Properties

Label 855.2.n.c
Level 855855
Weight 22
Character orbit 855.n
Analytic conductor 6.8276.827
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [855,2,Mod(647,855)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(855, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("855.647");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 855=32519 855 = 3^{2} \cdot 5 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 855.n (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.827209372826.82720937282
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(i)\Q(i)
Coefficient field: Q(ζ24)\Q(\zeta_{24})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ24\zeta_{24}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2ζ245+2ζ24)q22ζ246q4+(2ζ247+2ζ243)q5+(2ζ246ζ244++2)q7+(4ζ244+2ζ2424)q10++(6ζ245+6ζ24)q98+O(q100) q + ( - 2 \zeta_{24}^{5} + 2 \zeta_{24}) q^{2} - 2 \zeta_{24}^{6} q^{4} + (2 \zeta_{24}^{7} + \cdots - 2 \zeta_{24}^{3}) q^{5} + (2 \zeta_{24}^{6} - \zeta_{24}^{4} + \cdots + 2) q^{7} + (4 \zeta_{24}^{4} + 2 \zeta_{24}^{2} - 4) q^{10} + \cdots + ( - 6 \zeta_{24}^{5} + \cdots - 6 \zeta_{24}) q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+12q716q108q13+32q16+24q2216q25+24q2832q314q43+16q5248q5516q58+8q61+48q6724q7052q7316q76++24q97+O(q100) 8 q + 12 q^{7} - 16 q^{10} - 8 q^{13} + 32 q^{16} + 24 q^{22} - 16 q^{25} + 24 q^{28} - 32 q^{31} - 4 q^{43} + 16 q^{52} - 48 q^{55} - 16 q^{58} + 8 q^{61} + 48 q^{67} - 24 q^{70} - 52 q^{73} - 16 q^{76}+ \cdots + 24 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/855Z)×\left(\mathbb{Z}/855\mathbb{Z}\right)^\times.

nn 172172 191191 496496
χ(n)\chi(n) ζ246\zeta_{24}^{6} 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
647.1
0.258819 + 0.965926i
−0.965926 0.258819i
0.965926 + 0.258819i
−0.258819 0.965926i
0.258819 0.965926i
−0.965926 + 0.258819i
0.965926 0.258819i
−0.258819 + 0.965926i
−1.41421 + 1.41421i 0 2.00000i 0.448288 + 2.19067i 0 2.36603 + 2.36603i 0 0 −3.73205 2.46410i
647.2 −1.41421 + 1.41421i 0 2.00000i 1.67303 1.48356i 0 0.633975 + 0.633975i 0 0 −0.267949 + 4.46410i
647.3 1.41421 1.41421i 0 2.00000i −1.67303 + 1.48356i 0 0.633975 + 0.633975i 0 0 −0.267949 + 4.46410i
647.4 1.41421 1.41421i 0 2.00000i −0.448288 2.19067i 0 2.36603 + 2.36603i 0 0 −3.73205 2.46410i
818.1 −1.41421 1.41421i 0 2.00000i 0.448288 2.19067i 0 2.36603 2.36603i 0 0 −3.73205 + 2.46410i
818.2 −1.41421 1.41421i 0 2.00000i 1.67303 + 1.48356i 0 0.633975 0.633975i 0 0 −0.267949 4.46410i
818.3 1.41421 + 1.41421i 0 2.00000i −1.67303 1.48356i 0 0.633975 0.633975i 0 0 −0.267949 4.46410i
818.4 1.41421 + 1.41421i 0 2.00000i −0.448288 + 2.19067i 0 2.36603 2.36603i 0 0 −3.73205 + 2.46410i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 647.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.c odd 4 1 inner
15.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 855.2.n.c 8
3.b odd 2 1 inner 855.2.n.c 8
5.c odd 4 1 inner 855.2.n.c 8
15.e even 4 1 inner 855.2.n.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
855.2.n.c 8 1.a even 1 1 trivial
855.2.n.c 8 3.b odd 2 1 inner
855.2.n.c 8 5.c odd 4 1 inner
855.2.n.c 8 15.e even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(855,[χ])S_{2}^{\mathrm{new}}(855, [\chi]):

T24+16 T_{2}^{4} + 16 Copy content Toggle raw display
T746T73+18T7218T7+9 T_{7}^{4} - 6T_{7}^{3} + 18T_{7}^{2} - 18T_{7} + 9 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4+16)2 (T^{4} + 16)^{2} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T8+8T6++625 T^{8} + 8 T^{6} + \cdots + 625 Copy content Toggle raw display
77 (T46T3+18T2++9)2 (T^{4} - 6 T^{3} + 18 T^{2} + \cdots + 9)^{2} Copy content Toggle raw display
1111 (T4+36T2+81)2 (T^{4} + 36 T^{2} + 81)^{2} Copy content Toggle raw display
1313 (T4+4T3+8T2++16)2 (T^{4} + 4 T^{3} + 8 T^{2} + \cdots + 16)^{2} Copy content Toggle raw display
1717 T8+1746T4+81 T^{8} + 1746T^{4} + 81 Copy content Toggle raw display
1919 (T2+1)4 (T^{2} + 1)^{4} Copy content Toggle raw display
2323 (T4+144)2 (T^{4} + 144)^{2} Copy content Toggle raw display
2929 (T4112T2+2704)2 (T^{4} - 112 T^{2} + 2704)^{2} Copy content Toggle raw display
3131 (T2+8T+4)4 (T^{2} + 8 T + 4)^{4} Copy content Toggle raw display
3737 (T4+576)2 (T^{4} + 576)^{2} Copy content Toggle raw display
4141 (T2+8)4 (T^{2} + 8)^{4} Copy content Toggle raw display
4343 (T4+2T3++169)2 (T^{4} + 2 T^{3} + \cdots + 169)^{2} Copy content Toggle raw display
4747 T8+194T4+1 T^{8} + 194T^{4} + 1 Copy content Toggle raw display
5353 (T4+1296)2 (T^{4} + 1296)^{2} Copy content Toggle raw display
5959 (T4192T2+2304)2 (T^{4} - 192 T^{2} + 2304)^{2} Copy content Toggle raw display
6161 (T22T191)4 (T^{2} - 2 T - 191)^{4} Copy content Toggle raw display
6767 (T424T3++2304)2 (T^{4} - 24 T^{3} + \cdots + 2304)^{2} Copy content Toggle raw display
7171 (T4+112T2+64)2 (T^{4} + 112 T^{2} + 64)^{2} Copy content Toggle raw display
7373 (T4+26T3++5041)2 (T^{4} + 26 T^{3} + \cdots + 5041)^{2} Copy content Toggle raw display
7979 (T4+224T2+7744)2 (T^{4} + 224 T^{2} + 7744)^{2} Copy content Toggle raw display
8383 T8+49664T4+65536 T^{8} + 49664 T^{4} + 65536 Copy content Toggle raw display
8989 (T4112T2+2704)2 (T^{4} - 112 T^{2} + 2704)^{2} Copy content Toggle raw display
9797 (T412T3++17424)2 (T^{4} - 12 T^{3} + \cdots + 17424)^{2} Copy content Toggle raw display
show more
show less