Properties

Label 864.3.q.a.449.4
Level $864$
Weight $3$
Character 864.449
Analytic conductor $23.542$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [864,3,Mod(449,864)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(864, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("864.449");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 864.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.5422948407\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 449.4
Character \(\chi\) \(=\) 864.449
Dual form 864.3.q.a.737.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.41309 - 3.12525i) q^{5} +(3.74855 + 6.49268i) q^{7} +(6.17688 - 3.56622i) q^{11} +(-0.888802 + 1.53945i) q^{13} -14.7791i q^{17} -19.9460 q^{19} +(20.8716 + 12.0502i) q^{23} +(7.03438 + 12.1839i) q^{25} +(-40.1279 + 23.1679i) q^{29} +(14.1547 - 24.5167i) q^{31} -46.8606i q^{35} +63.0770 q^{37} +(28.0185 + 16.1765i) q^{41} +(-38.8176 - 67.2341i) q^{43} +(38.4719 - 22.2118i) q^{47} +(-3.60324 + 6.24099i) q^{49} -42.2846i q^{53} -44.5813 q^{55} +(-93.8917 - 54.2084i) q^{59} +(-25.3858 - 43.9695i) q^{61} +(9.62233 - 5.55546i) q^{65} +(56.9484 - 98.6376i) q^{67} -85.2129i q^{71} -94.5357 q^{73} +(46.3086 + 26.7363i) q^{77} +(-35.6059 - 61.6712i) q^{79} +(94.9037 - 54.7927i) q^{83} +(-46.1885 + 80.0009i) q^{85} +29.6936i q^{89} -13.3269 q^{91} +(107.970 + 62.3363i) q^{95} +(-62.4793 - 108.217i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 60 q^{25} - 72 q^{29} - 252 q^{41} - 36 q^{49} - 96 q^{61} + 288 q^{65} + 24 q^{73} + 720 q^{77} + 96 q^{85} - 132 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −5.41309 3.12525i −1.08262 0.625050i −0.151017 0.988531i \(-0.548255\pi\)
−0.931602 + 0.363481i \(0.881588\pi\)
\(6\) 0 0
\(7\) 3.74855 + 6.49268i 0.535507 + 0.927525i 0.999139 + 0.0414972i \(0.0132128\pi\)
−0.463632 + 0.886028i \(0.653454\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.17688 3.56622i 0.561534 0.324202i −0.192227 0.981351i \(-0.561571\pi\)
0.753761 + 0.657149i \(0.228238\pi\)
\(12\) 0 0
\(13\) −0.888802 + 1.53945i −0.0683694 + 0.118419i −0.898184 0.439620i \(-0.855113\pi\)
0.829814 + 0.558040i \(0.188446\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 14.7791i 0.869362i −0.900585 0.434681i \(-0.856861\pi\)
0.900585 0.434681i \(-0.143139\pi\)
\(18\) 0 0
\(19\) −19.9460 −1.04979 −0.524896 0.851167i \(-0.675896\pi\)
−0.524896 + 0.851167i \(0.675896\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 20.8716 + 12.0502i 0.907462 + 0.523923i 0.879614 0.475689i \(-0.157801\pi\)
0.0278482 + 0.999612i \(0.491134\pi\)
\(24\) 0 0
\(25\) 7.03438 + 12.1839i 0.281375 + 0.487356i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −40.1279 + 23.1679i −1.38372 + 0.798891i −0.992598 0.121447i \(-0.961246\pi\)
−0.391123 + 0.920339i \(0.627913\pi\)
\(30\) 0 0
\(31\) 14.1547 24.5167i 0.456603 0.790860i −0.542176 0.840265i \(-0.682399\pi\)
0.998779 + 0.0494054i \(0.0157326\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 46.8606i 1.33887i
\(36\) 0 0
\(37\) 63.0770 1.70478 0.852391 0.522904i \(-0.175151\pi\)
0.852391 + 0.522904i \(0.175151\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 28.0185 + 16.1765i 0.683378 + 0.394549i 0.801127 0.598495i \(-0.204234\pi\)
−0.117748 + 0.993043i \(0.537568\pi\)
\(42\) 0 0
\(43\) −38.8176 67.2341i −0.902736 1.56358i −0.823928 0.566694i \(-0.808222\pi\)
−0.0788077 0.996890i \(-0.525111\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 38.4719 22.2118i 0.818551 0.472591i −0.0313654 0.999508i \(-0.509986\pi\)
0.849917 + 0.526917i \(0.176652\pi\)
\(48\) 0 0
\(49\) −3.60324 + 6.24099i −0.0735354 + 0.127367i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 42.2846i 0.797823i −0.916990 0.398911i \(-0.869388\pi\)
0.916990 0.398911i \(-0.130612\pi\)
\(54\) 0 0
\(55\) −44.5813 −0.810570
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −93.8917 54.2084i −1.59138 0.918786i −0.993070 0.117524i \(-0.962504\pi\)
−0.598314 0.801262i \(-0.704162\pi\)
\(60\) 0 0
\(61\) −25.3858 43.9695i −0.416161 0.720812i 0.579389 0.815051i \(-0.303291\pi\)
−0.995550 + 0.0942396i \(0.969958\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.62233 5.55546i 0.148036 0.0854686i
\(66\) 0 0
\(67\) 56.9484 98.6376i 0.849977 1.47220i −0.0312514 0.999512i \(-0.509949\pi\)
0.881228 0.472691i \(-0.156717\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 85.2129i 1.20018i −0.799932 0.600091i \(-0.795131\pi\)
0.799932 0.600091i \(-0.204869\pi\)
\(72\) 0 0
\(73\) −94.5357 −1.29501 −0.647505 0.762061i \(-0.724188\pi\)
−0.647505 + 0.762061i \(0.724188\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 46.3086 + 26.7363i 0.601411 + 0.347225i
\(78\) 0 0
\(79\) −35.6059 61.6712i −0.450707 0.780648i 0.547723 0.836660i \(-0.315495\pi\)
−0.998430 + 0.0560122i \(0.982161\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 94.9037 54.7927i 1.14342 0.660153i 0.196144 0.980575i \(-0.437158\pi\)
0.947275 + 0.320422i \(0.103825\pi\)
\(84\) 0 0
\(85\) −46.1885 + 80.0009i −0.543395 + 0.941187i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 29.6936i 0.333635i 0.985988 + 0.166818i \(0.0533491\pi\)
−0.985988 + 0.166818i \(0.946651\pi\)
\(90\) 0 0
\(91\) −13.3269 −0.146449
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 107.970 + 62.3363i 1.13652 + 0.656172i
\(96\) 0 0
\(97\) −62.4793 108.217i −0.644116 1.11564i −0.984505 0.175357i \(-0.943892\pi\)
0.340389 0.940285i \(-0.389441\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 34.0989 19.6870i 0.337613 0.194921i −0.321603 0.946875i \(-0.604222\pi\)
0.659216 + 0.751954i \(0.270888\pi\)
\(102\) 0 0
\(103\) −74.7230 + 129.424i −0.725466 + 1.25654i 0.233316 + 0.972401i \(0.425042\pi\)
−0.958782 + 0.284143i \(0.908291\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.420211i 0.00392721i −0.999998 0.00196360i \(-0.999375\pi\)
0.999998 0.00196360i \(-0.000625035\pi\)
\(108\) 0 0
\(109\) 64.4616 0.591391 0.295695 0.955282i \(-0.404449\pi\)
0.295695 + 0.955282i \(0.404449\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −22.4718 12.9741i −0.198865 0.114815i 0.397261 0.917706i \(-0.369961\pi\)
−0.596126 + 0.802891i \(0.703294\pi\)
\(114\) 0 0
\(115\) −75.3200 130.458i −0.654957 1.13442i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 95.9562 55.4004i 0.806355 0.465549i
\(120\) 0 0
\(121\) −35.0641 + 60.7329i −0.289786 + 0.501925i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 68.3258i 0.546606i
\(126\) 0 0
\(127\) −12.0916 −0.0952097 −0.0476049 0.998866i \(-0.515159\pi\)
−0.0476049 + 0.998866i \(0.515159\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 45.4518 + 26.2416i 0.346960 + 0.200318i 0.663346 0.748313i \(-0.269136\pi\)
−0.316385 + 0.948631i \(0.602469\pi\)
\(132\) 0 0
\(133\) −74.7687 129.503i −0.562171 0.973708i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 121.224 69.9888i 0.884848 0.510867i 0.0125942 0.999921i \(-0.495991\pi\)
0.872254 + 0.489053i \(0.162658\pi\)
\(138\) 0 0
\(139\) 19.9656 34.5814i 0.143637 0.248787i −0.785226 0.619209i \(-0.787453\pi\)
0.928864 + 0.370422i \(0.120787\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 12.6787i 0.0886619i
\(144\) 0 0
\(145\) 289.621 1.99739
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.26226 + 1.88347i 0.0218944 + 0.0126407i 0.510907 0.859636i \(-0.329310\pi\)
−0.489013 + 0.872277i \(0.662643\pi\)
\(150\) 0 0
\(151\) 74.8795 + 129.695i 0.495891 + 0.858908i 0.999989 0.00473848i \(-0.00150831\pi\)
−0.504098 + 0.863646i \(0.668175\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −153.241 + 88.4739i −0.988654 + 0.570800i
\(156\) 0 0
\(157\) −58.9507 + 102.106i −0.375482 + 0.650354i −0.990399 0.138238i \(-0.955856\pi\)
0.614917 + 0.788592i \(0.289189\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 180.684i 1.12226i
\(162\) 0 0
\(163\) 111.960 0.686874 0.343437 0.939176i \(-0.388409\pi\)
0.343437 + 0.939176i \(0.388409\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.33677 0.771783i −0.00800460 0.00462146i 0.495992 0.868327i \(-0.334804\pi\)
−0.503997 + 0.863705i \(0.668138\pi\)
\(168\) 0 0
\(169\) 82.9201 + 143.622i 0.490651 + 0.849833i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −46.0581 + 26.5917i −0.266232 + 0.153709i −0.627174 0.778879i \(-0.715789\pi\)
0.360942 + 0.932588i \(0.382455\pi\)
\(174\) 0 0
\(175\) −52.7374 + 91.3439i −0.301357 + 0.521965i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 239.444i 1.33768i −0.743407 0.668839i \(-0.766792\pi\)
0.743407 0.668839i \(-0.233208\pi\)
\(180\) 0 0
\(181\) 61.1557 0.337877 0.168938 0.985627i \(-0.445966\pi\)
0.168938 + 0.985627i \(0.445966\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −341.441 197.131i −1.84563 1.06557i
\(186\) 0 0
\(187\) −52.7057 91.2890i −0.281849 0.488176i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −28.9063 + 16.6891i −0.151342 + 0.0873773i −0.573759 0.819024i \(-0.694515\pi\)
0.422417 + 0.906402i \(0.361182\pi\)
\(192\) 0 0
\(193\) 21.2796 36.8573i 0.110257 0.190971i −0.805617 0.592437i \(-0.798166\pi\)
0.915874 + 0.401466i \(0.131499\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 203.372i 1.03235i −0.856484 0.516173i \(-0.827356\pi\)
0.856484 0.516173i \(-0.172644\pi\)
\(198\) 0 0
\(199\) 128.160 0.644022 0.322011 0.946736i \(-0.395641\pi\)
0.322011 + 0.946736i \(0.395641\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −300.843 173.692i −1.48198 0.855624i
\(204\) 0 0
\(205\) −101.111 175.130i −0.493225 0.854291i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −123.204 + 71.1320i −0.589494 + 0.340344i
\(210\) 0 0
\(211\) 97.2675 168.472i 0.460983 0.798446i −0.538027 0.842928i \(-0.680830\pi\)
0.999010 + 0.0444812i \(0.0141635\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 485.259i 2.25702i
\(216\) 0 0
\(217\) 212.238 0.978057
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 22.7518 + 13.1357i 0.102949 + 0.0594377i
\(222\) 0 0
\(223\) 95.1454 + 164.797i 0.426661 + 0.738998i 0.996574 0.0827067i \(-0.0263565\pi\)
−0.569913 + 0.821705i \(0.693023\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −320.930 + 185.289i −1.41379 + 0.816252i −0.995743 0.0921738i \(-0.970618\pi\)
−0.418047 + 0.908426i \(0.637285\pi\)
\(228\) 0 0
\(229\) −203.685 + 352.793i −0.889455 + 1.54058i −0.0489338 + 0.998802i \(0.515582\pi\)
−0.840521 + 0.541779i \(0.817751\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 21.5267i 0.0923895i −0.998932 0.0461947i \(-0.985291\pi\)
0.998932 0.0461947i \(-0.0147095\pi\)
\(234\) 0 0
\(235\) −277.669 −1.18157
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 172.020 + 99.3155i 0.719747 + 0.415546i 0.814660 0.579939i \(-0.196924\pi\)
−0.0949125 + 0.995486i \(0.530257\pi\)
\(240\) 0 0
\(241\) −138.940 240.652i −0.576516 0.998556i −0.995875 0.0907351i \(-0.971078\pi\)
0.419359 0.907821i \(-0.362255\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 39.0093 22.5220i 0.159222 0.0919267i
\(246\) 0 0
\(247\) 17.7281 30.7059i 0.0717736 0.124315i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 128.325i 0.511253i 0.966776 + 0.255627i \(0.0822817\pi\)
−0.966776 + 0.255627i \(0.917718\pi\)
\(252\) 0 0
\(253\) 171.895 0.679428
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −62.3584 36.0026i −0.242640 0.140088i 0.373750 0.927530i \(-0.378072\pi\)
−0.616389 + 0.787442i \(0.711405\pi\)
\(258\) 0 0
\(259\) 236.447 + 409.538i 0.912923 + 1.58123i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 113.783 65.6926i 0.432634 0.249782i −0.267834 0.963465i \(-0.586308\pi\)
0.700468 + 0.713683i \(0.252975\pi\)
\(264\) 0 0
\(265\) −132.150 + 228.890i −0.498679 + 0.863737i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 38.8284i 0.144344i −0.997392 0.0721718i \(-0.977007\pi\)
0.997392 0.0721718i \(-0.0229930\pi\)
\(270\) 0 0
\(271\) −0.802525 −0.00296135 −0.00148067 0.999999i \(-0.500471\pi\)
−0.00148067 + 0.999999i \(0.500471\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 86.9009 + 50.1723i 0.316003 + 0.182445i
\(276\) 0 0
\(277\) 61.1932 + 105.990i 0.220914 + 0.382635i 0.955086 0.296329i \(-0.0957626\pi\)
−0.734172 + 0.678964i \(0.762429\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 254.139 146.727i 0.904408 0.522160i 0.0257801 0.999668i \(-0.491793\pi\)
0.878628 + 0.477508i \(0.158460\pi\)
\(282\) 0 0
\(283\) −90.6191 + 156.957i −0.320209 + 0.554618i −0.980531 0.196364i \(-0.937086\pi\)
0.660322 + 0.750983i \(0.270420\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 242.554i 0.845134i
\(288\) 0 0
\(289\) 70.5768 0.244210
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 290.545 + 167.746i 0.991622 + 0.572513i 0.905759 0.423794i \(-0.139302\pi\)
0.0858631 + 0.996307i \(0.472635\pi\)
\(294\) 0 0
\(295\) 338.829 + 586.870i 1.14857 + 1.98939i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −37.1015 + 21.4205i −0.124085 + 0.0716406i
\(300\) 0 0
\(301\) 291.020 504.061i 0.966843 1.67462i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 317.348i 1.04049i
\(306\) 0 0
\(307\) 289.210 0.942053 0.471027 0.882119i \(-0.343884\pi\)
0.471027 + 0.882119i \(0.343884\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 23.6987 + 13.6824i 0.0762016 + 0.0439950i 0.537617 0.843189i \(-0.319325\pi\)
−0.461415 + 0.887184i \(0.652658\pi\)
\(312\) 0 0
\(313\) −293.572 508.481i −0.937928 1.62454i −0.769327 0.638855i \(-0.779408\pi\)
−0.168601 0.985684i \(-0.553925\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −326.081 + 188.263i −1.02865 + 0.593889i −0.916596 0.399814i \(-0.869075\pi\)
−0.112049 + 0.993703i \(0.535741\pi\)
\(318\) 0 0
\(319\) −165.243 + 286.210i −0.518004 + 0.897210i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 294.785i 0.912648i
\(324\) 0 0
\(325\) −25.0087 −0.0769497
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 288.428 + 166.524i 0.876680 + 0.506151i
\(330\) 0 0
\(331\) 1.48388 + 2.57015i 0.00448301 + 0.00776480i 0.868258 0.496113i \(-0.165240\pi\)
−0.863775 + 0.503877i \(0.831906\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −616.534 + 355.956i −1.84040 + 1.06256i
\(336\) 0 0
\(337\) −329.235 + 570.251i −0.976958 + 1.69214i −0.303641 + 0.952786i \(0.598202\pi\)
−0.673317 + 0.739354i \(0.735131\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 201.915i 0.592126i
\(342\) 0 0
\(343\) 313.330 0.913499
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 255.949 + 147.772i 0.737606 + 0.425857i 0.821198 0.570643i \(-0.193306\pi\)
−0.0835920 + 0.996500i \(0.526639\pi\)
\(348\) 0 0
\(349\) 106.379 + 184.254i 0.304811 + 0.527949i 0.977219 0.212232i \(-0.0680733\pi\)
−0.672408 + 0.740181i \(0.734740\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 124.287 71.7570i 0.352087 0.203278i −0.313517 0.949583i \(-0.601507\pi\)
0.665604 + 0.746305i \(0.268174\pi\)
\(354\) 0 0
\(355\) −266.312 + 461.265i −0.750173 + 1.29934i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 270.973i 0.754799i −0.926051 0.377400i \(-0.876818\pi\)
0.926051 0.377400i \(-0.123182\pi\)
\(360\) 0 0
\(361\) 36.8443 0.102062
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 511.731 + 295.448i 1.40200 + 0.809446i
\(366\) 0 0
\(367\) −200.855 347.892i −0.547290 0.947934i −0.998459 0.0554953i \(-0.982326\pi\)
0.451169 0.892438i \(-0.351007\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 274.540 158.506i 0.740001 0.427240i
\(372\) 0 0
\(373\) −146.890 + 254.422i −0.393808 + 0.682095i −0.992948 0.118549i \(-0.962176\pi\)
0.599140 + 0.800644i \(0.295509\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 82.3665i 0.218479i
\(378\) 0 0
\(379\) 280.802 0.740903 0.370452 0.928852i \(-0.379203\pi\)
0.370452 + 0.928852i \(0.379203\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −546.665 315.617i −1.42732 0.824066i −0.430416 0.902631i \(-0.641633\pi\)
−0.996909 + 0.0785646i \(0.974966\pi\)
\(384\) 0 0
\(385\) −167.115 289.452i −0.434066 0.751824i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −378.049 + 218.267i −0.971849 + 0.561097i −0.899799 0.436304i \(-0.856287\pi\)
−0.0720497 + 0.997401i \(0.522954\pi\)
\(390\) 0 0
\(391\) 178.092 308.465i 0.455479 0.788913i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 445.109i 1.12686i
\(396\) 0 0
\(397\) −405.382 −1.02111 −0.510557 0.859844i \(-0.670561\pi\)
−0.510557 + 0.859844i \(0.670561\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 66.9595 + 38.6591i 0.166981 + 0.0964068i 0.581162 0.813788i \(-0.302598\pi\)
−0.414180 + 0.910195i \(0.635932\pi\)
\(402\) 0 0
\(403\) 25.1614 + 43.5809i 0.0624353 + 0.108141i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 389.619 224.946i 0.957294 0.552694i
\(408\) 0 0
\(409\) 85.3306 147.797i 0.208632 0.361362i −0.742652 0.669678i \(-0.766432\pi\)
0.951284 + 0.308316i \(0.0997655\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 812.811i 1.96807i
\(414\) 0 0
\(415\) −684.964 −1.65051
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 123.529 + 71.3195i 0.294819 + 0.170214i 0.640113 0.768281i \(-0.278888\pi\)
−0.345294 + 0.938494i \(0.612221\pi\)
\(420\) 0 0
\(421\) −307.819 533.158i −0.731162 1.26641i −0.956387 0.292102i \(-0.905645\pi\)
0.225226 0.974307i \(-0.427688\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 180.068 103.962i 0.423689 0.244617i
\(426\) 0 0
\(427\) 190.320 329.644i 0.445714 0.772000i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 405.961i 0.941905i −0.882159 0.470953i \(-0.843910\pi\)
0.882159 0.470953i \(-0.156090\pi\)
\(432\) 0 0
\(433\) 50.1302 0.115774 0.0578870 0.998323i \(-0.481564\pi\)
0.0578870 + 0.998323i \(0.481564\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −416.306 240.354i −0.952646 0.550010i
\(438\) 0 0
\(439\) −363.552 629.690i −0.828136 1.43437i −0.899499 0.436924i \(-0.856068\pi\)
0.0713624 0.997450i \(-0.477265\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −324.072 + 187.103i −0.731540 + 0.422355i −0.818985 0.573815i \(-0.805463\pi\)
0.0874454 + 0.996169i \(0.472130\pi\)
\(444\) 0 0
\(445\) 92.7998 160.734i 0.208539 0.361200i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 225.368i 0.501934i −0.967996 0.250967i \(-0.919251\pi\)
0.967996 0.250967i \(-0.0807486\pi\)
\(450\) 0 0
\(451\) 230.756 0.511654
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 72.1396 + 41.6498i 0.158549 + 0.0915380i
\(456\) 0 0
\(457\) 390.263 + 675.955i 0.853966 + 1.47911i 0.877601 + 0.479392i \(0.159143\pi\)
−0.0236344 + 0.999721i \(0.507524\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −474.085 + 273.713i −1.02838 + 0.593738i −0.916521 0.399986i \(-0.869015\pi\)
−0.111863 + 0.993724i \(0.535682\pi\)
\(462\) 0 0
\(463\) 174.664 302.526i 0.377243 0.653404i −0.613417 0.789759i \(-0.710205\pi\)
0.990660 + 0.136355i \(0.0435388\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 499.358i 1.06929i −0.845077 0.534645i \(-0.820445\pi\)
0.845077 0.534645i \(-0.179555\pi\)
\(468\) 0 0
\(469\) 853.896 1.82067
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −479.543 276.865i −1.01383 0.585337i
\(474\) 0 0
\(475\) −140.308 243.020i −0.295385 0.511622i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −571.640 + 330.036i −1.19340 + 0.689011i −0.959076 0.283147i \(-0.908621\pi\)
−0.234326 + 0.972158i \(0.575288\pi\)
\(480\) 0 0
\(481\) −56.0629 + 97.1038i −0.116555 + 0.201879i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 781.053i 1.61042i
\(486\) 0 0
\(487\) 217.861 0.447352 0.223676 0.974664i \(-0.428194\pi\)
0.223676 + 0.974664i \(0.428194\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 132.712 + 76.6214i 0.270289 + 0.156052i 0.629019 0.777390i \(-0.283457\pi\)
−0.358730 + 0.933441i \(0.616790\pi\)
\(492\) 0 0
\(493\) 342.401 + 593.056i 0.694526 + 1.20295i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 553.260 319.425i 1.11320 0.642706i
\(498\) 0 0
\(499\) −153.693 + 266.204i −0.308002 + 0.533476i −0.977925 0.208955i \(-0.932994\pi\)
0.669923 + 0.742431i \(0.266327\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 797.972i 1.58643i −0.608945 0.793213i \(-0.708407\pi\)
0.608945 0.793213i \(-0.291593\pi\)
\(504\) 0 0
\(505\) −246.107 −0.487341
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −260.405 150.345i −0.511602 0.295373i 0.221890 0.975072i \(-0.428777\pi\)
−0.733492 + 0.679698i \(0.762111\pi\)
\(510\) 0 0
\(511\) −354.372 613.790i −0.693487 1.20115i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 808.965 467.056i 1.57081 0.906905i
\(516\) 0 0
\(517\) 158.424 274.399i 0.306430 0.530752i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 928.990i 1.78309i 0.452932 + 0.891545i \(0.350378\pi\)
−0.452932 + 0.891545i \(0.649622\pi\)
\(522\) 0 0
\(523\) −519.086 −0.992516 −0.496258 0.868175i \(-0.665293\pi\)
−0.496258 + 0.868175i \(0.665293\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −362.335 209.194i −0.687543 0.396953i
\(528\) 0 0
\(529\) 25.9164 + 44.8885i 0.0489913 + 0.0848554i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −49.8058 + 28.7554i −0.0934443 + 0.0539501i
\(534\) 0 0
\(535\) −1.31326 + 2.27464i −0.00245470 + 0.00425167i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 51.3997i 0.0953613i
\(540\) 0 0
\(541\) −109.959 −0.203251 −0.101625 0.994823i \(-0.532404\pi\)
−0.101625 + 0.994823i \(0.532404\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −348.937 201.459i −0.640251 0.369649i
\(546\) 0 0
\(547\) 489.119 + 847.180i 0.894185 + 1.54877i 0.834810 + 0.550539i \(0.185578\pi\)
0.0593757 + 0.998236i \(0.481089\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 800.392 462.107i 1.45262 0.838669i
\(552\) 0 0
\(553\) 266.941 462.355i 0.482714 0.836084i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 322.002i 0.578100i −0.957314 0.289050i \(-0.906661\pi\)
0.957314 0.289050i \(-0.0933394\pi\)
\(558\) 0 0
\(559\) 138.005 0.246878
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 174.603 + 100.807i 0.310129 + 0.179053i 0.646984 0.762503i \(-0.276030\pi\)
−0.336855 + 0.941556i \(0.609363\pi\)
\(564\) 0 0
\(565\) 81.0945 + 140.460i 0.143530 + 0.248601i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 123.786 71.4677i 0.217549 0.125602i −0.387266 0.921968i \(-0.626580\pi\)
0.604815 + 0.796366i \(0.293247\pi\)
\(570\) 0 0
\(571\) −45.7205 + 79.1902i −0.0800709 + 0.138687i −0.903280 0.429051i \(-0.858848\pi\)
0.823209 + 0.567738i \(0.192181\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 339.064i 0.589676i
\(576\) 0 0
\(577\) 404.739 0.701455 0.350727 0.936478i \(-0.385934\pi\)
0.350727 + 0.936478i \(0.385934\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 711.503 + 410.786i 1.22462 + 0.707033i
\(582\) 0 0
\(583\) −150.796 261.187i −0.258656 0.448005i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 702.845 405.788i 1.19735 0.691291i 0.237387 0.971415i \(-0.423709\pi\)
0.959964 + 0.280125i \(0.0903758\pi\)
\(588\) 0 0
\(589\) −282.330 + 489.010i −0.479338 + 0.830238i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 95.3026i 0.160713i 0.996766 + 0.0803563i \(0.0256058\pi\)
−0.996766 + 0.0803563i \(0.974394\pi\)
\(594\) 0 0
\(595\) −692.560 −1.16397
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 381.733 + 220.393i 0.637283 + 0.367936i 0.783567 0.621307i \(-0.213398\pi\)
−0.146284 + 0.989243i \(0.546731\pi\)
\(600\) 0 0
\(601\) 90.4814 + 156.718i 0.150551 + 0.260763i 0.931430 0.363920i \(-0.118562\pi\)
−0.780879 + 0.624682i \(0.785228\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 379.611 219.168i 0.627456 0.362262i
\(606\) 0 0
\(607\) 277.996 481.504i 0.457984 0.793252i −0.540870 0.841106i \(-0.681905\pi\)
0.998854 + 0.0478542i \(0.0152383\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 78.9674i 0.129243i
\(612\) 0 0
\(613\) −335.352 −0.547067 −0.273534 0.961862i \(-0.588192\pi\)
−0.273534 + 0.961862i \(0.588192\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1020.64 589.268i −1.65420 0.955053i −0.975317 0.220808i \(-0.929131\pi\)
−0.678884 0.734246i \(-0.737536\pi\)
\(618\) 0 0
\(619\) −449.292 778.197i −0.725835 1.25718i −0.958629 0.284658i \(-0.908120\pi\)
0.232794 0.972526i \(-0.425213\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −192.791 + 111.308i −0.309455 + 0.178664i
\(624\) 0 0
\(625\) 389.395 674.451i 0.623031 1.07912i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 932.224i 1.48207i
\(630\) 0 0
\(631\) 431.017 0.683070 0.341535 0.939869i \(-0.389053\pi\)
0.341535 + 0.939869i \(0.389053\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 65.4531 + 37.7894i 0.103076 + 0.0595108i
\(636\) 0 0
\(637\) −6.40513 11.0940i −0.0100551 0.0174160i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −775.987 + 448.016i −1.21059 + 0.698933i −0.962887 0.269903i \(-0.913008\pi\)
−0.247701 + 0.968837i \(0.579675\pi\)
\(642\) 0 0
\(643\) −110.854 + 192.004i −0.172401 + 0.298607i −0.939259 0.343210i \(-0.888486\pi\)
0.766858 + 0.641817i \(0.221819\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 536.838i 0.829734i −0.909882 0.414867i \(-0.863828\pi\)
0.909882 0.414867i \(-0.136172\pi\)
\(648\) 0 0
\(649\) −773.276 −1.19149
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 483.774 + 279.307i 0.740848 + 0.427729i 0.822378 0.568942i \(-0.192647\pi\)
−0.0815296 + 0.996671i \(0.525981\pi\)
\(654\) 0 0
\(655\) −164.023 284.096i −0.250417 0.433735i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 933.150 538.755i 1.41601 0.817534i 0.420064 0.907494i \(-0.362007\pi\)
0.995945 + 0.0899606i \(0.0286741\pi\)
\(660\) 0 0
\(661\) 147.880 256.135i 0.223721 0.387496i −0.732214 0.681075i \(-0.761513\pi\)
0.955935 + 0.293579i \(0.0948463\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 934.683i 1.40554i
\(666\) 0 0
\(667\) −1116.71 −1.67423
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −313.610 181.063i −0.467377 0.269840i
\(672\) 0 0
\(673\) 283.724 + 491.424i 0.421580 + 0.730199i 0.996094 0.0882963i \(-0.0281422\pi\)
−0.574514 + 0.818495i \(0.694809\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 813.905 469.908i 1.20222 0.694104i 0.241174 0.970482i \(-0.422467\pi\)
0.961049 + 0.276378i \(0.0891341\pi\)
\(678\) 0 0
\(679\) 468.413 811.315i 0.689857 1.19487i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 14.2541i 0.0208699i −0.999946 0.0104349i \(-0.996678\pi\)
0.999946 0.0104349i \(-0.00332161\pi\)
\(684\) 0 0
\(685\) −874.930 −1.27727
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 65.0950 + 37.5826i 0.0944775 + 0.0545466i
\(690\) 0 0
\(691\) −83.1353 143.995i −0.120312 0.208386i 0.799579 0.600561i \(-0.205056\pi\)
−0.919891 + 0.392175i \(0.871723\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −216.151 + 124.795i −0.311009 + 0.179561i
\(696\) 0 0
\(697\) 239.075 414.090i 0.343006 0.594103i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 506.174i 0.722074i 0.932551 + 0.361037i \(0.117577\pi\)
−0.932551 + 0.361037i \(0.882423\pi\)
\(702\) 0 0
\(703\) −1258.14 −1.78967
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 255.643 + 147.595i 0.361588 + 0.208763i
\(708\) 0 0
\(709\) −259.993 450.321i −0.366704 0.635150i 0.622344 0.782744i \(-0.286181\pi\)
−0.989048 + 0.147594i \(0.952847\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 590.863 341.135i 0.828700 0.478450i
\(714\) 0 0
\(715\) 39.6240 68.6307i 0.0554181 0.0959870i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 467.630i 0.650390i −0.945647 0.325195i \(-0.894570\pi\)
0.945647 0.325195i \(-0.105430\pi\)
\(720\) 0 0
\(721\) −1120.41 −1.55397
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −564.549 325.943i −0.778689 0.449576i
\(726\) 0 0
\(727\) 262.371 + 454.439i 0.360895 + 0.625088i 0.988108 0.153759i \(-0.0491380\pi\)
−0.627214 + 0.778847i \(0.715805\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −993.663 + 573.692i −1.35932 + 0.784804i
\(732\) 0 0
\(733\) −329.348 + 570.447i −0.449315 + 0.778236i −0.998342 0.0575688i \(-0.981665\pi\)
0.549027 + 0.835805i \(0.314998\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 812.363i 1.10226i
\(738\) 0 0
\(739\) 1209.27 1.63637 0.818183 0.574957i \(-0.194981\pi\)
0.818183 + 0.574957i \(0.194981\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −339.650 196.097i −0.457134 0.263926i 0.253704 0.967282i \(-0.418351\pi\)
−0.710838 + 0.703355i \(0.751684\pi\)
\(744\) 0 0
\(745\) −11.7726 20.3908i −0.0158022 0.0273701i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.72829 1.57518i 0.00364258 0.00210305i
\(750\) 0 0
\(751\) 558.493 967.339i 0.743666 1.28807i −0.207149 0.978309i \(-0.566419\pi\)
0.950815 0.309758i \(-0.100248\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 936.069i 1.23983i
\(756\) 0 0
\(757\) −623.892 −0.824164 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 832.456 + 480.619i 1.09390 + 0.631562i 0.934611 0.355671i \(-0.115748\pi\)
0.159286 + 0.987233i \(0.449081\pi\)
\(762\) 0 0
\(763\) 241.638 + 418.528i 0.316694 + 0.548530i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 166.902 96.3610i 0.217604 0.125634i
\(768\) 0 0
\(769\) −109.653 + 189.924i −0.142592 + 0.246976i −0.928472 0.371403i \(-0.878877\pi\)
0.785880 + 0.618379i \(0.212210\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 761.394i 0.984986i 0.870316 + 0.492493i \(0.163914\pi\)
−0.870316 + 0.492493i \(0.836086\pi\)
\(774\) 0 0
\(775\) 398.278 0.513907
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −558.858 322.657i −0.717405 0.414194i
\(780\) 0 0
\(781\) −303.888 526.349i −0.389101 0.673943i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 638.211 368.471i 0.813007 0.469390i
\(786\) 0 0
\(787\) 263.023 455.569i 0.334210 0.578868i −0.649123 0.760684i \(-0.724864\pi\)
0.983333 + 0.181815i \(0.0581972\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 194.536i 0.245937i
\(792\) 0 0
\(793\) 90.2518 0.113811
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1230.12 + 710.212i 1.54344 + 0.891107i 0.998618 + 0.0525560i \(0.0167368\pi\)
0.544824 + 0.838551i \(0.316597\pi\)
\(798\) 0 0
\(799\) −328.271 568.582i −0.410852 0.711617i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −583.935 + 337.135i −0.727192 + 0.419845i
\(804\) 0 0
\(805\) 564.681 978.057i 0.701468 1.21498i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 749.612i 0.926590i 0.886204 + 0.463295i \(0.153333\pi\)
−0.886204 + 0.463295i \(0.846667\pi\)
\(810\) 0 0
\(811\) 238.446 0.294015 0.147008 0.989135i \(-0.453036\pi\)
0.147008 + 0.989135i \(0.453036\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −606.052 349.905i −0.743623 0.429331i
\(816\) 0 0
\(817\) 774.258 + 1341.05i 0.947684 + 1.64144i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −937.937 + 541.518i −1.14243 + 0.659583i −0.947032 0.321140i \(-0.895934\pi\)
−0.195400 + 0.980724i \(0.562601\pi\)
\(822\) 0 0
\(823\) −787.881 + 1364.65i −0.957328 + 1.65814i −0.228379 + 0.973572i \(0.573343\pi\)
−0.728949 + 0.684568i \(0.759991\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 124.799i 0.150906i 0.997149 + 0.0754529i \(0.0240403\pi\)
−0.997149 + 0.0754529i \(0.975960\pi\)
\(828\) 0 0
\(829\) 426.486 0.514458 0.257229 0.966350i \(-0.417190\pi\)
0.257229 + 0.966350i \(0.417190\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 92.2365 + 53.2528i 0.110728 + 0.0639289i
\(834\) 0 0
\(835\) 4.82403 + 8.35547i 0.00577728 + 0.0100065i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −430.710 + 248.671i −0.513362 + 0.296389i −0.734214 0.678918i \(-0.762449\pi\)
0.220853 + 0.975307i \(0.429116\pi\)
\(840\) 0 0
\(841\) 652.999 1131.03i 0.776455 1.34486i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1036.58i 1.22673i
\(846\) 0 0
\(847\) −525.759 −0.620730
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1316.52 + 760.092i 1.54703 + 0.893176i
\(852\) 0 0
\(853\) 767.481 + 1329.32i 0.899743 + 1.55840i 0.827823 + 0.560990i \(0.189579\pi\)
0.0719203 + 0.997410i \(0.477087\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1055.08 + 609.149i −1.23113 + 0.710792i −0.967265 0.253768i \(-0.918330\pi\)
−0.263863 + 0.964560i \(0.584997\pi\)
\(858\) 0 0
\(859\) −289.720 + 501.811i −0.337276 + 0.584180i −0.983919 0.178613i \(-0.942839\pi\)
0.646643 + 0.762793i \(0.276172\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1361.09i 1.57716i 0.614934 + 0.788579i \(0.289183\pi\)
−0.614934 + 0.788579i \(0.710817\pi\)
\(864\) 0 0
\(865\) 332.422 0.384303
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −439.866 253.957i −0.506175 0.292240i
\(870\) 0 0
\(871\) 101.232 + 175.339i 0.116225 + 0.201307i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −443.617 + 256.122i −0.506991 + 0.292711i
\(876\) 0 0
\(877\) 150.947 261.448i 0.172118 0.298117i −0.767042 0.641597i \(-0.778272\pi\)
0.939160 + 0.343480i \(0.111606\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1170.94i 1.32911i −0.747240 0.664554i \(-0.768622\pi\)
0.747240 0.664554i \(-0.231378\pi\)
\(882\) 0 0
\(883\) 1339.68 1.51719 0.758597 0.651560i \(-0.225885\pi\)
0.758597 + 0.651560i \(0.225885\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −14.4375 8.33547i −0.0162767 0.00939738i 0.491840 0.870686i \(-0.336325\pi\)
−0.508116 + 0.861288i \(0.669658\pi\)
\(888\) 0 0
\(889\) −45.3261 78.5071i −0.0509855 0.0883094i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −767.362 + 443.037i −0.859308 + 0.496122i
\(894\) 0 0
\(895\) −748.323 + 1296.13i −0.836115 + 1.44819i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1311.74i 1.45911i
\(900\) 0 0
\(901\) −624.930 −0.693596
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −331.042 191.127i −0.365792 0.211190i
\(906\) 0 0
\(907\) 225.668 + 390.868i 0.248807 + 0.430946i 0.963195 0.268803i \(-0.0866282\pi\)
−0.714388 + 0.699750i \(0.753295\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1243.11 717.711i 1.36456 0.787827i 0.374331 0.927295i \(-0.377873\pi\)
0.990227 + 0.139468i \(0.0445392\pi\)
\(912\) 0 0
\(913\) 390.806 676.895i 0.428046 0.741397i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 393.472i 0.429086i
\(918\) 0 0
\(919\) 380.633 0.414181 0.207091 0.978322i \(-0.433600\pi\)
0.207091 + 0.978322i \(0.433600\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 131.181 + 75.7374i 0.142125 + 0.0820557i
\(924\) 0 0
\(925\) 443.707 + 768.523i 0.479683 + 0.830836i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 856.635 494.578i 0.922104 0.532377i 0.0377985 0.999285i \(-0.487965\pi\)
0.884306 + 0.466908i \(0.154632\pi\)
\(930\) 0 0
\(931\) 71.8703 124.483i 0.0771969 0.133709i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 658.874i 0.704678i
\(936\) 0 0
\(937\) −549.202 −0.586128 −0.293064 0.956093i \(-0.594675\pi\)
−0.293064 + 0.956093i \(0.594675\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −405.479 234.103i −0.430902 0.248781i 0.268829 0.963188i \(-0.413363\pi\)
−0.699731 + 0.714407i \(0.746697\pi\)
\(942\) 0 0
\(943\) 389.861 + 675.259i 0.413427 + 0.716076i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −260.869 + 150.613i −0.275469 + 0.159042i −0.631370 0.775482i \(-0.717507\pi\)
0.355902 + 0.934523i \(0.384174\pi\)
\(948\) 0 0
\(949\) 84.0235 145.533i 0.0885390 0.153354i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 319.384i 0.335135i −0.985861 0.167567i \(-0.946409\pi\)
0.985861 0.167567i \(-0.0535912\pi\)
\(954\) 0 0
\(955\) 208.630 0.218461
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 908.829 + 524.713i 0.947685 + 0.547146i
\(960\) 0 0
\(961\) 79.7892 + 138.199i 0.0830272 + 0.143807i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −230.377 + 133.008i −0.238732 + 0.137832i
\(966\) 0 0
\(967\) −302.086 + 523.229i −0.312395 + 0.541085i −0.978880 0.204434i \(-0.934465\pi\)
0.666485 + 0.745518i \(0.267798\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 465.068i 0.478958i 0.970902 + 0.239479i \(0.0769766\pi\)
−0.970902 + 0.239479i \(0.923023\pi\)
\(972\) 0 0
\(973\) 299.368 0.307675
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 332.512 + 191.976i 0.340340 + 0.196495i 0.660422 0.750894i \(-0.270377\pi\)
−0.320083 + 0.947390i \(0.603711\pi\)
\(978\) 0 0
\(979\) 105.894 + 183.413i 0.108165 + 0.187348i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −586.197 + 338.441i −0.596335 + 0.344294i −0.767598 0.640931i \(-0.778548\pi\)
0.171264 + 0.985225i \(0.445215\pi\)
\(984\) 0 0
\(985\) −635.589 + 1100.87i −0.645268 + 1.11764i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1871.05i 1.89186i
\(990\) 0 0
\(991\) 1097.79 1.10776 0.553878 0.832598i \(-0.313147\pi\)
0.553878 + 0.832598i \(0.313147\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −693.744 400.533i −0.697230 0.402546i
\(996\) 0 0
\(997\) −90.7127 157.119i −0.0909857 0.157592i 0.816940 0.576722i \(-0.195668\pi\)
−0.907926 + 0.419130i \(0.862335\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.3.q.a.449.4 24
3.2 odd 2 288.3.q.b.257.12 yes 24
4.3 odd 2 inner 864.3.q.a.449.3 24
8.3 odd 2 1728.3.q.k.449.9 24
8.5 even 2 1728.3.q.k.449.10 24
9.2 odd 6 inner 864.3.q.a.737.4 24
9.4 even 3 2592.3.e.i.161.6 24
9.5 odd 6 2592.3.e.i.161.5 24
9.7 even 3 288.3.q.b.65.12 yes 24
12.11 even 2 288.3.q.b.257.1 yes 24
24.5 odd 2 576.3.q.l.257.1 24
24.11 even 2 576.3.q.l.257.12 24
36.7 odd 6 288.3.q.b.65.1 24
36.11 even 6 inner 864.3.q.a.737.3 24
36.23 even 6 2592.3.e.i.161.19 24
36.31 odd 6 2592.3.e.i.161.20 24
72.11 even 6 1728.3.q.k.1601.9 24
72.29 odd 6 1728.3.q.k.1601.10 24
72.43 odd 6 576.3.q.l.65.12 24
72.61 even 6 576.3.q.l.65.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.3.q.b.65.1 24 36.7 odd 6
288.3.q.b.65.12 yes 24 9.7 even 3
288.3.q.b.257.1 yes 24 12.11 even 2
288.3.q.b.257.12 yes 24 3.2 odd 2
576.3.q.l.65.1 24 72.61 even 6
576.3.q.l.65.12 24 72.43 odd 6
576.3.q.l.257.1 24 24.5 odd 2
576.3.q.l.257.12 24 24.11 even 2
864.3.q.a.449.3 24 4.3 odd 2 inner
864.3.q.a.449.4 24 1.1 even 1 trivial
864.3.q.a.737.3 24 36.11 even 6 inner
864.3.q.a.737.4 24 9.2 odd 6 inner
1728.3.q.k.449.9 24 8.3 odd 2
1728.3.q.k.449.10 24 8.5 even 2
1728.3.q.k.1601.9 24 72.11 even 6
1728.3.q.k.1601.10 24 72.29 odd 6
2592.3.e.i.161.5 24 9.5 odd 6
2592.3.e.i.161.6 24 9.4 even 3
2592.3.e.i.161.19 24 36.23 even 6
2592.3.e.i.161.20 24 36.31 odd 6