L(s) = 1 | + (−1.41 − 1.41i)2-s + 2.00i·4-s + (0.448 − 2.19i)5-s + (2.36 − 2.36i)7-s + (−3.73 + 2.46i)10-s − 1.55i·11-s + (0.732 + 0.732i)13-s − 6.69·14-s + 3.99·16-s + (−4.57 − 4.57i)17-s + i·19-s + (4.38 + 0.896i)20-s + (−2.19 + 2.19i)22-s + (2.44 − 2.44i)23-s + (−4.59 − 1.96i)25-s − 2.07i·26-s + ⋯ |
L(s) = 1 | + (−0.999 − 0.999i)2-s + 1.00i·4-s + (0.200 − 0.979i)5-s + (0.894 − 0.894i)7-s + (−1.18 + 0.779i)10-s − 0.468i·11-s + (0.203 + 0.203i)13-s − 1.78·14-s + 0.999·16-s + (−1.10 − 1.10i)17-s + 0.229i·19-s + (0.979 + 0.200i)20-s + (−0.468 + 0.468i)22-s + (0.510 − 0.510i)23-s + (−0.919 − 0.392i)25-s − 0.406i·26-s + ⋯ |
Λ(s)=(=(855s/2ΓC(s)L(s)(−0.990−0.139i)Λ(2−s)
Λ(s)=(=(855s/2ΓC(s+1/2)L(s)(−0.990−0.139i)Λ(1−s)
Degree: |
2 |
Conductor: |
855
= 32⋅5⋅19
|
Sign: |
−0.990−0.139i
|
Analytic conductor: |
6.82720 |
Root analytic conductor: |
2.61289 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ855(818,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 855, ( :1/2), −0.990−0.139i)
|
Particular Values
L(1) |
≈ |
0.0603121+0.860547i |
L(21) |
≈ |
0.0603121+0.860547i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(−0.448+2.19i)T |
| 19 | 1−iT |
good | 2 | 1+(1.41+1.41i)T+2iT2 |
| 7 | 1+(−2.36+2.36i)T−7iT2 |
| 11 | 1+1.55iT−11T2 |
| 13 | 1+(−0.732−0.732i)T+13iT2 |
| 17 | 1+(4.57+4.57i)T+17iT2 |
| 23 | 1+(−2.44+2.44i)T−23iT2 |
| 29 | 1−8.76T+29T2 |
| 31 | 1+0.535T+31T2 |
| 37 | 1+(−3.46+3.46i)T−37iT2 |
| 41 | 1−2.82iT−41T2 |
| 43 | 1+(3.09+3.09i)T+43iT2 |
| 47 | 1+(−2.63−2.63i)T+47iT2 |
| 53 | 1+(4.24−4.24i)T−53iT2 |
| 59 | 1+13.3T+59T2 |
| 61 | 1+12.8T+61T2 |
| 67 | 1+(−9.46+9.46i)T−67iT2 |
| 71 | 1−0.757iT−71T2 |
| 73 | 1+(3.90+3.90i)T+73iT2 |
| 79 | 1−13.4iT−79T2 |
| 83 | 1+(−0.757+0.757i)T−83iT2 |
| 89 | 1+8.76T+89T2 |
| 97 | 1+(5.66−5.66i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.670602408605097508814834804380, −9.016565546564050166312399566787, −8.353070905662392134554706592801, −7.61519269112524189424366122894, −6.32958960787657719250993097572, −5.00607144157119136609480061433, −4.29005231560899561709172934701, −2.79483570346346873749141457088, −1.54630250482827433975175338122, −0.61695294130644760877765392275,
1.75712474657630524395957549895, 3.04069773862045940234842816532, 4.59969046645853080348702543714, 5.80896160556610727981514315156, 6.46860100926071715488518746017, 7.25505024324068241861885216674, 8.171088489835134669853109195254, 8.692329712559667251491492095619, 9.586973198648706763450935511138, 10.43723070647169722056854556080