Properties

Label 170.2.k.b.121.3
Level $170$
Weight $2$
Character 170.121
Analytic conductor $1.357$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [170,2,Mod(111,170)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(170, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("170.111");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 170 = 2 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 170.k (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.35745683436\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 28x^{14} + 286x^{12} + 1412x^{10} + 3709x^{8} + 5264x^{6} + 3780x^{4} + 1072x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 121.3
Root \(2.47571i\) of defining polynomial
Character \(\chi\) \(=\) 170.121
Dual form 170.2.k.b.111.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +(1.36338 - 0.564729i) q^{3} +1.00000i q^{4} +(0.382683 + 0.923880i) q^{5} +(1.36338 + 0.564729i) q^{6} +(1.35785 - 3.27815i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-0.581445 + 0.581445i) q^{9} +O(q^{10})\) \(q+(0.707107 + 0.707107i) q^{2} +(1.36338 - 0.564729i) q^{3} +1.00000i q^{4} +(0.382683 + 0.923880i) q^{5} +(1.36338 + 0.564729i) q^{6} +(1.35785 - 3.27815i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-0.581445 + 0.581445i) q^{9} +(-0.382683 + 0.923880i) q^{10} +(-4.35013 - 1.80188i) q^{11} +(0.564729 + 1.36338i) q^{12} +5.47699i q^{13} +(3.27815 - 1.35785i) q^{14} +(1.04348 + 1.04348i) q^{15} -1.00000 q^{16} +(2.52894 - 3.25645i) q^{17} -0.822287 q^{18} +(0.857748 + 0.857748i) q^{19} +(-0.923880 + 0.382683i) q^{20} -5.23617i q^{21} +(-1.80188 - 4.35013i) q^{22} +(-5.28485 - 2.18906i) q^{23} +(-0.564729 + 1.36338i) q^{24} +(-0.707107 + 0.707107i) q^{25} +(-3.87282 + 3.87282i) q^{26} +(-2.15856 + 5.21121i) q^{27} +(3.27815 + 1.35785i) q^{28} +(-1.77710 - 4.29029i) q^{29} +1.47571i q^{30} +(6.72892 - 2.78721i) q^{31} +(-0.707107 - 0.707107i) q^{32} -6.94843 q^{33} +(4.09089 - 0.514430i) q^{34} +3.54824 q^{35} +(-0.581445 - 0.581445i) q^{36} +(-8.58444 + 3.55579i) q^{37} +1.21304i q^{38} +(3.09302 + 7.46720i) q^{39} +(-0.923880 - 0.382683i) q^{40} +(0.0547598 - 0.132202i) q^{41} +(3.70253 - 3.70253i) q^{42} +(-0.587013 + 0.587013i) q^{43} +(1.80188 - 4.35013i) q^{44} +(-0.759695 - 0.314676i) q^{45} +(-2.18906 - 5.28485i) q^{46} -5.85635i q^{47} +(-1.36338 + 0.564729i) q^{48} +(-3.95275 - 3.95275i) q^{49} -1.00000 q^{50} +(1.60888 - 5.86793i) q^{51} -5.47699 q^{52} +(6.54226 + 6.54226i) q^{53} +(-5.21121 + 2.15856i) q^{54} -4.70854i q^{55} +(1.35785 + 3.27815i) q^{56} +(1.65383 + 0.685038i) q^{57} +(1.77710 - 4.29029i) q^{58} +(-3.33507 + 3.33507i) q^{59} +(-1.04348 + 1.04348i) q^{60} +(4.76261 - 11.4980i) q^{61} +(6.72892 + 2.78721i) q^{62} +(1.11655 + 2.69558i) q^{63} -1.00000i q^{64} +(-5.06008 + 2.09595i) q^{65} +(-4.91328 - 4.91328i) q^{66} +8.66703 q^{67} +(3.25645 + 2.52894i) q^{68} -8.44146 q^{69} +(2.50899 + 2.50899i) q^{70} +(4.75235 - 1.96849i) q^{71} -0.822287i q^{72} +(6.17351 + 14.9042i) q^{73} +(-8.58444 - 3.55579i) q^{74} +(-0.564729 + 1.36338i) q^{75} +(-0.857748 + 0.857748i) q^{76} +(-11.8137 + 11.8137i) q^{77} +(-3.09302 + 7.46720i) q^{78} +(9.34587 + 3.87118i) q^{79} +(-0.382683 - 0.923880i) q^{80} +5.85698i q^{81} +(0.132202 - 0.0547598i) q^{82} +(2.40841 + 2.40841i) q^{83} +5.23617 q^{84} +(3.97635 + 1.09024i) q^{85} -0.830161 q^{86} +(-4.84570 - 4.84570i) q^{87} +(4.35013 - 1.80188i) q^{88} +2.24175i q^{89} +(-0.314676 - 0.759695i) q^{90} +(17.9544 + 7.43696i) q^{91} +(2.18906 - 5.28485i) q^{92} +(7.60004 - 7.60004i) q^{93} +(4.14106 - 4.14106i) q^{94} +(-0.464210 + 1.12070i) q^{95} +(-1.36338 - 0.564729i) q^{96} +(1.66675 + 4.02389i) q^{97} -5.59004i q^{98} +(3.57705 - 1.48166i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 8 q^{11} - 8 q^{14} + 8 q^{15} - 16 q^{16} + 8 q^{18} - 8 q^{22} + 8 q^{23} - 24 q^{27} - 8 q^{28} + 8 q^{29} + 32 q^{31} + 16 q^{33} + 16 q^{34} + 16 q^{35} - 8 q^{37} - 32 q^{39} - 32 q^{41} + 32 q^{42} - 16 q^{43} + 8 q^{44} - 16 q^{45} - 24 q^{46} - 8 q^{49} - 16 q^{50} - 8 q^{51} - 8 q^{52} - 40 q^{53} - 16 q^{57} - 8 q^{58} + 16 q^{59} - 8 q^{60} - 24 q^{61} + 32 q^{62} + 56 q^{63} - 8 q^{65} - 8 q^{66} + 16 q^{67} - 16 q^{69} + 8 q^{70} + 8 q^{71} + 16 q^{73} - 8 q^{74} + 24 q^{77} + 32 q^{78} + 40 q^{79} + 16 q^{82} + 32 q^{83} + 16 q^{84} + 16 q^{85} - 32 q^{87} + 8 q^{88} + 24 q^{91} + 24 q^{92} - 32 q^{93} + 40 q^{94} + 16 q^{95} + 24 q^{97} - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/170\mathbb{Z}\right)^\times\).

\(n\) \(71\) \(137\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 1.36338 0.564729i 0.787145 0.326046i 0.0473502 0.998878i \(-0.484922\pi\)
0.739795 + 0.672832i \(0.234922\pi\)
\(4\) 1.00000i 0.500000i
\(5\) 0.382683 + 0.923880i 0.171141 + 0.413171i
\(6\) 1.36338 + 0.564729i 0.556596 + 0.230550i
\(7\) 1.35785 3.27815i 0.513221 1.23902i −0.428779 0.903410i \(-0.641056\pi\)
0.941999 0.335615i \(-0.108944\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) −0.581445 + 0.581445i −0.193815 + 0.193815i
\(10\) −0.382683 + 0.923880i −0.121015 + 0.292156i
\(11\) −4.35013 1.80188i −1.31161 0.543288i −0.386258 0.922391i \(-0.626232\pi\)
−0.925354 + 0.379103i \(0.876232\pi\)
\(12\) 0.564729 + 1.36338i 0.163023 + 0.393573i
\(13\) 5.47699i 1.51904i 0.650481 + 0.759522i \(0.274567\pi\)
−0.650481 + 0.759522i \(0.725433\pi\)
\(14\) 3.27815 1.35785i 0.876123 0.362902i
\(15\) 1.04348 + 1.04348i 0.269426 + 0.269426i
\(16\) −1.00000 −0.250000
\(17\) 2.52894 3.25645i 0.613358 0.789805i
\(18\) −0.822287 −0.193815
\(19\) 0.857748 + 0.857748i 0.196781 + 0.196781i 0.798619 0.601838i \(-0.205565\pi\)
−0.601838 + 0.798619i \(0.705565\pi\)
\(20\) −0.923880 + 0.382683i −0.206586 + 0.0855706i
\(21\) 5.23617i 1.14263i
\(22\) −1.80188 4.35013i −0.384162 0.927450i
\(23\) −5.28485 2.18906i −1.10197 0.456450i −0.243803 0.969825i \(-0.578395\pi\)
−0.858165 + 0.513375i \(0.828395\pi\)
\(24\) −0.564729 + 1.36338i −0.115275 + 0.278298i
\(25\) −0.707107 + 0.707107i −0.141421 + 0.141421i
\(26\) −3.87282 + 3.87282i −0.759522 + 0.759522i
\(27\) −2.15856 + 5.21121i −0.415414 + 1.00290i
\(28\) 3.27815 + 1.35785i 0.619512 + 0.256610i
\(29\) −1.77710 4.29029i −0.329999 0.796687i −0.998591 0.0530586i \(-0.983103\pi\)
0.668593 0.743629i \(-0.266897\pi\)
\(30\) 1.47571i 0.269426i
\(31\) 6.72892 2.78721i 1.20855 0.500598i 0.314798 0.949159i \(-0.398063\pi\)
0.893752 + 0.448561i \(0.148063\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) −6.94843 −1.20957
\(34\) 4.09089 0.514430i 0.701581 0.0882239i
\(35\) 3.54824 0.599763
\(36\) −0.581445 0.581445i −0.0969075 0.0969075i
\(37\) −8.58444 + 3.55579i −1.41127 + 0.584569i −0.952652 0.304063i \(-0.901657\pi\)
−0.458622 + 0.888631i \(0.651657\pi\)
\(38\) 1.21304i 0.196781i
\(39\) 3.09302 + 7.46720i 0.495279 + 1.19571i
\(40\) −0.923880 0.382683i −0.146078 0.0605076i
\(41\) 0.0547598 0.132202i 0.00855205 0.0206465i −0.919546 0.392983i \(-0.871443\pi\)
0.928098 + 0.372336i \(0.121443\pi\)
\(42\) 3.70253 3.70253i 0.571313 0.571313i
\(43\) −0.587013 + 0.587013i −0.0895186 + 0.0895186i −0.750448 0.660929i \(-0.770162\pi\)
0.660929 + 0.750448i \(0.270162\pi\)
\(44\) 1.80188 4.35013i 0.271644 0.655806i
\(45\) −0.759695 0.314676i −0.113249 0.0469091i
\(46\) −2.18906 5.28485i −0.322759 0.779209i
\(47\) 5.85635i 0.854236i −0.904196 0.427118i \(-0.859529\pi\)
0.904196 0.427118i \(-0.140471\pi\)
\(48\) −1.36338 + 0.564729i −0.196786 + 0.0815116i
\(49\) −3.95275 3.95275i −0.564679 0.564679i
\(50\) −1.00000 −0.141421
\(51\) 1.60888 5.86793i 0.225288 0.821675i
\(52\) −5.47699 −0.759522
\(53\) 6.54226 + 6.54226i 0.898648 + 0.898648i 0.995317 0.0966687i \(-0.0308187\pi\)
−0.0966687 + 0.995317i \(0.530819\pi\)
\(54\) −5.21121 + 2.15856i −0.709156 + 0.293742i
\(55\) 4.70854i 0.634900i
\(56\) 1.35785 + 3.27815i 0.181451 + 0.438061i
\(57\) 1.65383 + 0.685038i 0.219055 + 0.0907355i
\(58\) 1.77710 4.29029i 0.233344 0.563343i
\(59\) −3.33507 + 3.33507i −0.434189 + 0.434189i −0.890051 0.455861i \(-0.849331\pi\)
0.455861 + 0.890051i \(0.349331\pi\)
\(60\) −1.04348 + 1.04348i −0.134713 + 0.134713i
\(61\) 4.76261 11.4980i 0.609790 1.47216i −0.253439 0.967351i \(-0.581562\pi\)
0.863229 0.504812i \(-0.168438\pi\)
\(62\) 6.72892 + 2.78721i 0.854574 + 0.353976i
\(63\) 1.11655 + 2.69558i 0.140672 + 0.339611i
\(64\) 1.00000i 0.125000i
\(65\) −5.06008 + 2.09595i −0.627626 + 0.259971i
\(66\) −4.91328 4.91328i −0.604783 0.604783i
\(67\) 8.66703 1.05885 0.529423 0.848358i \(-0.322408\pi\)
0.529423 + 0.848358i \(0.322408\pi\)
\(68\) 3.25645 + 2.52894i 0.394903 + 0.306679i
\(69\) −8.44146 −1.01623
\(70\) 2.50899 + 2.50899i 0.299881 + 0.299881i
\(71\) 4.75235 1.96849i 0.564000 0.233617i −0.0824206 0.996598i \(-0.526265\pi\)
0.646421 + 0.762981i \(0.276265\pi\)
\(72\) 0.822287i 0.0969075i
\(73\) 6.17351 + 14.9042i 0.722555 + 1.74440i 0.665939 + 0.746006i \(0.268031\pi\)
0.0566159 + 0.998396i \(0.481969\pi\)
\(74\) −8.58444 3.55579i −0.997921 0.413353i
\(75\) −0.564729 + 1.36338i −0.0652093 + 0.157429i
\(76\) −0.857748 + 0.857748i −0.0983905 + 0.0983905i
\(77\) −11.8137 + 11.8137i −1.34629 + 1.34629i
\(78\) −3.09302 + 7.46720i −0.350215 + 0.845494i
\(79\) 9.34587 + 3.87118i 1.05149 + 0.435542i 0.840424 0.541929i \(-0.182306\pi\)
0.211068 + 0.977471i \(0.432306\pi\)
\(80\) −0.382683 0.923880i −0.0427853 0.103293i
\(81\) 5.85698i 0.650776i
\(82\) 0.132202 0.0547598i 0.0145993 0.00604721i
\(83\) 2.40841 + 2.40841i 0.264358 + 0.264358i 0.826822 0.562464i \(-0.190147\pi\)
−0.562464 + 0.826822i \(0.690147\pi\)
\(84\) 5.23617 0.571313
\(85\) 3.97635 + 1.09024i 0.431296 + 0.118254i
\(86\) −0.830161 −0.0895186
\(87\) −4.84570 4.84570i −0.519514 0.519514i
\(88\) 4.35013 1.80188i 0.463725 0.192081i
\(89\) 2.24175i 0.237625i 0.992917 + 0.118813i \(0.0379088\pi\)
−0.992917 + 0.118813i \(0.962091\pi\)
\(90\) −0.314676 0.759695i −0.0331697 0.0800788i
\(91\) 17.9544 + 7.43696i 1.88213 + 0.779605i
\(92\) 2.18906 5.28485i 0.228225 0.550984i
\(93\) 7.60004 7.60004i 0.788087 0.788087i
\(94\) 4.14106 4.14106i 0.427118 0.427118i
\(95\) −0.464210 + 1.12070i −0.0476269 + 0.114982i
\(96\) −1.36338 0.564729i −0.139149 0.0576374i
\(97\) 1.66675 + 4.02389i 0.169233 + 0.408564i 0.985628 0.168929i \(-0.0540309\pi\)
−0.816395 + 0.577493i \(0.804031\pi\)
\(98\) 5.59004i 0.564679i
\(99\) 3.57705 1.48166i 0.359507 0.148913i
\(100\) −0.707107 0.707107i −0.0707107 0.0707107i
\(101\) −10.7393 −1.06860 −0.534301 0.845294i \(-0.679425\pi\)
−0.534301 + 0.845294i \(0.679425\pi\)
\(102\) 5.28690 3.01160i 0.523482 0.298193i
\(103\) −7.43306 −0.732401 −0.366200 0.930536i \(-0.619342\pi\)
−0.366200 + 0.930536i \(0.619342\pi\)
\(104\) −3.87282 3.87282i −0.379761 0.379761i
\(105\) 4.83759 2.00380i 0.472101 0.195550i
\(106\) 9.25215i 0.898648i
\(107\) 6.01999 + 14.5335i 0.581974 + 1.40501i 0.891020 + 0.453963i \(0.149990\pi\)
−0.309046 + 0.951047i \(0.600010\pi\)
\(108\) −5.21121 2.15856i −0.501449 0.207707i
\(109\) 2.46089 5.94112i 0.235711 0.569056i −0.761120 0.648611i \(-0.775350\pi\)
0.996830 + 0.0795553i \(0.0253500\pi\)
\(110\) 3.32944 3.32944i 0.317450 0.317450i
\(111\) −9.69577 + 9.69577i −0.920281 + 0.920281i
\(112\) −1.35785 + 3.27815i −0.128305 + 0.309756i
\(113\) −8.90782 3.68974i −0.837978 0.347102i −0.0779218 0.996959i \(-0.524828\pi\)
−0.760056 + 0.649858i \(0.774828\pi\)
\(114\) 0.685038 + 1.65383i 0.0641597 + 0.154895i
\(115\) 5.72028i 0.533419i
\(116\) 4.29029 1.77710i 0.398344 0.164999i
\(117\) −3.18457 3.18457i −0.294414 0.294414i
\(118\) −4.71650 −0.434189
\(119\) −7.24121 12.7120i −0.663800 1.16531i
\(120\) −1.47571 −0.134713
\(121\) 7.89864 + 7.89864i 0.718058 + 0.718058i
\(122\) 11.4980 4.76261i 1.04098 0.431187i
\(123\) 0.211165i 0.0190401i
\(124\) 2.78721 + 6.72892i 0.250299 + 0.604275i
\(125\) −0.923880 0.382683i −0.0826343 0.0342282i
\(126\) −1.11655 + 2.69558i −0.0994699 + 0.240142i
\(127\) 2.26692 2.26692i 0.201157 0.201157i −0.599339 0.800496i \(-0.704570\pi\)
0.800496 + 0.599339i \(0.204570\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) −0.468816 + 1.13182i −0.0412769 + 0.0996513i
\(130\) −5.06008 2.09595i −0.443798 0.183827i
\(131\) −1.36747 3.30136i −0.119476 0.288441i 0.852815 0.522213i \(-0.174893\pi\)
−0.972292 + 0.233771i \(0.924893\pi\)
\(132\) 6.94843i 0.604783i
\(133\) 3.97653 1.64713i 0.344808 0.142824i
\(134\) 6.12852 + 6.12852i 0.529423 + 0.529423i
\(135\) −5.64058 −0.485464
\(136\) 0.514430 + 4.09089i 0.0441120 + 0.350791i
\(137\) 3.30950 0.282750 0.141375 0.989956i \(-0.454848\pi\)
0.141375 + 0.989956i \(0.454848\pi\)
\(138\) −5.96902 5.96902i −0.508116 0.508116i
\(139\) −1.66295 + 0.688816i −0.141049 + 0.0584246i −0.452092 0.891972i \(-0.649322\pi\)
0.311042 + 0.950396i \(0.399322\pi\)
\(140\) 3.54824i 0.299881i
\(141\) −3.30725 7.98440i −0.278520 0.672408i
\(142\) 4.75235 + 1.96849i 0.398808 + 0.165192i
\(143\) 9.86889 23.8256i 0.825278 1.99240i
\(144\) 0.581445 0.581445i 0.0484538 0.0484538i
\(145\) 3.28365 3.28365i 0.272692 0.272692i
\(146\) −6.17351 + 14.9042i −0.510924 + 1.23348i
\(147\) −7.62132 3.15686i −0.628596 0.260373i
\(148\) −3.55579 8.58444i −0.292284 0.705637i
\(149\) 4.16768i 0.341430i −0.985320 0.170715i \(-0.945392\pi\)
0.985320 0.170715i \(-0.0546077\pi\)
\(150\) −1.36338 + 0.564729i −0.111319 + 0.0461099i
\(151\) −3.24744 3.24744i −0.264273 0.264273i 0.562514 0.826788i \(-0.309834\pi\)
−0.826788 + 0.562514i \(0.809834\pi\)
\(152\) −1.21304 −0.0983905
\(153\) 0.423009 + 3.36389i 0.0341982 + 0.271954i
\(154\) −16.7071 −1.34629
\(155\) 5.15010 + 5.15010i 0.413666 + 0.413666i
\(156\) −7.46720 + 3.09302i −0.597854 + 0.247639i
\(157\) 15.5482i 1.24088i −0.784253 0.620442i \(-0.786953\pi\)
0.784253 0.620442i \(-0.213047\pi\)
\(158\) 3.87118 + 9.34587i 0.307975 + 0.743517i
\(159\) 12.6142 + 5.22495i 1.00037 + 0.414366i
\(160\) 0.382683 0.923880i 0.0302538 0.0730391i
\(161\) −14.3521 + 14.3521i −1.13111 + 1.13111i
\(162\) −4.14151 + 4.14151i −0.325388 + 0.325388i
\(163\) 3.87956 9.36608i 0.303870 0.733608i −0.696008 0.718034i \(-0.745042\pi\)
0.999879 0.0155742i \(-0.00495762\pi\)
\(164\) 0.132202 + 0.0547598i 0.0103232 + 0.00427602i
\(165\) −2.65905 6.41951i −0.207007 0.499758i
\(166\) 3.40601i 0.264358i
\(167\) −11.5038 + 4.76501i −0.890187 + 0.368728i −0.780439 0.625232i \(-0.785004\pi\)
−0.109748 + 0.993959i \(0.535004\pi\)
\(168\) 3.70253 + 3.70253i 0.285657 + 0.285657i
\(169\) −16.9974 −1.30750
\(170\) 2.04079 + 3.58262i 0.156521 + 0.274775i
\(171\) −0.997467 −0.0762782
\(172\) −0.587013 0.587013i −0.0447593 0.0447593i
\(173\) −3.27672 + 1.35726i −0.249125 + 0.103191i −0.503752 0.863849i \(-0.668047\pi\)
0.254627 + 0.967039i \(0.418047\pi\)
\(174\) 6.85286i 0.519514i
\(175\) 1.35785 + 3.27815i 0.102644 + 0.247805i
\(176\) 4.35013 + 1.80188i 0.327903 + 0.135822i
\(177\) −2.66354 + 6.43037i −0.200204 + 0.483336i
\(178\) −1.58516 + 1.58516i −0.118813 + 0.118813i
\(179\) −9.26485 + 9.26485i −0.692487 + 0.692487i −0.962779 0.270291i \(-0.912880\pi\)
0.270291 + 0.962779i \(0.412880\pi\)
\(180\) 0.314676 0.759695i 0.0234545 0.0566243i
\(181\) 1.68821 + 0.699281i 0.125484 + 0.0519772i 0.444542 0.895758i \(-0.353366\pi\)
−0.319058 + 0.947735i \(0.603366\pi\)
\(182\) 7.43696 + 17.9544i 0.551264 + 1.33087i
\(183\) 18.3656i 1.35763i
\(184\) 5.28485 2.18906i 0.389604 0.161379i
\(185\) −6.57025 6.57025i −0.483054 0.483054i
\(186\) 10.7481 0.788087
\(187\) −16.8689 + 9.60913i −1.23358 + 0.702689i
\(188\) 5.85635 0.427118
\(189\) 14.1521 + 14.1521i 1.02942 + 1.02942i
\(190\) −1.12070 + 0.464210i −0.0813043 + 0.0336773i
\(191\) 16.8319i 1.21791i −0.793205 0.608955i \(-0.791589\pi\)
0.793205 0.608955i \(-0.208411\pi\)
\(192\) −0.564729 1.36338i −0.0407558 0.0983932i
\(193\) −5.38504 2.23056i −0.387624 0.160559i 0.180356 0.983601i \(-0.442275\pi\)
−0.567980 + 0.823042i \(0.692275\pi\)
\(194\) −1.66675 + 4.02389i −0.119666 + 0.288899i
\(195\) −5.71515 + 5.71515i −0.409270 + 0.409270i
\(196\) 3.95275 3.95275i 0.282340 0.282340i
\(197\) 1.34760 3.25339i 0.0960123 0.231794i −0.868575 0.495557i \(-0.834964\pi\)
0.964587 + 0.263763i \(0.0849638\pi\)
\(198\) 3.57705 + 1.48166i 0.254210 + 0.105297i
\(199\) −6.42910 15.5212i −0.455747 1.10027i −0.970103 0.242694i \(-0.921969\pi\)
0.514356 0.857577i \(-0.328031\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) 11.8164 4.89452i 0.833466 0.345233i
\(202\) −7.59384 7.59384i −0.534301 0.534301i
\(203\) −16.4773 −1.15648
\(204\) 5.86793 + 1.60888i 0.410837 + 0.112644i
\(205\) 0.143094 0.00999414
\(206\) −5.25597 5.25597i −0.366200 0.366200i
\(207\) 4.34567 1.80003i 0.302045 0.125111i
\(208\) 5.47699i 0.379761i
\(209\) −2.18575 5.27687i −0.151192 0.365009i
\(210\) 4.83759 + 2.00380i 0.333826 + 0.138275i
\(211\) −8.73280 + 21.0828i −0.601191 + 1.45140i 0.271166 + 0.962533i \(0.412591\pi\)
−0.872357 + 0.488870i \(0.837409\pi\)
\(212\) −6.54226 + 6.54226i −0.449324 + 0.449324i
\(213\) 5.36758 5.36758i 0.367780 0.367780i
\(214\) −6.01999 + 14.5335i −0.411518 + 0.993492i
\(215\) −0.766969 0.317689i −0.0523068 0.0216662i
\(216\) −2.15856 5.21121i −0.146871 0.354578i
\(217\) 25.8431i 1.75434i
\(218\) 5.94112 2.46089i 0.402383 0.166673i
\(219\) 16.8336 + 16.8336i 1.13751 + 1.13751i
\(220\) 4.70854 0.317450
\(221\) 17.8356 + 13.8510i 1.19975 + 0.931717i
\(222\) −13.7119 −0.920281
\(223\) −6.41246 6.41246i −0.429410 0.429410i 0.459017 0.888427i \(-0.348202\pi\)
−0.888427 + 0.459017i \(0.848202\pi\)
\(224\) −3.27815 + 1.35785i −0.219031 + 0.0907255i
\(225\) 0.822287i 0.0548192i
\(226\) −3.68974 8.90782i −0.245438 0.592540i
\(227\) 14.5491 + 6.02643i 0.965658 + 0.399988i 0.809094 0.587679i \(-0.199958\pi\)
0.156564 + 0.987668i \(0.449958\pi\)
\(228\) −0.685038 + 1.65383i −0.0453678 + 0.109527i
\(229\) 14.2262 14.2262i 0.940092 0.940092i −0.0582124 0.998304i \(-0.518540\pi\)
0.998304 + 0.0582124i \(0.0185401\pi\)
\(230\) 4.04485 4.04485i 0.266710 0.266710i
\(231\) −9.43496 + 22.7780i −0.620775 + 1.49868i
\(232\) 4.29029 + 1.77710i 0.281672 + 0.116672i
\(233\) −7.37613 17.8076i −0.483227 1.16661i −0.958068 0.286541i \(-0.907495\pi\)
0.474841 0.880071i \(-0.342505\pi\)
\(234\) 4.50366i 0.294414i
\(235\) 5.41056 2.24113i 0.352946 0.146195i
\(236\) −3.33507 3.33507i −0.217095 0.217095i
\(237\) 14.9281 0.969684
\(238\) 3.86845 14.1091i 0.250755 0.914555i
\(239\) 14.2040 0.918778 0.459389 0.888235i \(-0.348068\pi\)
0.459389 + 0.888235i \(0.348068\pi\)
\(240\) −1.04348 1.04348i −0.0673565 0.0673565i
\(241\) −4.22633 + 1.75060i −0.272242 + 0.112766i −0.514628 0.857414i \(-0.672070\pi\)
0.242386 + 0.970180i \(0.422070\pi\)
\(242\) 11.1704i 0.718058i
\(243\) −3.16806 7.64838i −0.203231 0.490644i
\(244\) 11.4980 + 4.76261i 0.736082 + 0.304895i
\(245\) 2.13922 5.16452i 0.136669 0.329949i
\(246\) 0.149316 0.149316i 0.00952007 0.00952007i
\(247\) −4.69788 + 4.69788i −0.298919 + 0.298919i
\(248\) −2.78721 + 6.72892i −0.176988 + 0.427287i
\(249\) 4.64367 + 1.92347i 0.294281 + 0.121895i
\(250\) −0.382683 0.923880i −0.0242030 0.0584313i
\(251\) 9.00712i 0.568524i −0.958747 0.284262i \(-0.908251\pi\)
0.958747 0.284262i \(-0.0917486\pi\)
\(252\) −2.69558 + 1.11655i −0.169806 + 0.0703358i
\(253\) 19.0453 + 19.0453i 1.19737 + 1.19737i
\(254\) 3.20591 0.201157
\(255\) 6.03695 0.759148i 0.378049 0.0475397i
\(256\) 1.00000 0.0625000
\(257\) 20.2643 + 20.2643i 1.26405 + 1.26405i 0.949112 + 0.314938i \(0.101984\pi\)
0.314938 + 0.949112i \(0.398016\pi\)
\(258\) −1.13182 + 0.468816i −0.0704641 + 0.0291872i
\(259\) 32.9693i 2.04862i
\(260\) −2.09595 5.06008i −0.129986 0.313813i
\(261\) 3.52785 + 1.46129i 0.218369 + 0.0904513i
\(262\) 1.36747 3.30136i 0.0844825 0.203959i
\(263\) −4.27498 + 4.27498i −0.263606 + 0.263606i −0.826517 0.562911i \(-0.809681\pi\)
0.562911 + 0.826517i \(0.309681\pi\)
\(264\) 4.91328 4.91328i 0.302392 0.302392i
\(265\) −3.54064 + 8.54787i −0.217500 + 0.525091i
\(266\) 3.97653 + 1.64713i 0.243816 + 0.100992i
\(267\) 1.26598 + 3.05635i 0.0774769 + 0.187046i
\(268\) 8.66703i 0.529423i
\(269\) −15.6073 + 6.46477i −0.951596 + 0.394164i −0.803830 0.594858i \(-0.797208\pi\)
−0.147765 + 0.989022i \(0.547208\pi\)
\(270\) −3.98849 3.98849i −0.242732 0.242732i
\(271\) −22.9305 −1.39293 −0.696463 0.717593i \(-0.745244\pi\)
−0.696463 + 0.717593i \(0.745244\pi\)
\(272\) −2.52894 + 3.25645i −0.153339 + 0.197451i
\(273\) 28.6785 1.73570
\(274\) 2.34017 + 2.34017i 0.141375 + 0.141375i
\(275\) 4.35013 1.80188i 0.262322 0.108658i
\(276\) 8.44146i 0.508116i
\(277\) 7.65435 + 18.4792i 0.459905 + 1.11031i 0.968435 + 0.249265i \(0.0801891\pi\)
−0.508530 + 0.861044i \(0.669811\pi\)
\(278\) −1.66295 0.688816i −0.0997370 0.0413124i
\(279\) −2.29189 + 5.53311i −0.137212 + 0.331259i
\(280\) −2.50899 + 2.50899i −0.149941 + 0.149941i
\(281\) 16.4633 16.4633i 0.982118 0.982118i −0.0177247 0.999843i \(-0.505642\pi\)
0.999843 + 0.0177247i \(0.00564226\pi\)
\(282\) 3.30725 7.98440i 0.196944 0.475464i
\(283\) −23.2363 9.62478i −1.38125 0.572134i −0.436437 0.899735i \(-0.643760\pi\)
−0.944816 + 0.327601i \(0.893760\pi\)
\(284\) 1.96849 + 4.75235i 0.116808 + 0.282000i
\(285\) 1.79009i 0.106036i
\(286\) 23.8256 9.86889i 1.40884 0.583560i
\(287\) −0.359022 0.359022i −0.0211924 0.0211924i
\(288\) 0.822287 0.0484538
\(289\) −4.20895 16.4707i −0.247585 0.968866i
\(290\) 4.64378 0.272692
\(291\) 4.54481 + 4.54481i 0.266422 + 0.266422i
\(292\) −14.9042 + 6.17351i −0.872201 + 0.361278i
\(293\) 25.5251i 1.49119i 0.666399 + 0.745595i \(0.267835\pi\)
−0.666399 + 0.745595i \(0.732165\pi\)
\(294\) −3.15686 7.62132i −0.184112 0.444485i
\(295\) −4.35748 1.80493i −0.253702 0.105087i
\(296\) 3.55579 8.58444i 0.206676 0.498961i
\(297\) 18.7800 18.7800i 1.08972 1.08972i
\(298\) 2.94700 2.94700i 0.170715 0.170715i
\(299\) 11.9894 28.9451i 0.693368 1.67394i
\(300\) −1.36338 0.564729i −0.0787145 0.0326046i
\(301\) 1.12724 + 2.72139i 0.0649729 + 0.156858i
\(302\) 4.59258i 0.264273i
\(303\) −14.6417 + 6.06480i −0.841145 + 0.348414i
\(304\) −0.857748 0.857748i −0.0491952 0.0491952i
\(305\) 12.4453 0.712616
\(306\) −2.07951 + 2.67774i −0.118878 + 0.153076i
\(307\) −14.2382 −0.812616 −0.406308 0.913736i \(-0.633184\pi\)
−0.406308 + 0.913736i \(0.633184\pi\)
\(308\) −11.8137 11.8137i −0.673147 0.673147i
\(309\) −10.1341 + 4.19766i −0.576506 + 0.238797i
\(310\) 7.28334i 0.413666i
\(311\) −4.65012 11.2264i −0.263684 0.636590i 0.735477 0.677550i \(-0.236958\pi\)
−0.999161 + 0.0409602i \(0.986958\pi\)
\(312\) −7.46720 3.09302i −0.422747 0.175108i
\(313\) −8.33854 + 20.1310i −0.471322 + 1.13787i 0.492257 + 0.870450i \(0.336172\pi\)
−0.963579 + 0.267422i \(0.913828\pi\)
\(314\) 10.9943 10.9943i 0.620442 0.620442i
\(315\) −2.06311 + 2.06311i −0.116243 + 0.116243i
\(316\) −3.87118 + 9.34587i −0.217771 + 0.525746i
\(317\) 9.47130 + 3.92314i 0.531961 + 0.220346i 0.632462 0.774591i \(-0.282044\pi\)
−0.100501 + 0.994937i \(0.532044\pi\)
\(318\) 5.22495 + 12.6142i 0.293001 + 0.707367i
\(319\) 21.8654i 1.22423i
\(320\) 0.923880 0.382683i 0.0516464 0.0213927i
\(321\) 16.4150 + 16.4150i 0.916197 + 0.916197i
\(322\) −20.2970 −1.13111
\(323\) 4.96241 0.624023i 0.276116 0.0347216i
\(324\) −5.85698 −0.325388
\(325\) −3.87282 3.87282i −0.214825 0.214825i
\(326\) 9.36608 3.87956i 0.518739 0.214869i
\(327\) 9.48972i 0.524783i
\(328\) 0.0547598 + 0.132202i 0.00302360 + 0.00729963i
\(329\) −19.1980 7.95207i −1.05842 0.438412i
\(330\) 2.65905 6.41951i 0.146376 0.353383i
\(331\) −0.209438 + 0.209438i −0.0115117 + 0.0115117i −0.712839 0.701327i \(-0.752591\pi\)
0.701327 + 0.712839i \(0.252591\pi\)
\(332\) −2.40841 + 2.40841i −0.132179 + 0.132179i
\(333\) 2.92388 7.05888i 0.160228 0.386824i
\(334\) −11.5038 4.76501i −0.629457 0.260730i
\(335\) 3.31673 + 8.00729i 0.181212 + 0.437485i
\(336\) 5.23617i 0.285657i
\(337\) −12.9824 + 5.37748i −0.707196 + 0.292930i −0.707144 0.707070i \(-0.750017\pi\)
−5.22341e−5 1.00000i \(0.500017\pi\)
\(338\) −12.0190 12.0190i −0.653748 0.653748i
\(339\) −14.2284 −0.772782
\(340\) −1.09024 + 3.97635i −0.0591268 + 0.215648i
\(341\) −34.2939 −1.85712
\(342\) −0.705316 0.705316i −0.0381391 0.0381391i
\(343\) 4.62206 1.91452i 0.249568 0.103374i
\(344\) 0.830161i 0.0447593i
\(345\) −3.23041 7.79889i −0.173919 0.419878i
\(346\) −3.27672 1.35726i −0.176158 0.0729669i
\(347\) −4.26669 + 10.3007i −0.229048 + 0.552971i −0.996062 0.0886594i \(-0.971742\pi\)
0.767014 + 0.641631i \(0.221742\pi\)
\(348\) 4.84570 4.84570i 0.259757 0.259757i
\(349\) −1.77671 + 1.77671i −0.0951051 + 0.0951051i −0.753059 0.657953i \(-0.771422\pi\)
0.657953 + 0.753059i \(0.271422\pi\)
\(350\) −1.35785 + 3.27815i −0.0725804 + 0.175225i
\(351\) −28.5418 11.8224i −1.52345 0.631033i
\(352\) 1.80188 + 4.35013i 0.0960406 + 0.231862i
\(353\) 10.0823i 0.536629i −0.963331 0.268314i \(-0.913533\pi\)
0.963331 0.268314i \(-0.0864666\pi\)
\(354\) −6.43037 + 2.66354i −0.341770 + 0.141566i
\(355\) 3.63729 + 3.63729i 0.193047 + 0.193047i
\(356\) −2.24175 −0.118813
\(357\) −17.0513 13.2420i −0.902452 0.700838i
\(358\) −13.1025 −0.692487
\(359\) −17.4429 17.4429i −0.920599 0.920599i 0.0764723 0.997072i \(-0.475634\pi\)
−0.997072 + 0.0764723i \(0.975634\pi\)
\(360\) 0.759695 0.314676i 0.0400394 0.0165849i
\(361\) 17.5285i 0.922555i
\(362\) 0.699281 + 1.68821i 0.0367534 + 0.0887306i
\(363\) 15.2294 + 6.30823i 0.799337 + 0.331096i
\(364\) −7.43696 + 17.9544i −0.389803 + 0.941067i
\(365\) −11.4072 + 11.4072i −0.597078 + 0.597078i
\(366\) 12.9865 12.9865i 0.678813 0.678813i
\(367\) 11.3939 27.5072i 0.594755 1.43587i −0.284108 0.958792i \(-0.591698\pi\)
0.878863 0.477073i \(-0.158302\pi\)
\(368\) 5.28485 + 2.18906i 0.275492 + 0.114112i
\(369\) 0.0450283 + 0.108708i 0.00234408 + 0.00565911i
\(370\) 9.29174i 0.483054i
\(371\) 30.3299 12.5631i 1.57465 0.652242i
\(372\) 7.60004 + 7.60004i 0.394043 + 0.394043i
\(373\) 20.8039 1.07718 0.538592 0.842567i \(-0.318956\pi\)
0.538592 + 0.842567i \(0.318956\pi\)
\(374\) −18.7228 5.13346i −0.968134 0.265445i
\(375\) −1.47571 −0.0762052
\(376\) 4.14106 + 4.14106i 0.213559 + 0.213559i
\(377\) 23.4979 9.73315i 1.21020 0.501283i
\(378\) 20.0142i 1.02942i
\(379\) 3.99706 + 9.64974i 0.205315 + 0.495674i 0.992674 0.120820i \(-0.0385524\pi\)
−0.787359 + 0.616494i \(0.788552\pi\)
\(380\) −1.12070 0.464210i −0.0574908 0.0238135i
\(381\) 1.81047 4.37087i 0.0927533 0.223926i
\(382\) 11.9019 11.9019i 0.608955 0.608955i
\(383\) −14.2495 + 14.2495i −0.728113 + 0.728113i −0.970244 0.242130i \(-0.922154\pi\)
0.242130 + 0.970244i \(0.422154\pi\)
\(384\) 0.564729 1.36338i 0.0288187 0.0695745i
\(385\) −15.4353 6.39351i −0.786656 0.325844i
\(386\) −2.23056 5.38504i −0.113532 0.274091i
\(387\) 0.682631i 0.0347001i
\(388\) −4.02389 + 1.66675i −0.204282 + 0.0846164i
\(389\) −13.9058 13.9058i −0.705051 0.705051i 0.260440 0.965490i \(-0.416133\pi\)
−0.965490 + 0.260440i \(0.916133\pi\)
\(390\) −8.08244 −0.409270
\(391\) −20.4936 + 11.6739i −1.03641 + 0.590373i
\(392\) 5.59004 0.282340
\(393\) −3.72875 3.72875i −0.188090 0.188090i
\(394\) 3.25339 1.34760i 0.163903 0.0678909i
\(395\) 10.1159i 0.508986i
\(396\) 1.48166 + 3.57705i 0.0744564 + 0.179754i
\(397\) −22.1250 9.16446i −1.11042 0.459951i −0.249338 0.968416i \(-0.580213\pi\)
−0.861083 + 0.508465i \(0.830213\pi\)
\(398\) 6.42910 15.5212i 0.322262 0.778009i
\(399\) 4.49132 4.49132i 0.224847 0.224847i
\(400\) 0.707107 0.707107i 0.0353553 0.0353553i
\(401\) −8.81734 + 21.2869i −0.440317 + 1.06302i 0.535521 + 0.844522i \(0.320115\pi\)
−0.975838 + 0.218497i \(0.929885\pi\)
\(402\) 11.8164 + 4.89452i 0.589350 + 0.244117i
\(403\) 15.2655 + 36.8543i 0.760431 + 1.83584i
\(404\) 10.7393i 0.534301i
\(405\) −5.41114 + 2.24137i −0.268882 + 0.111375i
\(406\) −11.6512 11.6512i −0.578239 0.578239i
\(407\) 43.7505 2.16863
\(408\) 3.01160 + 5.28690i 0.149097 + 0.261741i
\(409\) 12.7488 0.630389 0.315195 0.949027i \(-0.397930\pi\)
0.315195 + 0.949027i \(0.397930\pi\)
\(410\) 0.101183 + 0.101183i 0.00499707 + 0.00499707i
\(411\) 4.51209 1.86897i 0.222565 0.0921895i
\(412\) 7.43306i 0.366200i
\(413\) 6.40432 + 15.4614i 0.315136 + 0.760806i
\(414\) 4.34567 + 1.80003i 0.213578 + 0.0884669i
\(415\) −1.30342 + 3.14674i −0.0639826 + 0.154468i
\(416\) 3.87282 3.87282i 0.189881 0.189881i
\(417\) −1.87823 + 1.87823i −0.0919773 + 0.0919773i
\(418\) 2.18575 5.27687i 0.106909 0.258100i
\(419\) 25.2883 + 10.4748i 1.23541 + 0.511725i 0.902279 0.431153i \(-0.141893\pi\)
0.333136 + 0.942879i \(0.391893\pi\)
\(420\) 2.00380 + 4.83759i 0.0977752 + 0.236050i
\(421\) 33.6813i 1.64153i 0.571268 + 0.820764i \(0.306452\pi\)
−0.571268 + 0.820764i \(0.693548\pi\)
\(422\) −21.0828 + 8.73280i −1.02630 + 0.425106i
\(423\) 3.40514 + 3.40514i 0.165564 + 0.165564i
\(424\) −9.25215 −0.449324
\(425\) 0.514430 + 4.09089i 0.0249535 + 0.198437i
\(426\) 7.59090 0.367780
\(427\) −31.2251 31.2251i −1.51109 1.51109i
\(428\) −14.5335 + 6.01999i −0.702505 + 0.290987i
\(429\) 38.0565i 1.83739i
\(430\) −0.317689 0.766969i −0.0153203 0.0369865i
\(431\) −16.7963 6.95725i −0.809049 0.335119i −0.0604746 0.998170i \(-0.519261\pi\)
−0.748575 + 0.663051i \(0.769261\pi\)
\(432\) 2.15856 5.21121i 0.103854 0.250725i
\(433\) −5.73034 + 5.73034i −0.275382 + 0.275382i −0.831262 0.555880i \(-0.812381\pi\)
0.555880 + 0.831262i \(0.312381\pi\)
\(434\) 18.2738 18.2738i 0.877170 0.877170i
\(435\) 2.62248 6.33122i 0.125738 0.303559i
\(436\) 5.94112 + 2.46089i 0.284528 + 0.117855i
\(437\) −2.65541 6.41073i −0.127026 0.306667i
\(438\) 23.8064i 1.13751i
\(439\) 22.1522 9.17574i 1.05727 0.437934i 0.214786 0.976661i \(-0.431095\pi\)
0.842480 + 0.538727i \(0.181095\pi\)
\(440\) 3.32944 + 3.32944i 0.158725 + 0.158725i
\(441\) 4.59662 0.218887
\(442\) 2.81753 + 22.4058i 0.134016 + 1.06573i
\(443\) 0.244075 0.0115964 0.00579819 0.999983i \(-0.498154\pi\)
0.00579819 + 0.999983i \(0.498154\pi\)
\(444\) −9.69577 9.69577i −0.460141 0.460141i
\(445\) −2.07111 + 0.857882i −0.0981800 + 0.0406675i
\(446\) 9.06859i 0.429410i
\(447\) −2.35361 5.68212i −0.111322 0.268755i
\(448\) −3.27815 1.35785i −0.154878 0.0641526i
\(449\) −0.0315454 + 0.0761574i −0.00148872 + 0.00359409i −0.924622 0.380886i \(-0.875619\pi\)
0.923133 + 0.384480i \(0.125619\pi\)
\(450\) 0.581445 0.581445i 0.0274096 0.0274096i
\(451\) −0.476424 + 0.476424i −0.0224339 + 0.0224339i
\(452\) 3.68974 8.90782i 0.173551 0.418989i
\(453\) −6.26141 2.59356i −0.294187 0.121856i
\(454\) 6.02643 + 14.5491i 0.282835 + 0.682823i
\(455\) 19.4337i 0.911066i
\(456\) −1.65383 + 0.685038i −0.0774476 + 0.0320799i
\(457\) 17.2461 + 17.2461i 0.806737 + 0.806737i 0.984139 0.177402i \(-0.0567692\pi\)
−0.177402 + 0.984139i \(0.556769\pi\)
\(458\) 20.1188 0.940092
\(459\) 11.5112 + 20.2081i 0.537297 + 0.943232i
\(460\) 5.72028 0.266710
\(461\) 20.5839 + 20.5839i 0.958687 + 0.958687i 0.999180 0.0404924i \(-0.0128926\pi\)
−0.0404924 + 0.999180i \(0.512893\pi\)
\(462\) −22.7780 + 9.43496i −1.05973 + 0.438954i
\(463\) 27.9762i 1.30016i 0.759865 + 0.650081i \(0.225265\pi\)
−0.759865 + 0.650081i \(0.774735\pi\)
\(464\) 1.77710 + 4.29029i 0.0824997 + 0.199172i
\(465\) 9.92992 + 4.11311i 0.460489 + 0.190741i
\(466\) 7.37613 17.8076i 0.341693 0.824919i
\(467\) 22.1173 22.1173i 1.02347 1.02347i 0.0237504 0.999718i \(-0.492439\pi\)
0.999718 0.0237504i \(-0.00756069\pi\)
\(468\) 3.18457 3.18457i 0.147207 0.147207i
\(469\) 11.7686 28.4118i 0.543422 1.31194i
\(470\) 5.41056 + 2.24113i 0.249570 + 0.103375i
\(471\) −8.78053 21.1981i −0.404586 0.976756i
\(472\) 4.71650i 0.217095i
\(473\) 3.61131 1.49585i 0.166048 0.0687793i
\(474\) 10.5558 + 10.5558i 0.484842 + 0.484842i
\(475\) −1.21304 −0.0556581
\(476\) 12.7120 7.24121i 0.582655 0.331900i
\(477\) −7.60792 −0.348343
\(478\) 10.0437 + 10.0437i 0.459389 + 0.459389i
\(479\) −11.1564 + 4.62112i −0.509748 + 0.211144i −0.622707 0.782455i \(-0.713967\pi\)
0.112959 + 0.993600i \(0.463967\pi\)
\(480\) 1.47571i 0.0673565i
\(481\) −19.4751 47.0169i −0.887986 2.14379i
\(482\) −4.22633 1.75060i −0.192504 0.0797378i
\(483\) −11.4623 + 27.6724i −0.521552 + 1.25914i
\(484\) −7.89864 + 7.89864i −0.359029 + 0.359029i
\(485\) −3.07975 + 3.07975i −0.139844 + 0.139844i
\(486\) 3.16806 7.64838i 0.143706 0.346937i
\(487\) 4.63377 + 1.91937i 0.209976 + 0.0869749i 0.485192 0.874407i \(-0.338750\pi\)
−0.275217 + 0.961382i \(0.588750\pi\)
\(488\) 4.76261 + 11.4980i 0.215593 + 0.520488i
\(489\) 14.9604i 0.676532i
\(490\) 5.16452 2.13922i 0.233309 0.0966399i
\(491\) −18.6988 18.6988i −0.843865 0.843865i 0.145494 0.989359i \(-0.453523\pi\)
−0.989359 + 0.145494i \(0.953523\pi\)
\(492\) 0.211165 0.00952007
\(493\) −18.4653 5.06285i −0.831635 0.228019i
\(494\) −6.64381 −0.298919
\(495\) 2.73776 + 2.73776i 0.123053 + 0.123053i
\(496\) −6.72892 + 2.78721i −0.302138 + 0.125150i
\(497\) 18.2518i 0.818707i
\(498\) 1.92347 + 4.64367i 0.0861929 + 0.208088i
\(499\) −27.6595 11.4569i −1.23821 0.512882i −0.335053 0.942199i \(-0.608754\pi\)
−0.903154 + 0.429317i \(0.858754\pi\)
\(500\) 0.382683 0.923880i 0.0171141 0.0413171i
\(501\) −12.9930 + 12.9930i −0.580484 + 0.580484i
\(502\) 6.36899 6.36899i 0.284262 0.284262i
\(503\) 13.0499 31.5052i 0.581865 1.40475i −0.309255 0.950979i \(-0.600080\pi\)
0.891120 0.453768i \(-0.149920\pi\)
\(504\) −2.69558 1.11655i −0.120071 0.0497349i
\(505\) −4.10976 9.92183i −0.182882 0.441516i
\(506\) 26.9342i 1.19737i
\(507\) −23.1739 + 9.59895i −1.02919 + 0.426304i
\(508\) 2.26692 + 2.26692i 0.100578 + 0.100578i
\(509\) 28.0939 1.24524 0.622620 0.782525i \(-0.286068\pi\)
0.622620 + 0.782525i \(0.286068\pi\)
\(510\) 4.80557 + 3.73197i 0.212794 + 0.165255i
\(511\) 57.2409 2.53219
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) −6.32141 + 2.61841i −0.279097 + 0.115606i
\(514\) 28.6580i 1.26405i
\(515\) −2.84451 6.86725i −0.125344 0.302607i
\(516\) −1.13182 0.468816i −0.0498257 0.0206385i
\(517\) −10.5524 + 25.4758i −0.464096 + 1.12043i
\(518\) −23.3129 + 23.3129i −1.02431 + 1.02431i
\(519\) −3.70092 + 3.70092i −0.162452 + 0.162452i
\(520\) 2.09595 5.06008i 0.0919137 0.221899i
\(521\) 17.6215 + 7.29907i 0.772013 + 0.319778i 0.733687 0.679487i \(-0.237798\pi\)
0.0383252 + 0.999265i \(0.487798\pi\)
\(522\) 1.46129 + 3.52785i 0.0639587 + 0.154410i
\(523\) 6.69653i 0.292819i 0.989224 + 0.146409i \(0.0467717\pi\)
−0.989224 + 0.146409i \(0.953228\pi\)
\(524\) 3.30136 1.36747i 0.144221 0.0597381i
\(525\) 3.70253 + 3.70253i 0.161592 + 0.161592i
\(526\) −6.04573 −0.263606
\(527\) 7.94061 28.9611i 0.345899 1.26157i
\(528\) 6.94843 0.302392
\(529\) 6.87423 + 6.87423i 0.298879 + 0.298879i
\(530\) −8.54787 + 3.54064i −0.371296 + 0.153796i
\(531\) 3.87832i 0.168305i
\(532\) 1.64713 + 3.97653i 0.0714122 + 0.172404i
\(533\) 0.724069 + 0.299919i 0.0313629 + 0.0129909i
\(534\) −1.26598 + 3.05635i −0.0547844 + 0.132261i
\(535\) −11.1235 + 11.1235i −0.480910 + 0.480910i
\(536\) −6.12852 + 6.12852i −0.264712 + 0.264712i
\(537\) −7.39935 + 17.8636i −0.319305 + 0.770871i
\(538\) −15.6073 6.46477i −0.672880 0.278716i
\(539\) 10.0726 + 24.3174i 0.433857 + 1.04742i
\(540\) 5.64058i 0.242732i
\(541\) −6.32639 + 2.62047i −0.271993 + 0.112663i −0.514511 0.857484i \(-0.672027\pi\)
0.242518 + 0.970147i \(0.422027\pi\)
\(542\) −16.2143 16.2143i −0.696463 0.696463i
\(543\) 2.69657 0.115721
\(544\) −4.09089 + 0.514430i −0.175395 + 0.0220560i
\(545\) 6.43062 0.275458
\(546\) 20.2787 + 20.2787i 0.867850 + 0.867850i
\(547\) −3.26202 + 1.35117i −0.139474 + 0.0577719i −0.451329 0.892358i \(-0.649050\pi\)
0.311855 + 0.950130i \(0.399050\pi\)
\(548\) 3.30950i 0.141375i
\(549\) 3.91624 + 9.45463i 0.167141 + 0.403514i
\(550\) 4.35013 + 1.80188i 0.185490 + 0.0768325i
\(551\) 2.15569 5.20429i 0.0918355 0.221710i
\(552\) 5.96902 5.96902i 0.254058 0.254058i
\(553\) 25.3806 25.3806i 1.07929 1.07929i
\(554\) −7.65435 + 18.4792i −0.325202 + 0.785108i
\(555\) −12.6681 5.24731i −0.537732 0.222736i
\(556\) −0.688816 1.66295i −0.0292123 0.0705247i
\(557\) 45.7591i 1.93888i 0.245338 + 0.969438i \(0.421101\pi\)
−0.245338 + 0.969438i \(0.578899\pi\)
\(558\) −5.53311 + 2.29189i −0.234235 + 0.0970234i
\(559\) −3.21506 3.21506i −0.135983 0.135983i
\(560\) −3.54824 −0.149941
\(561\) −17.5721 + 22.6272i −0.741897 + 0.955322i
\(562\) 23.2826 0.982118
\(563\) −7.05601 7.05601i −0.297375 0.297375i 0.542610 0.839985i \(-0.317436\pi\)
−0.839985 + 0.542610i \(0.817436\pi\)
\(564\) 7.98440 3.30725i 0.336204 0.139260i
\(565\) 9.64176i 0.405632i
\(566\) −9.62478 23.2363i −0.404560 0.976693i
\(567\) 19.2001 + 7.95293i 0.806327 + 0.333992i
\(568\) −1.96849 + 4.75235i −0.0825959 + 0.199404i
\(569\) −9.56020 + 9.56020i −0.400784 + 0.400784i −0.878509 0.477725i \(-0.841462\pi\)
0.477725 + 0.878509i \(0.341462\pi\)
\(570\) −1.26579 + 1.26579i −0.0530179 + 0.0530179i
\(571\) 6.49469 15.6796i 0.271794 0.656169i −0.727766 0.685826i \(-0.759441\pi\)
0.999560 + 0.0296562i \(0.00944125\pi\)
\(572\) 23.8256 + 9.86889i 0.996199 + 0.412639i
\(573\) −9.50543 22.9481i −0.397095 0.958673i
\(574\) 0.507734i 0.0211924i
\(575\) 5.28485 2.18906i 0.220394 0.0912900i
\(576\) 0.581445 + 0.581445i 0.0242269 + 0.0242269i
\(577\) −9.67374 −0.402723 −0.201361 0.979517i \(-0.564537\pi\)
−0.201361 + 0.979517i \(0.564537\pi\)
\(578\) 8.67039 14.6227i 0.360641 0.608226i
\(579\) −8.60150 −0.357466
\(580\) 3.28365 + 3.28365i 0.136346 + 0.136346i
\(581\) 11.1654 4.62487i 0.463220 0.191872i
\(582\) 6.42734i 0.266422i
\(583\) −16.6713 40.2480i −0.690453 1.66690i
\(584\) −14.9042 6.17351i −0.616739 0.255462i
\(585\) 1.72348 4.16084i 0.0712570 0.172030i
\(586\) −18.0489 + 18.0489i −0.745595 + 0.745595i
\(587\) 3.24694 3.24694i 0.134015 0.134015i −0.636917 0.770932i \(-0.719791\pi\)
0.770932 + 0.636917i \(0.219791\pi\)
\(588\) 3.15686 7.62132i 0.130187 0.314298i
\(589\) 8.16245 + 3.38100i 0.336328 + 0.139312i
\(590\) −1.80493 4.35748i −0.0743077 0.179395i
\(591\) 5.19661i 0.213760i
\(592\) 8.58444 3.55579i 0.352818 0.146142i
\(593\) −0.550724 0.550724i −0.0226155 0.0226155i 0.695709 0.718324i \(-0.255090\pi\)
−0.718324 + 0.695709i \(0.755090\pi\)
\(594\) 26.5589 1.08972
\(595\) 8.97329 11.5547i 0.367869 0.473696i
\(596\) 4.16768 0.170715
\(597\) −17.5306 17.5306i −0.717478 0.717478i
\(598\) 28.9451 11.9894i 1.18365 0.490285i
\(599\) 10.4846i 0.428391i −0.976791 0.214196i \(-0.931287\pi\)
0.976791 0.214196i \(-0.0687130\pi\)
\(600\) −0.564729 1.36338i −0.0230550 0.0556596i
\(601\) −14.1755 5.87170i −0.578233 0.239512i 0.0743464 0.997232i \(-0.476313\pi\)
−0.652579 + 0.757721i \(0.726313\pi\)
\(602\) −1.12724 + 2.72139i −0.0459428 + 0.110916i
\(603\) −5.03940 + 5.03940i −0.205220 + 0.205220i
\(604\) 3.24744 3.24744i 0.132137 0.132137i
\(605\) −4.27471 + 10.3201i −0.173792 + 0.419571i
\(606\) −14.6417 6.06480i −0.594779 0.246366i
\(607\) 8.27458 + 19.9766i 0.335855 + 0.810825i 0.998105 + 0.0615418i \(0.0196018\pi\)
−0.662250 + 0.749283i \(0.730398\pi\)
\(608\) 1.21304i 0.0491952i
\(609\) −22.4647 + 9.30519i −0.910316 + 0.377065i
\(610\) 8.80016 + 8.80016i 0.356308 + 0.356308i
\(611\) 32.0752 1.29762
\(612\) −3.36389 + 0.423009i −0.135977 + 0.0170991i
\(613\) −18.6071 −0.751535 −0.375768 0.926714i \(-0.622621\pi\)
−0.375768 + 0.926714i \(0.622621\pi\)
\(614\) −10.0679 10.0679i −0.406308 0.406308i
\(615\) 0.195091 0.0808095i 0.00786684 0.00325855i
\(616\) 16.7071i 0.673147i
\(617\) 2.18286 + 5.26989i 0.0878787 + 0.212158i 0.961709 0.274074i \(-0.0883712\pi\)
−0.873830 + 0.486231i \(0.838371\pi\)
\(618\) −10.1341 4.19766i −0.407651 0.168855i
\(619\) 11.1868 27.0073i 0.449635 1.08552i −0.522823 0.852441i \(-0.675121\pi\)
0.972459 0.233075i \(-0.0748787\pi\)
\(620\) −5.15010 + 5.15010i −0.206833 + 0.206833i
\(621\) 22.8153 22.8153i 0.915546 0.915546i
\(622\) 4.65012 11.2264i 0.186453 0.450137i
\(623\) 7.34881 + 3.04397i 0.294424 + 0.121954i
\(624\) −3.09302 7.46720i −0.123820 0.298927i
\(625\) 1.00000i 0.0400000i
\(626\) −20.1310 + 8.33854i −0.804597 + 0.333275i
\(627\) −5.96000 5.96000i −0.238020 0.238020i
\(628\) 15.5482 0.620442
\(629\) −10.1303 + 36.9472i −0.403920 + 1.47318i
\(630\) −2.91768 −0.116243
\(631\) 30.9574 + 30.9574i 1.23239 + 1.23239i 0.963042 + 0.269351i \(0.0868092\pi\)
0.269351 + 0.963042i \(0.413191\pi\)
\(632\) −9.34587 + 3.87118i −0.371759 + 0.153987i
\(633\) 33.6755i 1.33848i
\(634\) 3.92314 + 9.47130i 0.155808 + 0.376153i
\(635\) 2.96188 + 1.22685i 0.117539 + 0.0486861i
\(636\) −5.22495 + 12.6142i −0.207183 + 0.500184i
\(637\) 21.6492 21.6492i 0.857773 0.857773i
\(638\) −15.4612 + 15.4612i −0.612115 + 0.612115i
\(639\) −1.61866 + 3.90780i −0.0640333 + 0.154590i
\(640\) 0.923880 + 0.382683i 0.0365195 + 0.0151269i
\(641\) −16.6913 40.2963i −0.659265 1.59161i −0.798941 0.601410i \(-0.794606\pi\)
0.139676 0.990197i \(-0.455394\pi\)
\(642\) 23.2143i 0.916197i
\(643\) −5.12401 + 2.12244i −0.202071 + 0.0837007i −0.481424 0.876488i \(-0.659880\pi\)
0.279353 + 0.960189i \(0.409880\pi\)
\(644\) −14.3521 14.3521i −0.565553 0.565553i
\(645\) −1.22508 −0.0482373
\(646\) 3.95020 + 3.06770i 0.155419 + 0.120697i
\(647\) −25.3893 −0.998155 −0.499078 0.866557i \(-0.666328\pi\)
−0.499078 + 0.866557i \(0.666328\pi\)
\(648\) −4.14151 4.14151i −0.162694 0.162694i
\(649\) 20.5174 8.49858i 0.805378 0.333598i
\(650\) 5.47699i 0.214825i
\(651\) −14.5943 35.2338i −0.571996 1.38092i
\(652\) 9.36608 + 3.87956i 0.366804 + 0.151935i
\(653\) 15.0457 36.3236i 0.588784 1.42145i −0.295882 0.955225i \(-0.595613\pi\)
0.884666 0.466226i \(-0.154387\pi\)
\(654\) 6.71024 6.71024i 0.262391 0.262391i
\(655\) 2.52675 2.52675i 0.0987284 0.0987284i
\(656\) −0.0547598 + 0.132202i −0.00213801 + 0.00516162i
\(657\) −12.2555 5.07640i −0.478133 0.198049i
\(658\) −7.95207 19.1980i −0.310004 0.748415i
\(659\) 39.5179i 1.53940i 0.638408 + 0.769698i \(0.279593\pi\)
−0.638408 + 0.769698i \(0.720407\pi\)
\(660\) 6.41951 2.65905i 0.249879 0.103503i
\(661\) −2.21986 2.21986i −0.0863427 0.0863427i 0.662616 0.748959i \(-0.269446\pi\)
−0.748959 + 0.662616i \(0.769446\pi\)
\(662\) −0.296190 −0.0115117
\(663\) 32.1386 + 8.81183i 1.24816 + 0.342223i
\(664\) −3.40601 −0.132179
\(665\) 3.04350 + 3.04350i 0.118022 + 0.118022i
\(666\) 7.05888 2.92388i 0.273526 0.113298i
\(667\) 26.5637i 1.02855i
\(668\) −4.76501 11.5038i −0.184364 0.445093i
\(669\) −12.3639 5.12129i −0.478016 0.198001i
\(670\) −3.31673 + 8.00729i −0.128136 + 0.309349i
\(671\) −41.4359 + 41.4359i −1.59962 + 1.59962i
\(672\) −3.70253 + 3.70253i −0.142828 + 0.142828i
\(673\) −8.91195 + 21.5153i −0.343530 + 0.829355i 0.653823 + 0.756647i \(0.273164\pi\)
−0.997353 + 0.0727079i \(0.976836\pi\)
\(674\) −12.9824 5.37748i −0.500063 0.207133i
\(675\) −2.15856 5.21121i −0.0830829 0.200580i
\(676\) 16.9974i 0.653748i
\(677\) −38.1349 + 15.7960i −1.46564 + 0.607089i −0.965861 0.259062i \(-0.916587\pi\)
−0.499782 + 0.866151i \(0.666587\pi\)
\(678\) −10.0610 10.0610i −0.386391 0.386391i
\(679\) 15.4541 0.593075
\(680\) −3.58262 + 2.04079i −0.137387 + 0.0782606i
\(681\) 23.2392 0.890528
\(682\) −24.2494 24.2494i −0.928559 0.928559i
\(683\) 5.77636 2.39265i 0.221026 0.0915521i −0.269423 0.963022i \(-0.586833\pi\)
0.490449 + 0.871470i \(0.336833\pi\)
\(684\) 0.997467i 0.0381391i
\(685\) 1.26649 + 3.05758i 0.0483901 + 0.116824i
\(686\) 4.62206 + 1.91452i 0.176471 + 0.0730968i
\(687\) 11.3617 27.4295i 0.433476 1.04650i
\(688\) 0.587013 0.587013i 0.0223796 0.0223796i
\(689\) −35.8319 + 35.8319i −1.36509 + 1.36509i
\(690\) 3.23041 7.79889i 0.122980 0.296899i
\(691\) −29.6992 12.3018i −1.12981 0.467983i −0.262094 0.965042i \(-0.584413\pi\)
−0.867716 + 0.497060i \(0.834413\pi\)
\(692\) −1.35726 3.27672i −0.0515954 0.124562i
\(693\) 13.7380i 0.521864i
\(694\) −10.3007 + 4.26669i −0.391010 + 0.161961i
\(695\) −1.27277 1.27277i −0.0482788 0.0482788i
\(696\) 6.85286 0.259757
\(697\) −0.292025 0.512653i −0.0110612 0.0194181i
\(698\) −2.51265 −0.0951051
\(699\) −20.1129 20.1129i −0.760739 0.760739i
\(700\) −3.27815 + 1.35785i −0.123902 + 0.0513221i
\(701\) 12.7609i 0.481972i −0.970529 0.240986i \(-0.922529\pi\)
0.970529 0.240986i \(-0.0774708\pi\)
\(702\) −11.8224 28.5418i −0.446208 1.07724i
\(703\) −10.4133 4.31332i −0.392744 0.162680i
\(704\) −1.80188 + 4.35013i −0.0679109 + 0.163952i
\(705\) 6.11100 6.11100i 0.230153 0.230153i
\(706\) 7.12929 7.12929i 0.268314 0.268314i
\(707\) −14.5824 + 35.2051i −0.548429 + 1.32402i
\(708\) −6.43037 2.66354i −0.241668 0.100102i
\(709\) 12.8274 + 30.9681i 0.481744 + 1.16303i 0.958780 + 0.284149i \(0.0917110\pi\)
−0.477036 + 0.878884i \(0.658289\pi\)
\(710\) 5.14391i 0.193047i
\(711\) −7.68499 + 3.18323i −0.288210 + 0.119380i
\(712\) −1.58516 1.58516i −0.0594063 0.0594063i
\(713\) −41.6627 −1.56028
\(714\) −2.69364 21.4206i −0.100807 0.801645i
\(715\) 25.7886 0.964441
\(716\) −9.26485 9.26485i −0.346244 0.346244i
\(717\) 19.3653 8.02139i 0.723212 0.299564i
\(718\) 24.6679i 0.920599i
\(719\) −10.9707 26.4857i −0.409140 0.987750i −0.985365 0.170459i \(-0.945475\pi\)
0.576225 0.817291i \(-0.304525\pi\)
\(720\) 0.759695 + 0.314676i 0.0283121 + 0.0117273i
\(721\) −10.0930 + 24.3667i −0.375883 + 0.907463i
\(722\) 12.3945 12.3945i 0.461277 0.461277i
\(723\) −4.77346 + 4.77346i −0.177527 + 0.177527i
\(724\) −0.699281 + 1.68821i −0.0259886 + 0.0627420i
\(725\) 4.29029 + 1.77710i 0.159337 + 0.0659998i
\(726\) 6.30823 + 15.2294i 0.234120 + 0.565216i
\(727\) 21.0302i 0.779966i 0.920822 + 0.389983i \(0.127519\pi\)
−0.920822 + 0.389983i \(0.872481\pi\)
\(728\) −17.9544 + 7.43696i −0.665435 + 0.275632i
\(729\) −21.0631 21.0631i −0.780113 0.780113i
\(730\) −16.1322 −0.597078
\(731\) 0.427059 + 3.39610i 0.0157954 + 0.125609i
\(732\) 18.3656 0.678813
\(733\) −6.38248 6.38248i −0.235742 0.235742i 0.579342 0.815084i \(-0.303310\pi\)
−0.815084 + 0.579342i \(0.803310\pi\)
\(734\) 27.5072 11.3939i 1.01531 0.420555i
\(735\) 8.24926i 0.304279i
\(736\) 2.18906 + 5.28485i 0.0806897 + 0.194802i
\(737\) −37.7027 15.6170i −1.38880 0.575258i
\(738\) −0.0450283 + 0.108708i −0.00165751 + 0.00400160i
\(739\) 10.1850 10.1850i 0.374662 0.374662i −0.494510 0.869172i \(-0.664653\pi\)
0.869172 + 0.494510i \(0.164653\pi\)
\(740\) 6.57025 6.57025i 0.241527 0.241527i
\(741\) −3.75195 + 9.05801i −0.137831 + 0.332754i
\(742\) 30.3299 + 12.5631i 1.11345 + 0.461205i
\(743\) 12.6717 + 30.5921i 0.464879 + 1.12232i 0.966370 + 0.257154i \(0.0827847\pi\)
−0.501492 + 0.865162i \(0.667215\pi\)
\(744\) 10.7481i 0.394043i
\(745\) 3.85044 1.59490i 0.141069 0.0584327i
\(746\) 14.7106 + 14.7106i 0.538592 + 0.538592i
\(747\) −2.80072 −0.102473
\(748\) −9.60913 16.8689i −0.351344 0.616789i
\(749\) 55.8174 2.03952
\(750\) −1.04348 1.04348i −0.0381026 0.0381026i
\(751\) −5.92242 + 2.45315i −0.216112 + 0.0895166i −0.488113 0.872780i \(-0.662315\pi\)
0.272001 + 0.962297i \(0.412315\pi\)
\(752\) 5.85635i 0.213559i
\(753\) −5.08658 12.2801i −0.185365 0.447511i
\(754\) 23.4979 + 9.73315i 0.855743 + 0.354460i
\(755\) 1.75750 4.24299i 0.0639621 0.154418i
\(756\) −14.1521 + 14.1521i −0.514708 + 0.514708i
\(757\) 34.6660 34.6660i 1.25996 1.25996i 0.308847 0.951112i \(-0.400057\pi\)
0.951112 0.308847i \(-0.0999430\pi\)
\(758\) −3.99706 + 9.64974i −0.145180 + 0.350495i
\(759\) 36.7214 + 15.2105i 1.33290 + 0.552107i
\(760\) −0.464210 1.12070i −0.0168387 0.0406521i
\(761\) 42.6819i 1.54722i 0.633662 + 0.773610i \(0.281551\pi\)
−0.633662 + 0.773610i \(0.718449\pi\)
\(762\) 4.37087 1.81047i 0.158340 0.0655865i
\(763\) −16.1344 16.1344i −0.584103 0.584103i
\(764\) 16.8319 0.608955
\(765\) −2.94595 + 1.67811i −0.106511 + 0.0606723i
\(766\) −20.1518 −0.728113
\(767\) −18.2662 18.2662i −0.659553 0.659553i
\(768\) 1.36338 0.564729i 0.0491966 0.0203779i
\(769\) 14.6429i 0.528035i 0.964518 + 0.264018i \(0.0850477\pi\)
−0.964518 + 0.264018i \(0.914952\pi\)
\(770\) −6.39351 15.4353i −0.230406 0.556250i
\(771\) 39.0716 + 16.1840i 1.40713 + 0.582853i
\(772\) 2.23056 5.38504i 0.0802795 0.193812i
\(773\) 10.5010 10.5010i 0.377696 0.377696i −0.492575 0.870270i \(-0.663944\pi\)
0.870270 + 0.492575i \(0.163944\pi\)
\(774\) 0.482693 0.482693i 0.0173500 0.0173500i
\(775\) −2.78721 + 6.72892i −0.100120 + 0.241710i
\(776\) −4.02389 1.66675i −0.144449 0.0598328i
\(777\) 18.6187 + 44.9496i 0.667944 + 1.61256i
\(778\) 19.6657i 0.705051i
\(779\) 0.160366 0.0664258i 0.00574571 0.00237995i
\(780\) −5.71515 5.71515i −0.204635 0.204635i
\(781\) −24.2203 −0.866670
\(782\) −22.7458 6.23650i −0.813390 0.223017i
\(783\) 26.1936 0.936083
\(784\) 3.95275 + 3.95275i 0.141170 + 0.141170i
\(785\) 14.3647 5.95005i 0.512698 0.212366i
\(786\) 5.27324i 0.188090i
\(787\) 8.22589 + 19.8591i 0.293221 + 0.707899i 1.00000 0.000464022i \(0.000147703\pi\)
−0.706779 + 0.707435i \(0.749852\pi\)
\(788\) 3.25339 + 1.34760i 0.115897 + 0.0480061i
\(789\) −3.41420 + 8.24261i −0.121549 + 0.293445i
\(790\) −7.15302 + 7.15302i −0.254493 + 0.254493i
\(791\) −24.1911 + 24.1911i −0.860135 + 0.860135i
\(792\) −1.48166 + 3.57705i −0.0526486 + 0.127105i
\(793\) 62.9743 + 26.0848i 2.23628 + 0.926298i
\(794\) −9.16446 22.1250i −0.325235 0.785186i
\(795\) 13.6535i 0.484238i
\(796\) 15.5212 6.42910i 0.550135 0.227874i
\(797\) 14.8934 + 14.8934i 0.527550 + 0.527550i 0.919841 0.392291i \(-0.128317\pi\)
−0.392291 + 0.919841i \(0.628317\pi\)
\(798\) 6.35168 0.224847
\(799\) −19.0709 14.8103i −0.674680 0.523952i
\(800\) 1.00000 0.0353553
\(801\) −1.30346 1.30346i −0.0460554 0.0460554i
\(802\) −21.2869 + 8.81734i −0.751668 + 0.311351i
\(803\) 75.9590i 2.68053i
\(804\) 4.89452 + 11.8164i 0.172617 + 0.416733i
\(805\) −18.7519 7.76731i −0.660919 0.273762i
\(806\) −15.2655 + 36.8543i −0.537706 + 1.29814i
\(807\) −17.6278 + 17.6278i −0.620529 + 0.620529i
\(808\) 7.59384 7.59384i 0.267150 0.267150i
\(809\) −6.98690 + 16.8679i −0.245646 + 0.593042i −0.997825 0.0659166i \(-0.979003\pi\)
0.752179 + 0.658959i \(0.229003\pi\)
\(810\) −5.41114 2.24137i −0.190128 0.0787537i
\(811\) −5.56638 13.4384i −0.195462 0.471887i 0.795512 0.605937i \(-0.207202\pi\)
−0.990975 + 0.134050i \(0.957202\pi\)
\(812\) 16.4773i 0.578239i
\(813\) −31.2628 + 12.9495i −1.09644 + 0.454158i
\(814\) 30.9363 + 30.9363i 1.08432 + 1.08432i
\(815\) 10.1378 0.355111
\(816\) −1.60888 + 5.86793i −0.0563221 + 0.205419i
\(817\) −1.00702 −0.0352311
\(818\) 9.01479 + 9.01479i 0.315195 + 0.315195i
\(819\) −14.7637 + 6.11532i −0.515885 + 0.213686i
\(820\) 0.143094i 0.00499707i
\(821\) 15.6230 + 37.7172i 0.545246 + 1.31634i 0.920979 + 0.389613i \(0.127391\pi\)
−0.375733 + 0.926728i \(0.622609\pi\)
\(822\) 4.51209 + 1.86897i 0.157377 + 0.0651878i
\(823\) 0.697439 1.68377i 0.0243112 0.0586925i −0.911258 0.411837i \(-0.864887\pi\)
0.935569 + 0.353144i \(0.114887\pi\)
\(824\) 5.25597 5.25597i 0.183100 0.183100i
\(825\) 4.91328 4.91328i 0.171059 0.171059i
\(826\) −6.40432 + 15.4614i −0.222835 + 0.537971i
\(827\) 42.9008 + 17.7701i 1.49181 + 0.617927i 0.971709 0.236180i \(-0.0758955\pi\)
0.520098 + 0.854107i \(0.325896\pi\)
\(828\) 1.80003 + 4.34567i 0.0625555 + 0.151022i
\(829\) 34.9749i 1.21473i −0.794424 0.607364i \(-0.792227\pi\)
0.794424 0.607364i \(-0.207773\pi\)
\(830\) −3.14674 + 1.30342i −0.109225 + 0.0452425i
\(831\) 20.8715 + 20.8715i 0.724025 + 0.724025i
\(832\) 5.47699 0.189881
\(833\) −22.8682 + 2.87568i −0.792337 + 0.0996365i
\(834\) −2.65622 −0.0919773
\(835\) −8.80459 8.80459i −0.304695 0.304695i
\(836\) 5.27687 2.18575i 0.182504 0.0755958i
\(837\) 41.0822i 1.42001i
\(838\) 10.4748 + 25.2883i 0.361845 + 0.873570i
\(839\) 39.6860 + 16.4385i 1.37011 + 0.567520i 0.941819 0.336120i \(-0.109115\pi\)
0.428294 + 0.903639i \(0.359115\pi\)
\(840\) −2.00380 + 4.83759i −0.0691375 + 0.166913i
\(841\) 5.25756 5.25756i 0.181295 0.181295i
\(842\) −23.8163 + 23.8163i −0.820764 + 0.820764i
\(843\) 13.1484 31.7430i 0.452854 1.09329i
\(844\) −21.0828 8.73280i −0.725701 0.300595i
\(845\) −6.50464 15.7036i −0.223766 0.540220i
\(846\) 4.81560i 0.165564i
\(847\) 36.6181 15.1677i 1.25821 0.521169i
\(848\) −6.54226 6.54226i −0.224662 0.224662i
\(849\) −37.1152 −1.27379
\(850\) −2.52894 + 3.25645i −0.0867419 + 0.111695i
\(851\) 53.1513 1.82200
\(852\) 5.36758 + 5.36758i 0.183890 + 0.183890i
\(853\) −8.59031 + 3.55822i −0.294127 + 0.121831i −0.524867 0.851184i \(-0.675885\pi\)
0.230741 + 0.973015i \(0.425885\pi\)
\(854\) 44.1590i 1.51109i
\(855\) −0.381714 0.921539i −0.0130543 0.0315160i
\(856\) −14.5335 6.01999i −0.496746 0.205759i
\(857\) −11.8527 + 28.6150i −0.404881 + 0.977469i 0.581582 + 0.813488i \(0.302434\pi\)
−0.986463 + 0.163982i \(0.947566\pi\)
\(858\) 26.9100 26.9100i 0.918693 0.918693i
\(859\) 13.1008 13.1008i 0.446994 0.446994i −0.447360 0.894354i \(-0.647636\pi\)
0.894354 + 0.447360i \(0.147636\pi\)
\(860\) 0.317689 0.766969i 0.0108331 0.0261534i
\(861\) −0.692232 0.286732i −0.0235912 0.00977179i
\(862\) −6.95725 16.7963i −0.236965 0.572084i
\(863\) 18.5377i 0.631030i −0.948921 0.315515i \(-0.897823\pi\)
0.948921 0.315515i \(-0.102177\pi\)
\(864\) 5.21121 2.15856i 0.177289 0.0734356i
\(865\) −2.50790 2.50790i −0.0852710 0.0852710i
\(866\) −8.10392 −0.275382
\(867\) −15.0399 20.0789i −0.510781 0.681914i
\(868\) 25.8431 0.877170
\(869\) −33.6803 33.6803i −1.14253 1.14253i
\(870\) 6.33122 2.62248i 0.214648 0.0889103i
\(871\) 47.4693i 1.60843i
\(872\) 2.46089 + 5.94112i 0.0833363 + 0.201192i
\(873\) −3.30880 1.37055i −0.111986 0.0463860i
\(874\) 2.65541 6.41073i 0.0898207 0.216846i
\(875\) −2.50899 + 2.50899i −0.0848193 + 0.0848193i
\(876\) −16.8336 + 16.8336i −0.568756 + 0.568756i
\(877\) 16.3998 39.5926i 0.553781 1.33695i −0.360837 0.932629i \(-0.617509\pi\)
0.914619 0.404318i \(-0.132491\pi\)
\(878\) 22.1522 + 9.17574i 0.747600 + 0.309666i
\(879\) 14.4147 + 34.8003i 0.486197 + 1.17378i
\(880\) 4.70854i 0.158725i
\(881\) 37.7646 15.6426i 1.27232 0.527014i 0.358653 0.933471i \(-0.383236\pi\)
0.913670 + 0.406457i \(0.133236\pi\)
\(882\) 3.25030 + 3.25030i 0.109443 + 0.109443i
\(883\) 52.3174 1.76062 0.880310 0.474398i \(-0.157334\pi\)
0.880310 + 0.474398i \(0.157334\pi\)
\(884\) −13.8510 + 17.8356i −0.465859 + 0.599875i
\(885\) −6.96018 −0.233964
\(886\) 0.172587 + 0.172587i 0.00579819 + 0.00579819i
\(887\) −13.9607 + 5.78272i −0.468755 + 0.194165i −0.604542 0.796573i \(-0.706644\pi\)
0.135787 + 0.990738i \(0.456644\pi\)
\(888\) 13.7119i 0.460141i
\(889\) −4.35317 10.5095i −0.146000 0.352476i
\(890\) −2.07111 0.857882i −0.0694238 0.0287563i
\(891\) 10.5536 25.4786i 0.353558 0.853565i
\(892\) 6.41246 6.41246i 0.214705 0.214705i
\(893\) 5.02327 5.02327i 0.168097 0.168097i
\(894\) 2.35361 5.68212i 0.0787165 0.190038i
\(895\) −12.1051 5.01410i −0.404629 0.167603i
\(896\) −1.35785 3.27815i −0.0453627 0.109515i
\(897\) 46.2338i 1.54370i
\(898\) −0.0761574 + 0.0315454i −0.00254140 + 0.00105268i
\(899\) −23.9159 23.9159i −0.797640 0.797640i
\(900\) 0.822287 0.0274096
\(901\) 37.8495 4.75958i 1.26095 0.158565i
\(902\) −0.673765 −0.0224339
\(903\) 3.07370 + 3.07370i 0.102286 + 0.102286i
\(904\) 8.90782 3.68974i 0.296270 0.122719i
\(905\) 1.82731i 0.0607418i
\(906\) −2.59356 6.26141i −0.0861653 0.208022i
\(907\) −23.1561 9.59155i −0.768884 0.318482i −0.0364638 0.999335i \(-0.511609\pi\)
−0.732420 + 0.680853i \(0.761609\pi\)
\(908\) −6.02643 + 14.5491i −0.199994 + 0.482829i
\(909\) 6.24432 6.24432i 0.207111 0.207111i
\(910\) −13.7417 + 13.7417i −0.455533 + 0.455533i
\(911\) −1.10387 + 2.66499i −0.0365730 + 0.0882950i −0.941111 0.338099i \(-0.890216\pi\)
0.904538 + 0.426394i \(0.140216\pi\)
\(912\) −1.65383 0.685038i −0.0547637 0.0226839i
\(913\) −6.13723 14.8166i −0.203113 0.490357i
\(914\) 24.3896i 0.806737i
\(915\) 16.9676 7.02822i 0.560933 0.232346i
\(916\) 14.2262 + 14.2262i 0.470046 + 0.470046i
\(917\) −12.6792 −0.418703
\(918\) −6.14961 + 22.4289i −0.202967 + 0.740265i
\(919\) −48.0746 −1.58584 −0.792918 0.609328i \(-0.791439\pi\)
−0.792918 + 0.609328i \(0.791439\pi\)
\(920\) 4.04485 + 4.04485i 0.133355 + 0.133355i
\(921\) −19.4120 + 8.04071i −0.639647 + 0.264950i
\(922\) 29.1100i 0.958687i
\(923\) 10.7814 + 26.0286i 0.354874 + 0.856741i
\(924\) −22.7780 9.43496i −0.749341 0.310387i
\(925\) 3.55579 8.58444i 0.116914 0.282255i
\(926\) −19.7821 + 19.7821i −0.650081 + 0.650081i
\(927\) 4.32191 4.32191i 0.141950 0.141950i
\(928\) −1.77710 + 4.29029i −0.0583361 + 0.140836i
\(929\) 25.3430 + 10.4974i 0.831478 + 0.344409i 0.757487 0.652850i \(-0.226427\pi\)
0.0739901 + 0.997259i \(0.476427\pi\)
\(930\) 4.11311 + 9.92992i 0.134874 + 0.325615i
\(931\) 6.78094i 0.222236i
\(932\) 17.8076 7.37613i 0.583306 0.241613i
\(933\) −12.6797 12.6797i −0.415116 0.415116i
\(934\) 31.2786 1.02347
\(935\) −15.3331 11.9076i −0.501447 0.389420i
\(936\) 4.50366 0.147207
\(937\) −10.3762 10.3762i −0.338975 0.338975i 0.517007 0.855981i \(-0.327046\pi\)
−0.855981 + 0.517007i \(0.827046\pi\)
\(938\) 28.4118 11.7686i 0.927679 0.384257i
\(939\) 32.1552i 1.04934i
\(940\) 2.24113 + 5.41056i 0.0730975 + 0.176473i
\(941\) 22.8397 + 9.46050i 0.744552 + 0.308404i 0.722517 0.691354i \(-0.242985\pi\)
0.0220356 + 0.999757i \(0.492985\pi\)
\(942\) 8.78053 21.1981i 0.286085 0.690671i
\(943\) −0.578795 + 0.578795i −0.0188482 + 0.0188482i
\(944\) 3.33507 3.33507i 0.108547 0.108547i
\(945\) −7.65908 + 18.4907i −0.249150 + 0.601501i
\(946\) 3.61131 + 1.49585i 0.117414 + 0.0486343i
\(947\) −2.49335 6.01947i −0.0810228 0.195606i 0.878177 0.478336i \(-0.158760\pi\)
−0.959200 + 0.282730i \(0.908760\pi\)
\(948\) 14.9281i 0.484842i
\(949\) −81.6301 + 33.8123i −2.64982 + 1.09759i
\(950\) −0.857748 0.857748i −0.0278290 0.0278290i
\(951\) 15.1285 0.490574
\(952\) 14.1091 + 3.86845i 0.457277 + 0.125377i
\(953\) 13.6944 0.443607 0.221803 0.975091i \(-0.428806\pi\)
0.221803 + 0.975091i \(0.428806\pi\)
\(954\) −5.37961 5.37961i −0.174171 0.174171i
\(955\) 15.5506 6.44127i 0.503206 0.208435i
\(956\) 14.2040i 0.459389i
\(957\) 12.3480 + 29.8108i 0.399155 + 0.963646i
\(958\) −11.1564 4.62112i −0.360446 0.149302i
\(959\) 4.49382 10.8490i 0.145113 0.350334i
\(960\) 1.04348 1.04348i 0.0336783 0.0336783i
\(961\) 15.5896 15.5896i 0.502889 0.502889i
\(962\) 19.4751 47.0169i 0.627901 1.51589i
\(963\) −11.9507 4.95016i −0.385107 0.159517i
\(964\) −1.75060 4.22633i −0.0563832 0.136121i
\(965\) 5.82873i 0.187633i
\(966\) −27.6724 + 11.4623i −0.890344 + 0.368793i
\(967\) 11.5376 + 11.5376i 0.371026 + 0.371026i 0.867851 0.496825i \(-0.165501\pi\)
−0.496825 + 0.867851i \(0.665501\pi\)
\(968\) −11.1704 −0.359029
\(969\) 6.41322 3.65319i 0.206022 0.117357i
\(970\) −4.35543 −0.139844
\(971\) −19.0136 19.0136i −0.610176 0.610176i 0.332816 0.942992i \(-0.392001\pi\)
−0.942992 + 0.332816i \(0.892001\pi\)
\(972\) 7.64838 3.16806i 0.245322 0.101616i
\(973\) 6.38671i 0.204748i
\(974\) 1.91937 + 4.63377i 0.0615005 + 0.148475i
\(975\) −7.46720 3.09302i −0.239142 0.0990558i
\(976\) −4.76261 + 11.4980i −0.152448 + 0.368041i
\(977\) −14.1423 + 14.1423i −0.452451 + 0.452451i −0.896167 0.443716i \(-0.853660\pi\)
0.443716 + 0.896167i \(0.353660\pi\)
\(978\) 10.5786 10.5786i 0.338266 0.338266i
\(979\) 4.03937 9.75191i 0.129099 0.311672i
\(980\) 5.16452 + 2.13922i 0.164975 + 0.0683347i
\(981\) 2.02356 + 4.88531i 0.0646073 + 0.155976i
\(982\) 26.4441i 0.843865i
\(983\) −26.6406 + 11.0349i −0.849704 + 0.351959i −0.764672 0.644419i \(-0.777099\pi\)
−0.0850316 + 0.996378i \(0.527099\pi\)
\(984\) 0.149316 + 0.149316i 0.00476003 + 0.00476003i
\(985\) 3.52144 0.112202
\(986\) −9.47696 16.6369i −0.301808 0.529827i
\(987\) −30.6648 −0.976072
\(988\) −4.69788 4.69788i −0.149460 0.149460i
\(989\) 4.38728 1.81727i 0.139507 0.0577858i
\(990\) 3.87177i 0.123053i
\(991\) −10.2929 24.8494i −0.326966 0.789366i −0.998815 0.0486775i \(-0.984499\pi\)
0.671848 0.740689i \(-0.265501\pi\)
\(992\) −6.72892 2.78721i −0.213644 0.0884941i
\(993\) −0.167267 + 0.403818i −0.00530805 + 0.0128148i
\(994\) 12.9060 12.9060i 0.409353 0.409353i
\(995\) 11.8794 11.8794i 0.376603 0.376603i
\(996\) −1.92347 + 4.64367i −0.0609476 + 0.147140i
\(997\) 28.1434 + 11.6574i 0.891310 + 0.369193i 0.780872 0.624690i \(-0.214775\pi\)
0.110437 + 0.993883i \(0.464775\pi\)
\(998\) −11.4569 27.6595i −0.362663 0.875545i
\(999\) 52.4108i 1.65820i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 170.2.k.b.121.3 yes 16
5.2 odd 4 850.2.o.g.699.2 16
5.3 odd 4 850.2.o.j.699.3 16
5.4 even 2 850.2.l.e.801.2 16
17.3 odd 16 2890.2.a.bi.1.7 8
17.5 odd 16 2890.2.b.r.2311.12 16
17.9 even 8 inner 170.2.k.b.111.3 16
17.12 odd 16 2890.2.b.r.2311.5 16
17.14 odd 16 2890.2.a.bj.1.2 8
85.9 even 8 850.2.l.e.451.2 16
85.43 odd 8 850.2.o.g.349.2 16
85.77 odd 8 850.2.o.j.349.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.k.b.111.3 16 17.9 even 8 inner
170.2.k.b.121.3 yes 16 1.1 even 1 trivial
850.2.l.e.451.2 16 85.9 even 8
850.2.l.e.801.2 16 5.4 even 2
850.2.o.g.349.2 16 85.43 odd 8
850.2.o.g.699.2 16 5.2 odd 4
850.2.o.j.349.3 16 85.77 odd 8
850.2.o.j.699.3 16 5.3 odd 4
2890.2.a.bi.1.7 8 17.3 odd 16
2890.2.a.bj.1.2 8 17.14 odd 16
2890.2.b.r.2311.5 16 17.12 odd 16
2890.2.b.r.2311.12 16 17.5 odd 16