667\) 26.5637i 1.02855i
\(668\) 4.76501 11.5038i 0.184364 0.445093i
\(669\) −12.3639 + 5.12129i −0.478016 + 0.198001i
\(670\) 0 0
\(671\) −41.4359 41.4359i −1.59962 1.59962i
\(672\) 3.70253 + 3.70253i 0.142828 + 0.142828i
\(673\) 8.91195 + 21.5153i 0.343530 + 0.829355i 0.997353 + 0.0727079i \(0.0231641\pi\)
−0.653823 + 0.756647i \(0.726836\pi\)
\(674\) −12.9824 + 5.37748i −0.500063 + 0.207133i
\(675\) 0 0
\(676\) 16.9974i 0.653748i
\(677\) 38.1349 + 15.7960i 1.46564 + 0.607089i 0.965861 0.259062i \(-0.0834134\pi\)
0.499782 + 0.866151i \(0.333413\pi\)
\(678\) 10.0610 10.0610i 0.386391 0.386391i
\(679\) 15.4541 0.593075
\(680\) 0 0
\(681\) 23.2392 0.890528
\(682\) 24.2494 24.2494i 0.928559 0.928559i
\(683\) −5.77636 2.39265i −0.221026 0.0915521i 0.269423 0.963022i \(-0.413167\pi\)
−0.490449 + 0.871470i \(0.663167\pi\)
\(684\) 0.997467i 0.0381391i
\(685\) 0 0
\(686\) 4.62206 1.91452i 0.176471 0.0730968i
\(687\) −11.3617 27.4295i −0.433476 1.04650i
\(688\) −0.587013 0.587013i −0.0223796 0.0223796i
\(689\) −35.8319 35.8319i −1.36509 1.36509i
\(690\) 0 0
\(691\) −29.6992 + 12.3018i −1.12981 + 0.467983i −0.867716 0.497060i \(-0.834413\pi\)
−0.262094 + 0.965042i \(0.584413\pi\)
\(692\) 1.35726 3.27672i 0.0515954 0.124562i
\(693\) 13.7380i 0.521864i
\(694\) −10.3007 4.26669i −0.391010 0.161961i
\(695\) 0 0
\(696\) 6.85286 0.259757
\(697\) 0.292025 0.512653i 0.0110612 0.0194181i
\(698\) 2.51265 0.0951051
\(699\) −20.1129 + 20.1129i −0.760739 + 0.760739i
\(700\) 0 0
\(701\) 12.7609i 0.481972i 0.970529 + 0.240986i \(0.0774708\pi\)
−0.970529 + 0.240986i \(0.922529\pi\)
\(702\) 11.8224 28.5418i 0.446208 1.07724i
\(703\) 10.4133 4.31332i 0.392744 0.162680i
\(704\) −1.80188 4.35013i −0.0679109 0.163952i
\(705\) 0 0
\(706\) 7.12929 + 7.12929i 0.268314 + 0.268314i
\(707\) 14.5824 + 35.2051i 0.548429 + 1.32402i
\(708\) 6.43037 2.66354i 0.241668 0.100102i
\(709\) 12.8274 30.9681i 0.481744 1.16303i −0.477036 0.878884i \(-0.658289\pi\)
0.958780 0.284149i \(-0.0917110\pi\)
\(710\) 0 0
\(711\) −7.68499 3.18323i −0.288210 0.119380i
\(712\) 1.58516 1.58516i 0.0594063 0.0594063i
\(713\) 41.6627 1.56028
\(714\) −2.69364 + 21.4206i −0.100807 + 0.801645i
\(715\) 0 0
\(716\) −9.26485 + 9.26485i −0.346244 + 0.346244i
\(717\) −19.3653 8.02139i −0.723212 0.299564i
\(718\) 24.6679i 0.920599i
\(719\) −10.9707 + 26.4857i −0.409140 + 0.987750i 0.576225 + 0.817291i \(0.304525\pi\)
−0.985365 + 0.170459i \(0.945475\pi\)
\(720\) 0 0
\(721\) −10.0930 24.3667i −0.375883 0.907463i
\(722\) −12.3945 12.3945i −0.461277 0.461277i
\(723\) 4.77346 + 4.77346i 0.177527 + 0.177527i
\(724\) −0.699281 1.68821i −0.0259886 0.0627420i
\(725\) 0 0
\(726\) 6.30823 15.2294i 0.234120 0.565216i
\(727\) 21.0302i 0.779966i 0.920822 + 0.389983i \(0.127519\pi\)
−0.920822 + 0.389983i \(0.872481\pi\)
\(728\) 17.9544 + 7.43696i 0.665435 + 0.275632i
\(729\) −21.0631 + 21.0631i −0.780113 + 0.780113i
\(730\) 0 0
\(731\) 0.427059 3.39610i 0.0157954 0.125609i
\(732\) −18.3656 −0.678813
\(733\) 6.38248 6.38248i 0.235742 0.235742i −0.579342 0.815084i \(-0.696690\pi\)
0.815084 + 0.579342i \(0.196690\pi\)
\(734\) 27.5072 + 11.3939i 1.01531 + 0.420555i
\(735\) 0 0
\(736\) 2.18906 5.28485i 0.0806897 0.194802i
\(737\) 37.7027 15.6170i 1.38880 0.575258i
\(738\) 0.0450283 + 0.108708i 0.00165751 + 0.00400160i
\(739\) 10.1850 + 10.1850i 0.374662 + 0.374662i 0.869172 0.494510i \(-0.164653\pi\)
−0.494510 + 0.869172i \(0.664653\pi\)
\(740\) 0 0
\(741\) −3.75195 9.05801i −0.137831 0.332754i
\(742\) −30.3299 + 12.5631i −1.11345 + 0.461205i
\(743\) −12.6717 + 30.5921i −0.464879 + 1.12232i 0.501492 + 0.865162i \(0.332785\pi\)
−0.966370 + 0.257154i \(0.917215\pi\)
\(744\) 10.7481i 0.394043i
\(745\) 0 0
\(746\) 14.7106 14.7106i 0.538592 0.538592i
\(747\) 2.80072 0.102473
\(748\) 9.60913 16.8689i 0.351344 0.616789i
\(749\) 55.8174 2.03952
\(750\) 0 0
\(751\) −5.92242 2.45315i −0.216112 0.0895166i 0.272001 0.962297i \(-0.412315\pi\)
−0.488113 + 0.872780i \(0.662315\pi\)
\(752\) 5.85635i 0.213559i
\(753\) 5.08658 12.2801i 0.185365 0.447511i
\(754\) 23.4979 9.73315i 0.855743 0.354460i
\(755\) 0 0
\(756\) −14.1521 14.1521i −0.514708 0.514708i
\(757\) −34.6660 34.6660i −1.25996 1.25996i −0.951112 0.308847i \(-0.900057\pi\)
−0.308847 0.951112i \(-0.599943\pi\)
\(758\) 3.99706 + 9.64974i 0.145180 + 0.350495i
\(759\) 36.7214 15.2105i 1.33290 0.552107i
\(760\) 0 0
\(761\) 42.6819i 1.54722i −0.633662 0.773610i \(-0.718449\pi\)
0.633662 0.773610i \(-0.281551\pi\)
\(762\) −4.37087 1.81047i −0.158340 0.0655865i
\(763\) 16.1344 16.1344i 0.584103 0.584103i
\(764\) 16.8319 0.608955
\(765\) 0 0
\(766\) −20.1518 −0.728113
\(767\) 18.2662 18.2662i 0.659553 0.659553i
\(768\) −1.36338 0.564729i −0.0491966 0.0203779i
\(769\) 14.6429i 0.528035i −0.964518 0.264018i \(-0.914952\pi\)
0.964518 0.264018i \(-0.0850477\pi\)
\(770\) 0 0
\(771\) 39.0716 16.1840i 1.40713 0.582853i
\(772\) −2.23056 5.38504i −0.0802795 0.193812i
\(773\) −10.5010 10.5010i −0.377696 0.377696i 0.492575 0.870270i \(-0.336056\pi\)
−0.870270 + 0.492575i \(0.836056\pi\)
\(774\) 0.482693 + 0.482693i 0.0173500 + 0.0173500i
\(775\) 0 0
\(776\) −4.02389 + 1.66675i −0.144449 + 0.0598328i
\(777\) −18.6187 + 44.9496i −0.667944 + 1.61256i
\(778\) 19.6657i 0.705051i
\(779\) 0.160366 + 0.0664258i 0.00574571 + 0.00237995i
\(780\) 0 0
\(781\) −24.2203 −0.866670
\(782\) 22.7458 6.23650i 0.813390 0.223017i
\(783\) −26.1936 −0.936083
\(784\) 3.95275 3.95275i 0.141170 0.141170i
\(785\) 0 0
\(786\) 5.27324i 0.188090i
\(787\) −8.22589 + 19.8591i −0.293221 + 0.707899i 0.706779 + 0.707435i \(0.250148\pi\)
−1.00000 0.000464022i \(0.999852\pi\)
\(788\) −3.25339 + 1.34760i −0.115897 + 0.0480061i
\(789\) −3.41420 8.24261i −0.121549 0.293445i
\(790\) 0 0
\(791\) −24.1911 24.1911i −0.860135 0.860135i
\(792\) 1.48166 + 3.57705i 0.0526486 + 0.127105i
\(793\) −62.9743 + 26.0848i −2.23628 + 0.926298i
\(794\) −9.16446 + 22.1250i −0.325235 + 0.785186i
\(795\) 0 0
\(796\) 15.5212 + 6.42910i 0.550135 + 0.227874i
\(797\) −14.8934 + 14.8934i −0.527550 + 0.527550i −0.919841 0.392291i \(-0.871683\pi\)
0.392291 + 0.919841i \(0.371683\pi\)
\(798\) −6.35168 −0.224847
\(799\) −19.0709 + 14.8103i −0.674680 + 0.523952i
\(800\) 0 0
\(801\) −1.30346 + 1.30346i −0.0460554 + 0.0460554i
\(802\) 21.2869 + 8.81734i 0.751668 + 0.311351i
\(803\) 75.9590i 2.68053i
\(804\) 4.89452 11.8164i 0.172617 0.416733i
\(805\) 0 0
\(806\) −15.2655 36.8543i −0.537706 1.29814i
\(807\) 17.6278 + 17.6278i 0.620529 + 0.620529i
\(808\) −7.59384 7.59384i −0.267150 0.267150i
\(809\) −6.98690 16.8679i −0.245646 0.593042i 0.752179 0.658959i \(-0.229003\pi\)
−0.997825 + 0.0659166i \(0.979003\pi\)
\(810\) 0 0
\(811\) −5.56638 + 13.4384i −0.195462 + 0.471887i −0.990975 0.134050i \(-0.957202\pi\)
0.795512 + 0.605937i \(0.207202\pi\)
\(812\) 16.4773i 0.578239i
\(813\) 31.2628 + 12.9495i 1.09644 + 0.454158i
\(814\) 30.9363 30.9363i 1.08432 1.08432i
\(815\) 0 0
\(816\) −1.60888 5.86793i −0.0563221 0.205419i
\(817\) 1.00702 0.0352311
\(818\) −9.01479 + 9.01479i −0.315195 + 0.315195i
\(819\) −14.7637 6.11532i −0.515885 0.213686i
\(820\) 0 0
\(821\) 15.6230 37.7172i 0.545246 1.31634i −0.375733 0.926728i \(-0.622609\pi\)
0.920979 0.389613i \(-0.127391\pi\)
\(822\) −4.51209 + 1.86897i −0.157377 + 0.0651878i
\(823\) −0.697439 1.68377i −0.0243112 0.0586925i 0.911258 0.411837i \(-0.135113\pi\)
−0.935569 + 0.353144i \(0.885113\pi\)
\(824\) 5.25597 + 5.25597i 0.183100 + 0.183100i
\(825\) 0 0
\(826\) −6.40432 15.4614i −0.222835 0.537971i
\(827\) −42.9008 + 17.7701i −1.49181 + 0.617927i −0.971709 0.236180i \(-0.924104\pi\)
−0.520098 + 0.854107i \(0.674104\pi\)
\(828\) −1.80003 + 4.34567i −0.0625555 + 0.151022i
\(829\) 34.9749i 1.21473i 0.794424 + 0.607364i \(0.207773\pi\)
−0.794424 + 0.607364i \(0.792227\pi\)
\(830\) 0 0
\(831\) 20.8715 20.8715i 0.724025 0.724025i
\(832\) −5.47699 −0.189881
\(833\) 22.8682 + 2.87568i 0.792337 + 0.0996365i
\(834\) −2.65622 −0.0919773
\(835\) 0 0
\(836\) 5.27687 + 2.18575i 0.182504 + 0.0755958i
\(837\) 41.0822i 1.42001i
\(838\) −10.4748 + 25.2883i −0.361845 + 0.873570i
\(839\) 39.6860 16.4385i 1.37011 0.567520i 0.428294 0.903639i \(-0.359115\pi\)
0.941819 + 0.336120i \(0.109115\pi\)
\(840\) 0 0
\(841\) 5.25756 + 5.25756i 0.181295 + 0.181295i
\(842\) 23.8163 + 23.8163i 0.820764 + 0.820764i
\(843\) −13.1484 31.7430i −0.452854 1.09329i
\(844\) −21.0828 + 8.73280i −0.725701 + 0.300595i
\(845\) 0 0
\(846\) 4.81560i 0.165564i
\(847\) −36.6181 15.1677i −1.25821 0.521169i
\(848\) 6.54226 6.54226i 0.224662 0.224662i
\(849\) −37.1152 −1.27379
\(850\) 0 0
\(851\) 53.1513 1.82200
\(852\) −5.36758 + 5.36758i −0.183890 + 0.183890i
\(853\) 8.59031 + 3.55822i 0.294127 + 0.121831i 0.524867 0.851184i \(-0.324115\pi\)
−0.230741 + 0.973015i \(0.574115\pi\)
\(854\) 44.1590i 1.51109i
\(855\) 0 0
\(856\) −14.5335 + 6.01999i −0.496746 + 0.205759i
\(857\) 11.8527 + 28.6150i 0.404881 + 0.977469i 0.986463 + 0.163982i \(0.0524338\pi\)
−0.581582 + 0.813488i \(0.697566\pi\)
\(858\) −26.9100 26.9100i −0.918693 0.918693i
\(859\) 13.1008 + 13.1008i 0.446994 + 0.446994i 0.894354 0.447360i \(-0.147636\pi\)
−0.447360 + 0.894354i \(0.647636\pi\)
\(860\) 0 0
\(861\) −0.692232 + 0.286732i −0.0235912 + 0.00977179i
\(862\) 6.95725 16.7963i 0.236965 0.572084i
\(863\) 18.5377i 0.631030i −0.948921 0.315515i \(-0.897823\pi\)
0.948921 0.315515i \(-0.102177\pi\)
\(864\) 5.21121 + 2.15856i 0.177289 + 0.0734356i
\(865\) 0 0
\(866\) −8.10392 −0.275382
\(867\) 15.0399 20.0789i 0.510781 0.681914i
\(868\) −25.8431 −0.877170
\(869\) −33.6803 + 33.6803i −1.14253 + 1.14253i
\(870\) 0 0
\(871\) 47.4693i 1.60843i
\(872\) −2.46089 + 5.94112i −0.0833363 + 0.201192i
\(873\) 3.30880 1.37055i 0.111986 0.0463860i
\(874\) 2.65541 + 6.41073i 0.0898207 + 0.216846i
\(875\) 0 0
\(876\) −16.8336 16.8336i −0.568756 0.568756i
\(877\) −16.3998 39.5926i −0.553781 1.33695i −0.914619 0.404318i \(-0.867509\pi\)
0.360837 0.932629i \(-0.382491\pi\)
\(878\) −22.1522 + 9.17574i −0.747600 + 0.309666i
\(879\) 14.4147 34.8003i 0.486197 1.17378i
\(880\) 0 0
\(881\) 37.7646 + 15.6426i 1.27232 + 0.527014i 0.913670 0.406457i \(-0.133236\pi\)
0.358653 + 0.933471i \(0.383236\pi\)
\(882\) −3.25030 + 3.25030i −0.109443 + 0.109443i
\(883\) −52.3174 −1.76062 −0.880310 0.474398i \(-0.842666\pi\)
−0.880310 + 0.474398i \(0.842666\pi\)
\(884\) −13.8510 17.8356i −0.465859 0.599875i
\(885\) 0 0
\(886\) 0.172587 0.172587i 0.00579819 0.00579819i
\(887\) 13.9607 + 5.78272i 0.468755 + 0.194165i 0.604542 0.796573i \(-0.293356\pi\)
−0.135787 + 0.990738i \(0.543356\pi\)
\(888\) 13.7119i 0.460141i
\(889\) −4.35317 + 10.5095i −0.146000 + 0.352476i
\(890\) 0 0
\(891\) 10.5536 + 25.4786i 0.353558 + 0.853565i
\(892\) −6.41246 6.41246i −0.214705 0.214705i
\(893\) −5.02327 5.02327i −0.168097 0.168097i
\(894\) 2.35361 + 5.68212i 0.0787165 + 0.190038i
\(895\) 0 0
\(896\) −1.35785 + 3.27815i −0.0453627 + 0.109515i
\(897\) 46.2338i 1.54370i
\(898\) 0.0761574 + 0.0315454i 0.00254140 + 0.00105268i
\(899\) −23.9159 + 23.9159i −0.797640 + 0.797640i
\(900\) 0 0
\(901\) 37.8495 + 4.75958i 1.26095 + 0.158565i
\(902\) 0.673765 0.0224339
\(903\) −3.07370 + 3.07370i −0.102286 + 0.102286i
\(904\) 8.90782 + 3.68974i 0.296270 + 0.122719i
\(905\) 0 0
\(906\) −2.59356 + 6.26141i −0.0861653 + 0.208022i
\(907\) 23.1561 9.59155i 0.768884 0.318482i 0.0364638 0.999335i \(-0.488391\pi\)
0.732420 + 0.680853i \(0.238391\pi\)
\(908\) 6.02643 + 14.5491i 0.199994 + 0.482829i
\(909\) 6.24432 + 6.24432i 0.207111 + 0.207111i
\(910\) 0 0
\(911\) −1.10387 2.66499i −0.0365730 0.0882950i 0.904538 0.426394i \(-0.140216\pi\)
−0.941111 + 0.338099i \(0.890216\pi\)
\(912\) 1.65383 0.685038i 0.0547637 0.0226839i
\(913\) 6.13723 14.8166i 0.203113 0.490357i
\(914\) 24.3896i 0.806737i
\(915\) 0 0
\(916\) 14.2262 14.2262i 0.470046 0.470046i
\(917\) 12.6792 0.418703
\(918\) 6.14961 + 22.4289i 0.202967 + 0.740265i
\(919\) −48.0746 −1.58584 −0.792918 0.609328i \(-0.791439\pi\)
−0.792918 + 0.609328i \(0.791439\pi\)
\(920\) 0 0
\(921\) −19.4120 8.04071i −0.639647 0.264950i
\(922\) 29.1100i 0.958687i
\(923\) −10.7814 + 26.0286i −0.354874 + 0.856741i
\(924\) −22.7780 + 9.43496i −0.749341 + 0.310387i
\(925\) 0 0
\(926\) −19.7821 19.7821i −0.650081 0.650081i
\(927\) −4.32191 4.32191i −0.141950 0.141950i
\(928\) 1.77710 + 4.29029i 0.0583361 + 0.140836i
\(929\) 25.3430 10.4974i 0.831478 0.344409i 0.0739901 0.997259i \(-0.476427\pi\)
0.757487 + 0.652850i \(0.226427\pi\)
\(930\) 0 0
\(931\) 6.78094i 0.222236i
\(932\) −17.8076 7.37613i −0.583306 0.241613i
\(933\) 12.6797 12.6797i 0.415116 0.415116i
\(934\) 31.2786 1.02347
\(935\) 0 0
\(936\) 4.50366 0.147207
\(937\) 10.3762 10.3762i 0.338975 0.338975i −0.517007 0.855981i \(-0.672954\pi\)
0.855981 + 0.517007i \(0.172954\pi\)
\(938\) −28.4118 11.7686i −0.927679 0.384257i
\(939\) 32.1552i 1.04934i
\(940\) 0 0
\(941\) 22.8397 9.46050i 0.744552 0.308404i 0.0220356 0.999757i \(-0.492985\pi\)
0.722517 + 0.691354i \(0.242985\pi\)
\(942\) −8.78053 21.1981i −0.286085 0.690671i
\(943\) 0.578795 + 0.578795i 0.0188482 + 0.0188482i
\(944\) 3.33507 + 3.33507i 0.108547 + 0.108547i
\(945\) 0 0
\(946\) 3.61131 1.49585i 0.117414 0.0486343i
\(947\) 2.49335 6.01947i 0.0810228 0.195606i −0.878177 0.478336i \(-0.841240\pi\)
0.959200 + 0.282730i \(0.0912400\pi\)
\(948\) 14.9281i 0.484842i
\(949\) −81.6301 33.8123i −2.64982 1.09759i
\(950\) 0 0
\(951\) 15.1285 0.490574
\(952\) −14.1091 + 3.86845i −0.457277 + 0.125377i
\(953\) −13.6944 −0.443607 −0.221803 0.975091i \(-0.571194\pi\)
−0.221803 + 0.975091i \(0.571194\pi\)
\(954\) −5.37961 + 5.37961i −0.174171 + 0.174171i
\(955\) 0 0
\(956\) 14.2040i 0.459389i
\(957\) −12.3480 + 29.8108i −0.399155 + 0.963646i
\(958\) 11.1564 4.62112i 0.360446 0.149302i
\(959\) 4.49382 + 10.8490i 0.145113 + 0.350334i
\(960\) 0 0
\(961\) 15.5896 + 15.5896i 0.502889 + 0.502889i
\(962\) −19.4751 47.0169i −0.627901 1.51589i
\(963\) 11.9507 4.95016i 0.385107 0.159517i
\(964\) −1.75060 + 4.22633i −0.0563832 + 0.136121i
\(965\) 0 0
\(966\) −27.6724 11.4623i −0.890344 0.368793i
\(967\) −11.5376 + 11.5376i −0.371026 + 0.371026i −0.867851 0.496825i \(-0.834499\pi\)
0.496825 + 0.867851i \(0.334499\pi\)
\(968\) 11.1704 0.359029
\(969\) 6.41322 + 3.65319i 0.206022 + 0.117357i
\(970\) 0 0
\(971\) −19.0136 + 19.0136i −0.610176 + 0.610176i −0.942992 0.332816i \(-0.892001\pi\)
0.332816 + 0.942992i \(0.392001\pi\)
\(972\) −7.64838 3.16806i −0.245322 0.101616i
\(973\) 6.38671i 0.204748i
\(974\) 1.91937 4.63377i 0.0615005 0.148475i
\(975\) 0 0
\(976\) −4.76261 11.4980i −0.152448 0.368041i
\(977\) 14.1423 + 14.1423i 0.452451 + 0.452451i 0.896167 0.443716i \(-0.146340\pi\)
−0.443716 + 0.896167i \(0.646340\pi\)
\(978\) −10.5786 10.5786i −0.338266 0.338266i
\(979\) 4.03937 + 9.75191i 0.129099 + 0.311672i
\(980\) 0 0
\(981\) 2.02356 4.88531i 0.0646073 0.155976i
\(982\) 26.4441i 0.843865i
\(983\) 26.6406 + 11.0349i 0.849704 + 0.351959i 0.764672 0.644419i \(-0.222901\pi\)
0.0850316 + 0.996378i \(0.472901\pi\)
\(984\) 0.149316 0.149316i 0.00476003 0.00476003i
\(985\) 0 0
\(986\) −9.47696 + 16.6369i −0.301808 + 0.529827i
\(987\) 30.6648 0.976072
\(988\) 4.69788 4.69788i 0.149460 0.149460i
\(989\) 4.38728 + 1.81727i 0.139507 + 0.0577858i
\(990\) 0 0
\(991\) −10.2929 + 24.8494i −0.326966 + 0.789366i 0.671848 + 0.740689i \(0.265501\pi\)
−0.998815 + 0.0486775i \(0.984499\pi\)
\(992\) 6.72892 2.78721i 0.213644 0.0884941i
\(993\) 0.167267 + 0.403818i 0.00530805 + 0.0128148i
\(994\) 12.9060 + 12.9060i 0.409353 + 0.409353i
\(995\) 0 0
\(996\) −1.92347 4.64367i −0.0609476 0.147140i
\(997\) −28.1434 + 11.6574i −0.891310 + 0.369193i −0.780872 0.624690i \(-0.785225\pi\)
−0.110437 + 0.993883i \(0.535225\pi\)
\(998\) 11.4569 27.6595i 0.362663 0.875545i
\(999\) 52.4108i 1.65820i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.l.e.451.2 16
5.2 odd 4 850.2.o.g.349.2 16
5.3 odd 4 850.2.o.j.349.3 16
5.4 even 2 170.2.k.b.111.3 16
17.2 even 8 inner 850.2.l.e.801.2 16
85.2 odd 8 850.2.o.j.699.3 16
85.19 even 8 170.2.k.b.121.3 yes 16
85.24 odd 16 2890.2.b.r.2311.5 16
85.44 odd 16 2890.2.b.r.2311.12 16
85.53 odd 8 850.2.o.g.699.2 16
85.74 odd 16 2890.2.a.bi.1.7 8
85.79 odd 16 2890.2.a.bj.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.k.b.111.3 16 5.4 even 2
170.2.k.b.121.3 yes 16 85.19 even 8
850.2.l.e.451.2 16 1.1 even 1 trivial
850.2.l.e.801.2 16 17.2 even 8 inner
850.2.o.g.349.2 16 5.2 odd 4
850.2.o.g.699.2 16 85.53 odd 8
850.2.o.j.349.3 16 5.3 odd 4
850.2.o.j.699.3 16 85.2 odd 8
2890.2.a.bi.1.7 8 85.74 odd 16
2890.2.a.bj.1.2 8 85.79 odd 16
2890.2.b.r.2311.5 16 85.24 odd 16
2890.2.b.r.2311.12 16 85.44 odd 16