L(s) = 1 | + (−5.41 − 3.12i)5-s + (3.74 + 6.49i)7-s + (6.17 − 3.56i)11-s + (−0.888 + 1.53i)13-s − 14.7i·17-s − 19.9·19-s + (20.8 + 12.0i)23-s + (7.03 + 12.1i)25-s + (−40.1 + 23.1i)29-s + (14.1 − 24.5i)31-s − 46.8i·35-s + 63.0·37-s + (28.0 + 16.1i)41-s + (−38.8 − 67.2i)43-s + (38.4 − 22.2i)47-s + ⋯ |
L(s) = 1 | + (−1.08 − 0.625i)5-s + (0.535 + 0.927i)7-s + (0.561 − 0.324i)11-s + (−0.0683 + 0.118i)13-s − 0.869i·17-s − 1.04·19-s + (0.907 + 0.523i)23-s + (0.281 + 0.487i)25-s + (−1.38 + 0.798i)29-s + (0.456 − 0.790i)31-s − 1.33i·35-s + 1.70·37-s + (0.683 + 0.394i)41-s + (−0.902 − 1.56i)43-s + (0.818 − 0.472i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.00681 + 0.999i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.00681 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.153674500\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.153674500\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (5.41 + 3.12i)T + (12.5 + 21.6i)T^{2} \) |
| 7 | \( 1 + (-3.74 - 6.49i)T + (-24.5 + 42.4i)T^{2} \) |
| 11 | \( 1 + (-6.17 + 3.56i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (0.888 - 1.53i)T + (-84.5 - 146. i)T^{2} \) |
| 17 | \( 1 + 14.7iT - 289T^{2} \) |
| 19 | \( 1 + 19.9T + 361T^{2} \) |
| 23 | \( 1 + (-20.8 - 12.0i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (40.1 - 23.1i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-14.1 + 24.5i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 - 63.0T + 1.36e3T^{2} \) |
| 41 | \( 1 + (-28.0 - 16.1i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (38.8 + 67.2i)T + (-924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-38.4 + 22.2i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + 42.2iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (93.8 + 54.2i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (25.3 + 43.9i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-56.9 + 98.6i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 85.2iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 94.5T + 5.32e3T^{2} \) |
| 79 | \( 1 + (35.6 + 61.6i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-94.9 + 54.7i)T + (3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 - 29.6iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (62.4 + 108. i)T + (-4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.401189470109292628820687261839, −8.937554204409081609251800949589, −8.116772085409392942076304542715, −7.39036863734613415949918597083, −6.23696632093471127446093203369, −5.18518665973496425989621451283, −4.41825035423542562569148223015, −3.37082204931410259401212129891, −1.97880239174633552939571573617, −0.43115209277748592674697589857,
1.19557973065638955832278293003, 2.78995674984954172418860747262, 4.14898601425745734951311813554, 4.31425002238231150547035620048, 5.97787443792533052069671039034, 6.93329730773723431503799343600, 7.60966810194426634776850898290, 8.271943078676271022435783222724, 9.327159091442859742338551437471, 10.45069650039876994834128327120