Properties

Label 864.3.q.a.737.4
Level $864$
Weight $3$
Character 864.737
Analytic conductor $23.542$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [864,3,Mod(449,864)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(864, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("864.449");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 864.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.5422948407\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 737.4
Character \(\chi\) \(=\) 864.737
Dual form 864.3.q.a.449.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.41309 + 3.12525i) q^{5} +(3.74855 - 6.49268i) q^{7} +(6.17688 + 3.56622i) q^{11} +(-0.888802 - 1.53945i) q^{13} +14.7791i q^{17} -19.9460 q^{19} +(20.8716 - 12.0502i) q^{23} +(7.03438 - 12.1839i) q^{25} +(-40.1279 - 23.1679i) q^{29} +(14.1547 + 24.5167i) q^{31} +46.8606i q^{35} +63.0770 q^{37} +(28.0185 - 16.1765i) q^{41} +(-38.8176 + 67.2341i) q^{43} +(38.4719 + 22.2118i) q^{47} +(-3.60324 - 6.24099i) q^{49} +42.2846i q^{53} -44.5813 q^{55} +(-93.8917 + 54.2084i) q^{59} +(-25.3858 + 43.9695i) q^{61} +(9.62233 + 5.55546i) q^{65} +(56.9484 + 98.6376i) q^{67} +85.2129i q^{71} -94.5357 q^{73} +(46.3086 - 26.7363i) q^{77} +(-35.6059 + 61.6712i) q^{79} +(94.9037 + 54.7927i) q^{83} +(-46.1885 - 80.0009i) q^{85} -29.6936i q^{89} -13.3269 q^{91} +(107.970 - 62.3363i) q^{95} +(-62.4793 + 108.217i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 60 q^{25} - 72 q^{29} - 252 q^{41} - 36 q^{49} - 96 q^{61} + 288 q^{65} + 24 q^{73} + 720 q^{77} + 96 q^{85} - 132 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −5.41309 + 3.12525i −1.08262 + 0.625050i −0.931602 0.363481i \(-0.881588\pi\)
−0.151017 + 0.988531i \(0.548255\pi\)
\(6\) 0 0
\(7\) 3.74855 6.49268i 0.535507 0.927525i −0.463632 0.886028i \(-0.653454\pi\)
0.999139 0.0414972i \(-0.0132128\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.17688 + 3.56622i 0.561534 + 0.324202i 0.753761 0.657149i \(-0.228238\pi\)
−0.192227 + 0.981351i \(0.561571\pi\)
\(12\) 0 0
\(13\) −0.888802 1.53945i −0.0683694 0.118419i 0.829814 0.558040i \(-0.188446\pi\)
−0.898184 + 0.439620i \(0.855113\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 14.7791i 0.869362i 0.900585 + 0.434681i \(0.143139\pi\)
−0.900585 + 0.434681i \(0.856861\pi\)
\(18\) 0 0
\(19\) −19.9460 −1.04979 −0.524896 0.851167i \(-0.675896\pi\)
−0.524896 + 0.851167i \(0.675896\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 20.8716 12.0502i 0.907462 0.523923i 0.0278482 0.999612i \(-0.491134\pi\)
0.879614 + 0.475689i \(0.157801\pi\)
\(24\) 0 0
\(25\) 7.03438 12.1839i 0.281375 0.487356i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −40.1279 23.1679i −1.38372 0.798891i −0.391123 0.920339i \(-0.627913\pi\)
−0.992598 + 0.121447i \(0.961246\pi\)
\(30\) 0 0
\(31\) 14.1547 + 24.5167i 0.456603 + 0.790860i 0.998779 0.0494054i \(-0.0157326\pi\)
−0.542176 + 0.840265i \(0.682399\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 46.8606i 1.33887i
\(36\) 0 0
\(37\) 63.0770 1.70478 0.852391 0.522904i \(-0.175151\pi\)
0.852391 + 0.522904i \(0.175151\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 28.0185 16.1765i 0.683378 0.394549i −0.117748 0.993043i \(-0.537568\pi\)
0.801127 + 0.598495i \(0.204234\pi\)
\(42\) 0 0
\(43\) −38.8176 + 67.2341i −0.902736 + 1.56358i −0.0788077 + 0.996890i \(0.525111\pi\)
−0.823928 + 0.566694i \(0.808222\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 38.4719 + 22.2118i 0.818551 + 0.472591i 0.849917 0.526917i \(-0.176652\pi\)
−0.0313654 + 0.999508i \(0.509986\pi\)
\(48\) 0 0
\(49\) −3.60324 6.24099i −0.0735354 0.127367i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 42.2846i 0.797823i 0.916990 + 0.398911i \(0.130612\pi\)
−0.916990 + 0.398911i \(0.869388\pi\)
\(54\) 0 0
\(55\) −44.5813 −0.810570
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −93.8917 + 54.2084i −1.59138 + 0.918786i −0.598314 + 0.801262i \(0.704162\pi\)
−0.993070 + 0.117524i \(0.962504\pi\)
\(60\) 0 0
\(61\) −25.3858 + 43.9695i −0.416161 + 0.720812i −0.995550 0.0942396i \(-0.969958\pi\)
0.579389 + 0.815051i \(0.303291\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.62233 + 5.55546i 0.148036 + 0.0854686i
\(66\) 0 0
\(67\) 56.9484 + 98.6376i 0.849977 + 1.47220i 0.881228 + 0.472691i \(0.156717\pi\)
−0.0312514 + 0.999512i \(0.509949\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 85.2129i 1.20018i 0.799932 + 0.600091i \(0.204869\pi\)
−0.799932 + 0.600091i \(0.795131\pi\)
\(72\) 0 0
\(73\) −94.5357 −1.29501 −0.647505 0.762061i \(-0.724188\pi\)
−0.647505 + 0.762061i \(0.724188\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 46.3086 26.7363i 0.601411 0.347225i
\(78\) 0 0
\(79\) −35.6059 + 61.6712i −0.450707 + 0.780648i −0.998430 0.0560122i \(-0.982161\pi\)
0.547723 + 0.836660i \(0.315495\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 94.9037 + 54.7927i 1.14342 + 0.660153i 0.947275 0.320422i \(-0.103825\pi\)
0.196144 + 0.980575i \(0.437158\pi\)
\(84\) 0 0
\(85\) −46.1885 80.0009i −0.543395 0.941187i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 29.6936i 0.333635i −0.985988 0.166818i \(-0.946651\pi\)
0.985988 0.166818i \(-0.0533491\pi\)
\(90\) 0 0
\(91\) −13.3269 −0.146449
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 107.970 62.3363i 1.13652 0.656172i
\(96\) 0 0
\(97\) −62.4793 + 108.217i −0.644116 + 1.11564i 0.340389 + 0.940285i \(0.389441\pi\)
−0.984505 + 0.175357i \(0.943892\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 34.0989 + 19.6870i 0.337613 + 0.194921i 0.659216 0.751954i \(-0.270888\pi\)
−0.321603 + 0.946875i \(0.604222\pi\)
\(102\) 0 0
\(103\) −74.7230 129.424i −0.725466 1.25654i −0.958782 0.284143i \(-0.908291\pi\)
0.233316 0.972401i \(-0.425042\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.420211i 0.00392721i 0.999998 + 0.00196360i \(0.000625035\pi\)
−0.999998 + 0.00196360i \(0.999375\pi\)
\(108\) 0 0
\(109\) 64.4616 0.591391 0.295695 0.955282i \(-0.404449\pi\)
0.295695 + 0.955282i \(0.404449\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −22.4718 + 12.9741i −0.198865 + 0.114815i −0.596126 0.802891i \(-0.703294\pi\)
0.397261 + 0.917706i \(0.369961\pi\)
\(114\) 0 0
\(115\) −75.3200 + 130.458i −0.654957 + 1.13442i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 95.9562 + 55.4004i 0.806355 + 0.465549i
\(120\) 0 0
\(121\) −35.0641 60.7329i −0.289786 0.501925i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 68.3258i 0.546606i
\(126\) 0 0
\(127\) −12.0916 −0.0952097 −0.0476049 0.998866i \(-0.515159\pi\)
−0.0476049 + 0.998866i \(0.515159\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 45.4518 26.2416i 0.346960 0.200318i −0.316385 0.948631i \(-0.602469\pi\)
0.663346 + 0.748313i \(0.269136\pi\)
\(132\) 0 0
\(133\) −74.7687 + 129.503i −0.562171 + 0.973708i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 121.224 + 69.9888i 0.884848 + 0.510867i 0.872254 0.489053i \(-0.162658\pi\)
0.0125942 + 0.999921i \(0.495991\pi\)
\(138\) 0 0
\(139\) 19.9656 + 34.5814i 0.143637 + 0.248787i 0.928864 0.370422i \(-0.120787\pi\)
−0.785226 + 0.619209i \(0.787453\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 12.6787i 0.0886619i
\(144\) 0 0
\(145\) 289.621 1.99739
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.26226 1.88347i 0.0218944 0.0126407i −0.489013 0.872277i \(-0.662643\pi\)
0.510907 + 0.859636i \(0.329310\pi\)
\(150\) 0 0
\(151\) 74.8795 129.695i 0.495891 0.858908i −0.504098 0.863646i \(-0.668175\pi\)
0.999989 + 0.00473848i \(0.00150831\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −153.241 88.4739i −0.988654 0.570800i
\(156\) 0 0
\(157\) −58.9507 102.106i −0.375482 0.650354i 0.614917 0.788592i \(-0.289189\pi\)
−0.990399 + 0.138238i \(0.955856\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 180.684i 1.12226i
\(162\) 0 0
\(163\) 111.960 0.686874 0.343437 0.939176i \(-0.388409\pi\)
0.343437 + 0.939176i \(0.388409\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.33677 + 0.771783i −0.00800460 + 0.00462146i −0.503997 0.863705i \(-0.668138\pi\)
0.495992 + 0.868327i \(0.334804\pi\)
\(168\) 0 0
\(169\) 82.9201 143.622i 0.490651 0.849833i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −46.0581 26.5917i −0.266232 0.153709i 0.360942 0.932588i \(-0.382455\pi\)
−0.627174 + 0.778879i \(0.715789\pi\)
\(174\) 0 0
\(175\) −52.7374 91.3439i −0.301357 0.521965i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 239.444i 1.33768i 0.743407 + 0.668839i \(0.233208\pi\)
−0.743407 + 0.668839i \(0.766792\pi\)
\(180\) 0 0
\(181\) 61.1557 0.337877 0.168938 0.985627i \(-0.445966\pi\)
0.168938 + 0.985627i \(0.445966\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −341.441 + 197.131i −1.84563 + 1.06557i
\(186\) 0 0
\(187\) −52.7057 + 91.2890i −0.281849 + 0.488176i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −28.9063 16.6891i −0.151342 0.0873773i 0.422417 0.906402i \(-0.361182\pi\)
−0.573759 + 0.819024i \(0.694515\pi\)
\(192\) 0 0
\(193\) 21.2796 + 36.8573i 0.110257 + 0.190971i 0.915874 0.401466i \(-0.131499\pi\)
−0.805617 + 0.592437i \(0.798166\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 203.372i 1.03235i 0.856484 + 0.516173i \(0.172644\pi\)
−0.856484 + 0.516173i \(0.827356\pi\)
\(198\) 0 0
\(199\) 128.160 0.644022 0.322011 0.946736i \(-0.395641\pi\)
0.322011 + 0.946736i \(0.395641\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −300.843 + 173.692i −1.48198 + 0.855624i
\(204\) 0 0
\(205\) −101.111 + 175.130i −0.493225 + 0.854291i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −123.204 71.1320i −0.589494 0.340344i
\(210\) 0 0
\(211\) 97.2675 + 168.472i 0.460983 + 0.798446i 0.999010 0.0444812i \(-0.0141635\pi\)
−0.538027 + 0.842928i \(0.680830\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 485.259i 2.25702i
\(216\) 0 0
\(217\) 212.238 0.978057
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 22.7518 13.1357i 0.102949 0.0594377i
\(222\) 0 0
\(223\) 95.1454 164.797i 0.426661 0.738998i −0.569913 0.821705i \(-0.693023\pi\)
0.996574 + 0.0827067i \(0.0263565\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −320.930 185.289i −1.41379 0.816252i −0.418047 0.908426i \(-0.637285\pi\)
−0.995743 + 0.0921738i \(0.970618\pi\)
\(228\) 0 0
\(229\) −203.685 352.793i −0.889455 1.54058i −0.840521 0.541779i \(-0.817751\pi\)
−0.0489338 0.998802i \(-0.515582\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 21.5267i 0.0923895i 0.998932 + 0.0461947i \(0.0147095\pi\)
−0.998932 + 0.0461947i \(0.985291\pi\)
\(234\) 0 0
\(235\) −277.669 −1.18157
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 172.020 99.3155i 0.719747 0.415546i −0.0949125 0.995486i \(-0.530257\pi\)
0.814660 + 0.579939i \(0.196924\pi\)
\(240\) 0 0
\(241\) −138.940 + 240.652i −0.576516 + 0.998556i 0.419359 + 0.907821i \(0.362255\pi\)
−0.995875 + 0.0907351i \(0.971078\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 39.0093 + 22.5220i 0.159222 + 0.0919267i
\(246\) 0 0
\(247\) 17.7281 + 30.7059i 0.0717736 + 0.124315i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 128.325i 0.511253i −0.966776 0.255627i \(-0.917718\pi\)
0.966776 0.255627i \(-0.0822817\pi\)
\(252\) 0 0
\(253\) 171.895 0.679428
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −62.3584 + 36.0026i −0.242640 + 0.140088i −0.616389 0.787442i \(-0.711405\pi\)
0.373750 + 0.927530i \(0.378072\pi\)
\(258\) 0 0
\(259\) 236.447 409.538i 0.912923 1.58123i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 113.783 + 65.6926i 0.432634 + 0.249782i 0.700468 0.713683i \(-0.252975\pi\)
−0.267834 + 0.963465i \(0.586308\pi\)
\(264\) 0 0
\(265\) −132.150 228.890i −0.498679 0.863737i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 38.8284i 0.144344i 0.997392 + 0.0721718i \(0.0229930\pi\)
−0.997392 + 0.0721718i \(0.977007\pi\)
\(270\) 0 0
\(271\) −0.802525 −0.00296135 −0.00148067 0.999999i \(-0.500471\pi\)
−0.00148067 + 0.999999i \(0.500471\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 86.9009 50.1723i 0.316003 0.182445i
\(276\) 0 0
\(277\) 61.1932 105.990i 0.220914 0.382635i −0.734172 0.678964i \(-0.762429\pi\)
0.955086 + 0.296329i \(0.0957626\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 254.139 + 146.727i 0.904408 + 0.522160i 0.878628 0.477508i \(-0.158460\pi\)
0.0257801 + 0.999668i \(0.491793\pi\)
\(282\) 0 0
\(283\) −90.6191 156.957i −0.320209 0.554618i 0.660322 0.750983i \(-0.270420\pi\)
−0.980531 + 0.196364i \(0.937086\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 242.554i 0.845134i
\(288\) 0 0
\(289\) 70.5768 0.244210
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 290.545 167.746i 0.991622 0.572513i 0.0858631 0.996307i \(-0.472635\pi\)
0.905759 + 0.423794i \(0.139302\pi\)
\(294\) 0 0
\(295\) 338.829 586.870i 1.14857 1.98939i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −37.1015 21.4205i −0.124085 0.0716406i
\(300\) 0 0
\(301\) 291.020 + 504.061i 0.966843 + 1.67462i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 317.348i 1.04049i
\(306\) 0 0
\(307\) 289.210 0.942053 0.471027 0.882119i \(-0.343884\pi\)
0.471027 + 0.882119i \(0.343884\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 23.6987 13.6824i 0.0762016 0.0439950i −0.461415 0.887184i \(-0.652658\pi\)
0.537617 + 0.843189i \(0.319325\pi\)
\(312\) 0 0
\(313\) −293.572 + 508.481i −0.937928 + 1.62454i −0.168601 + 0.985684i \(0.553925\pi\)
−0.769327 + 0.638855i \(0.779408\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −326.081 188.263i −1.02865 0.593889i −0.112049 0.993703i \(-0.535741\pi\)
−0.916596 + 0.399814i \(0.869075\pi\)
\(318\) 0 0
\(319\) −165.243 286.210i −0.518004 0.897210i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 294.785i 0.912648i
\(324\) 0 0
\(325\) −25.0087 −0.0769497
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 288.428 166.524i 0.876680 0.506151i
\(330\) 0 0
\(331\) 1.48388 2.57015i 0.00448301 0.00776480i −0.863775 0.503877i \(-0.831906\pi\)
0.868258 + 0.496113i \(0.165240\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −616.534 355.956i −1.84040 1.06256i
\(336\) 0 0
\(337\) −329.235 570.251i −0.976958 1.69214i −0.673317 0.739354i \(-0.735131\pi\)
−0.303641 0.952786i \(-0.598202\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 201.915i 0.592126i
\(342\) 0 0
\(343\) 313.330 0.913499
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 255.949 147.772i 0.737606 0.425857i −0.0835920 0.996500i \(-0.526639\pi\)
0.821198 + 0.570643i \(0.193306\pi\)
\(348\) 0 0
\(349\) 106.379 184.254i 0.304811 0.527949i −0.672408 0.740181i \(-0.734740\pi\)
0.977219 + 0.212232i \(0.0680733\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 124.287 + 71.7570i 0.352087 + 0.203278i 0.665604 0.746305i \(-0.268174\pi\)
−0.313517 + 0.949583i \(0.601507\pi\)
\(354\) 0 0
\(355\) −266.312 461.265i −0.750173 1.29934i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 270.973i 0.754799i 0.926051 + 0.377400i \(0.123182\pi\)
−0.926051 + 0.377400i \(0.876818\pi\)
\(360\) 0 0
\(361\) 36.8443 0.102062
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 511.731 295.448i 1.40200 0.809446i
\(366\) 0 0
\(367\) −200.855 + 347.892i −0.547290 + 0.947934i 0.451169 + 0.892438i \(0.351007\pi\)
−0.998459 + 0.0554953i \(0.982326\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 274.540 + 158.506i 0.740001 + 0.427240i
\(372\) 0 0
\(373\) −146.890 254.422i −0.393808 0.682095i 0.599140 0.800644i \(-0.295509\pi\)
−0.992948 + 0.118549i \(0.962176\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 82.3665i 0.218479i
\(378\) 0 0
\(379\) 280.802 0.740903 0.370452 0.928852i \(-0.379203\pi\)
0.370452 + 0.928852i \(0.379203\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −546.665 + 315.617i −1.42732 + 0.824066i −0.996909 0.0785646i \(-0.974966\pi\)
−0.430416 + 0.902631i \(0.641633\pi\)
\(384\) 0 0
\(385\) −167.115 + 289.452i −0.434066 + 0.751824i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −378.049 218.267i −0.971849 0.561097i −0.0720497 0.997401i \(-0.522954\pi\)
−0.899799 + 0.436304i \(0.856287\pi\)
\(390\) 0 0
\(391\) 178.092 + 308.465i 0.455479 + 0.788913i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 445.109i 1.12686i
\(396\) 0 0
\(397\) −405.382 −1.02111 −0.510557 0.859844i \(-0.670561\pi\)
−0.510557 + 0.859844i \(0.670561\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 66.9595 38.6591i 0.166981 0.0964068i −0.414180 0.910195i \(-0.635932\pi\)
0.581162 + 0.813788i \(0.302598\pi\)
\(402\) 0 0
\(403\) 25.1614 43.5809i 0.0624353 0.108141i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 389.619 + 224.946i 0.957294 + 0.552694i
\(408\) 0 0
\(409\) 85.3306 + 147.797i 0.208632 + 0.361362i 0.951284 0.308316i \(-0.0997655\pi\)
−0.742652 + 0.669678i \(0.766432\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 812.811i 1.96807i
\(414\) 0 0
\(415\) −684.964 −1.65051
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 123.529 71.3195i 0.294819 0.170214i −0.345294 0.938494i \(-0.612221\pi\)
0.640113 + 0.768281i \(0.278888\pi\)
\(420\) 0 0
\(421\) −307.819 + 533.158i −0.731162 + 1.26641i 0.225226 + 0.974307i \(0.427688\pi\)
−0.956387 + 0.292102i \(0.905645\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 180.068 + 103.962i 0.423689 + 0.244617i
\(426\) 0 0
\(427\) 190.320 + 329.644i 0.445714 + 0.772000i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 405.961i 0.941905i 0.882159 + 0.470953i \(0.156090\pi\)
−0.882159 + 0.470953i \(0.843910\pi\)
\(432\) 0 0
\(433\) 50.1302 0.115774 0.0578870 0.998323i \(-0.481564\pi\)
0.0578870 + 0.998323i \(0.481564\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −416.306 + 240.354i −0.952646 + 0.550010i
\(438\) 0 0
\(439\) −363.552 + 629.690i −0.828136 + 1.43437i 0.0713624 + 0.997450i \(0.477265\pi\)
−0.899499 + 0.436924i \(0.856068\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −324.072 187.103i −0.731540 0.422355i 0.0874454 0.996169i \(-0.472130\pi\)
−0.818985 + 0.573815i \(0.805463\pi\)
\(444\) 0 0
\(445\) 92.7998 + 160.734i 0.208539 + 0.361200i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 225.368i 0.501934i 0.967996 + 0.250967i \(0.0807486\pi\)
−0.967996 + 0.250967i \(0.919251\pi\)
\(450\) 0 0
\(451\) 230.756 0.511654
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 72.1396 41.6498i 0.158549 0.0915380i
\(456\) 0 0
\(457\) 390.263 675.955i 0.853966 1.47911i −0.0236344 0.999721i \(-0.507524\pi\)
0.877601 0.479392i \(-0.159143\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −474.085 273.713i −1.02838 0.593738i −0.111863 0.993724i \(-0.535682\pi\)
−0.916521 + 0.399986i \(0.869015\pi\)
\(462\) 0 0
\(463\) 174.664 + 302.526i 0.377243 + 0.653404i 0.990660 0.136355i \(-0.0435388\pi\)
−0.613417 + 0.789759i \(0.710205\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 499.358i 1.06929i 0.845077 + 0.534645i \(0.179555\pi\)
−0.845077 + 0.534645i \(0.820445\pi\)
\(468\) 0 0
\(469\) 853.896 1.82067
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −479.543 + 276.865i −1.01383 + 0.585337i
\(474\) 0 0
\(475\) −140.308 + 243.020i −0.295385 + 0.511622i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −571.640 330.036i −1.19340 0.689011i −0.234326 0.972158i \(-0.575288\pi\)
−0.959076 + 0.283147i \(0.908621\pi\)
\(480\) 0 0
\(481\) −56.0629 97.1038i −0.116555 0.201879i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 781.053i 1.61042i
\(486\) 0 0
\(487\) 217.861 0.447352 0.223676 0.974664i \(-0.428194\pi\)
0.223676 + 0.974664i \(0.428194\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 132.712 76.6214i 0.270289 0.156052i −0.358730 0.933441i \(-0.616790\pi\)
0.629019 + 0.777390i \(0.283457\pi\)
\(492\) 0 0
\(493\) 342.401 593.056i 0.694526 1.20295i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 553.260 + 319.425i 1.11320 + 0.642706i
\(498\) 0 0
\(499\) −153.693 266.204i −0.308002 0.533476i 0.669923 0.742431i \(-0.266327\pi\)
−0.977925 + 0.208955i \(0.932994\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 797.972i 1.58643i 0.608945 + 0.793213i \(0.291593\pi\)
−0.608945 + 0.793213i \(0.708407\pi\)
\(504\) 0 0
\(505\) −246.107 −0.487341
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −260.405 + 150.345i −0.511602 + 0.295373i −0.733492 0.679698i \(-0.762111\pi\)
0.221890 + 0.975072i \(0.428777\pi\)
\(510\) 0 0
\(511\) −354.372 + 613.790i −0.693487 + 1.20115i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 808.965 + 467.056i 1.57081 + 0.906905i
\(516\) 0 0
\(517\) 158.424 + 274.399i 0.306430 + 0.530752i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 928.990i 1.78309i −0.452932 0.891545i \(-0.649622\pi\)
0.452932 0.891545i \(-0.350378\pi\)
\(522\) 0 0
\(523\) −519.086 −0.992516 −0.496258 0.868175i \(-0.665293\pi\)
−0.496258 + 0.868175i \(0.665293\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −362.335 + 209.194i −0.687543 + 0.396953i
\(528\) 0 0
\(529\) 25.9164 44.8885i 0.0489913 0.0848554i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −49.8058 28.7554i −0.0934443 0.0539501i
\(534\) 0 0
\(535\) −1.31326 2.27464i −0.00245470 0.00425167i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 51.3997i 0.0953613i
\(540\) 0 0
\(541\) −109.959 −0.203251 −0.101625 0.994823i \(-0.532404\pi\)
−0.101625 + 0.994823i \(0.532404\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −348.937 + 201.459i −0.640251 + 0.369649i
\(546\) 0 0
\(547\) 489.119 847.180i 0.894185 1.54877i 0.0593757 0.998236i \(-0.481089\pi\)
0.834810 0.550539i \(-0.185578\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 800.392 + 462.107i 1.45262 + 0.838669i
\(552\) 0 0
\(553\) 266.941 + 462.355i 0.482714 + 0.836084i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 322.002i 0.578100i 0.957314 + 0.289050i \(0.0933394\pi\)
−0.957314 + 0.289050i \(0.906661\pi\)
\(558\) 0 0
\(559\) 138.005 0.246878
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 174.603 100.807i 0.310129 0.179053i −0.336855 0.941556i \(-0.609363\pi\)
0.646984 + 0.762503i \(0.276030\pi\)
\(564\) 0 0
\(565\) 81.0945 140.460i 0.143530 0.248601i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 123.786 + 71.4677i 0.217549 + 0.125602i 0.604815 0.796366i \(-0.293247\pi\)
−0.387266 + 0.921968i \(0.626580\pi\)
\(570\) 0 0
\(571\) −45.7205 79.1902i −0.0800709 0.138687i 0.823209 0.567738i \(-0.192181\pi\)
−0.903280 + 0.429051i \(0.858848\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 339.064i 0.589676i
\(576\) 0 0
\(577\) 404.739 0.701455 0.350727 0.936478i \(-0.385934\pi\)
0.350727 + 0.936478i \(0.385934\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 711.503 410.786i 1.22462 0.707033i
\(582\) 0 0
\(583\) −150.796 + 261.187i −0.258656 + 0.448005i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 702.845 + 405.788i 1.19735 + 0.691291i 0.959964 0.280125i \(-0.0903758\pi\)
0.237387 + 0.971415i \(0.423709\pi\)
\(588\) 0 0
\(589\) −282.330 489.010i −0.479338 0.830238i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 95.3026i 0.160713i −0.996766 0.0803563i \(-0.974394\pi\)
0.996766 0.0803563i \(-0.0256058\pi\)
\(594\) 0 0
\(595\) −692.560 −1.16397
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 381.733 220.393i 0.637283 0.367936i −0.146284 0.989243i \(-0.546731\pi\)
0.783567 + 0.621307i \(0.213398\pi\)
\(600\) 0 0
\(601\) 90.4814 156.718i 0.150551 0.260763i −0.780879 0.624682i \(-0.785228\pi\)
0.931430 + 0.363920i \(0.118562\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 379.611 + 219.168i 0.627456 + 0.362262i
\(606\) 0 0
\(607\) 277.996 + 481.504i 0.457984 + 0.793252i 0.998854 0.0478542i \(-0.0152383\pi\)
−0.540870 + 0.841106i \(0.681905\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 78.9674i 0.129243i
\(612\) 0 0
\(613\) −335.352 −0.547067 −0.273534 0.961862i \(-0.588192\pi\)
−0.273534 + 0.961862i \(0.588192\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1020.64 + 589.268i −1.65420 + 0.955053i −0.678884 + 0.734246i \(0.737536\pi\)
−0.975317 + 0.220808i \(0.929131\pi\)
\(618\) 0 0
\(619\) −449.292 + 778.197i −0.725835 + 1.25718i 0.232794 + 0.972526i \(0.425213\pi\)
−0.958629 + 0.284658i \(0.908120\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −192.791 111.308i −0.309455 0.178664i
\(624\) 0 0
\(625\) 389.395 + 674.451i 0.623031 + 1.07912i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 932.224i 1.48207i
\(630\) 0 0
\(631\) 431.017 0.683070 0.341535 0.939869i \(-0.389053\pi\)
0.341535 + 0.939869i \(0.389053\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 65.4531 37.7894i 0.103076 0.0595108i
\(636\) 0 0
\(637\) −6.40513 + 11.0940i −0.0100551 + 0.0174160i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −775.987 448.016i −1.21059 0.698933i −0.247701 0.968837i \(-0.579675\pi\)
−0.962887 + 0.269903i \(0.913008\pi\)
\(642\) 0 0
\(643\) −110.854 192.004i −0.172401 0.298607i 0.766858 0.641817i \(-0.221819\pi\)
−0.939259 + 0.343210i \(0.888486\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 536.838i 0.829734i 0.909882 + 0.414867i \(0.136172\pi\)
−0.909882 + 0.414867i \(0.863828\pi\)
\(648\) 0 0
\(649\) −773.276 −1.19149
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 483.774 279.307i 0.740848 0.427729i −0.0815296 0.996671i \(-0.525981\pi\)
0.822378 + 0.568942i \(0.192647\pi\)
\(654\) 0 0
\(655\) −164.023 + 284.096i −0.250417 + 0.433735i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 933.150 + 538.755i 1.41601 + 0.817534i 0.995945 0.0899606i \(-0.0286741\pi\)
0.420064 + 0.907494i \(0.362007\pi\)
\(660\) 0 0
\(661\) 147.880 + 256.135i 0.223721 + 0.387496i 0.955935 0.293579i \(-0.0948463\pi\)
−0.732214 + 0.681075i \(0.761513\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 934.683i 1.40554i
\(666\) 0 0
\(667\) −1116.71 −1.67423
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −313.610 + 181.063i −0.467377 + 0.269840i
\(672\) 0 0
\(673\) 283.724 491.424i 0.421580 0.730199i −0.574514 0.818495i \(-0.694809\pi\)
0.996094 + 0.0882963i \(0.0281422\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 813.905 + 469.908i 1.20222 + 0.694104i 0.961049 0.276378i \(-0.0891341\pi\)
0.241174 + 0.970482i \(0.422467\pi\)
\(678\) 0 0
\(679\) 468.413 + 811.315i 0.689857 + 1.19487i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 14.2541i 0.0208699i 0.999946 + 0.0104349i \(0.00332161\pi\)
−0.999946 + 0.0104349i \(0.996678\pi\)
\(684\) 0 0
\(685\) −874.930 −1.27727
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 65.0950 37.5826i 0.0944775 0.0545466i
\(690\) 0 0
\(691\) −83.1353 + 143.995i −0.120312 + 0.208386i −0.919891 0.392175i \(-0.871723\pi\)
0.799579 + 0.600561i \(0.205056\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −216.151 124.795i −0.311009 0.179561i
\(696\) 0 0
\(697\) 239.075 + 414.090i 0.343006 + 0.594103i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 506.174i 0.722074i −0.932551 0.361037i \(-0.882423\pi\)
0.932551 0.361037i \(-0.117577\pi\)
\(702\) 0 0
\(703\) −1258.14 −1.78967
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 255.643 147.595i 0.361588 0.208763i
\(708\) 0 0
\(709\) −259.993 + 450.321i −0.366704 + 0.635150i −0.989048 0.147594i \(-0.952847\pi\)
0.622344 + 0.782744i \(0.286181\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 590.863 + 341.135i 0.828700 + 0.478450i
\(714\) 0 0
\(715\) 39.6240 + 68.6307i 0.0554181 + 0.0959870i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 467.630i 0.650390i 0.945647 + 0.325195i \(0.105430\pi\)
−0.945647 + 0.325195i \(0.894570\pi\)
\(720\) 0 0
\(721\) −1120.41 −1.55397
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −564.549 + 325.943i −0.778689 + 0.449576i
\(726\) 0 0
\(727\) 262.371 454.439i 0.360895 0.625088i −0.627214 0.778847i \(-0.715805\pi\)
0.988108 + 0.153759i \(0.0491380\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −993.663 573.692i −1.35932 0.784804i
\(732\) 0 0
\(733\) −329.348 570.447i −0.449315 0.778236i 0.549027 0.835805i \(-0.314998\pi\)
−0.998342 + 0.0575688i \(0.981665\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 812.363i 1.10226i
\(738\) 0 0
\(739\) 1209.27 1.63637 0.818183 0.574957i \(-0.194981\pi\)
0.818183 + 0.574957i \(0.194981\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −339.650 + 196.097i −0.457134 + 0.263926i −0.710838 0.703355i \(-0.751684\pi\)
0.253704 + 0.967282i \(0.418351\pi\)
\(744\) 0 0
\(745\) −11.7726 + 20.3908i −0.0158022 + 0.0273701i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.72829 + 1.57518i 0.00364258 + 0.00210305i
\(750\) 0 0
\(751\) 558.493 + 967.339i 0.743666 + 1.28807i 0.950815 + 0.309758i \(0.100248\pi\)
−0.207149 + 0.978309i \(0.566419\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 936.069i 1.23983i
\(756\) 0 0
\(757\) −623.892 −0.824164 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 832.456 480.619i 1.09390 0.631562i 0.159286 0.987233i \(-0.449081\pi\)
0.934611 + 0.355671i \(0.115748\pi\)
\(762\) 0 0
\(763\) 241.638 418.528i 0.316694 0.548530i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 166.902 + 96.3610i 0.217604 + 0.125634i
\(768\) 0 0
\(769\) −109.653 189.924i −0.142592 0.246976i 0.785880 0.618379i \(-0.212210\pi\)
−0.928472 + 0.371403i \(0.878877\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 761.394i 0.984986i −0.870316 0.492493i \(-0.836086\pi\)
0.870316 0.492493i \(-0.163914\pi\)
\(774\) 0 0
\(775\) 398.278 0.513907
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −558.858 + 322.657i −0.717405 + 0.414194i
\(780\) 0 0
\(781\) −303.888 + 526.349i −0.389101 + 0.673943i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 638.211 + 368.471i 0.813007 + 0.469390i
\(786\) 0 0
\(787\) 263.023 + 455.569i 0.334210 + 0.578868i 0.983333 0.181815i \(-0.0581972\pi\)
−0.649123 + 0.760684i \(0.724864\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 194.536i 0.245937i
\(792\) 0 0
\(793\) 90.2518 0.113811
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1230.12 710.212i 1.54344 0.891107i 0.544824 0.838551i \(-0.316597\pi\)
0.998618 0.0525560i \(-0.0167368\pi\)
\(798\) 0 0
\(799\) −328.271 + 568.582i −0.410852 + 0.711617i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −583.935 337.135i −0.727192 0.419845i
\(804\) 0 0
\(805\) 564.681 + 978.057i 0.701468 + 1.21498i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 749.612i 0.926590i −0.886204 0.463295i \(-0.846667\pi\)
0.886204 0.463295i \(-0.153333\pi\)
\(810\) 0 0
\(811\) 238.446 0.294015 0.147008 0.989135i \(-0.453036\pi\)
0.147008 + 0.989135i \(0.453036\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −606.052 + 349.905i −0.743623 + 0.429331i
\(816\) 0 0
\(817\) 774.258 1341.05i 0.947684 1.64144i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −937.937 541.518i −1.14243 0.659583i −0.195400 0.980724i \(-0.562601\pi\)
−0.947032 + 0.321140i \(0.895934\pi\)
\(822\) 0 0
\(823\) −787.881 1364.65i −0.957328 1.65814i −0.728949 0.684568i \(-0.759991\pi\)
−0.228379 0.973572i \(-0.573343\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 124.799i 0.150906i −0.997149 0.0754529i \(-0.975960\pi\)
0.997149 0.0754529i \(-0.0240403\pi\)
\(828\) 0 0
\(829\) 426.486 0.514458 0.257229 0.966350i \(-0.417190\pi\)
0.257229 + 0.966350i \(0.417190\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 92.2365 53.2528i 0.110728 0.0639289i
\(834\) 0 0
\(835\) 4.82403 8.35547i 0.00577728 0.0100065i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −430.710 248.671i −0.513362 0.296389i 0.220853 0.975307i \(-0.429116\pi\)
−0.734214 + 0.678918i \(0.762449\pi\)
\(840\) 0 0
\(841\) 652.999 + 1131.03i 0.776455 + 1.34486i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1036.58i 1.22673i
\(846\) 0 0
\(847\) −525.759 −0.620730
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1316.52 760.092i 1.54703 0.893176i
\(852\) 0 0
\(853\) 767.481 1329.32i 0.899743 1.55840i 0.0719203 0.997410i \(-0.477087\pi\)
0.827823 0.560990i \(-0.189579\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1055.08 609.149i −1.23113 0.710792i −0.263863 0.964560i \(-0.584997\pi\)
−0.967265 + 0.253768i \(0.918330\pi\)
\(858\) 0 0
\(859\) −289.720 501.811i −0.337276 0.584180i 0.646643 0.762793i \(-0.276172\pi\)
−0.983919 + 0.178613i \(0.942839\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1361.09i 1.57716i −0.614934 0.788579i \(-0.710817\pi\)
0.614934 0.788579i \(-0.289183\pi\)
\(864\) 0 0
\(865\) 332.422 0.384303
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −439.866 + 253.957i −0.506175 + 0.292240i
\(870\) 0 0
\(871\) 101.232 175.339i 0.116225 0.201307i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −443.617 256.122i −0.506991 0.292711i
\(876\) 0 0
\(877\) 150.947 + 261.448i 0.172118 + 0.298117i 0.939160 0.343480i \(-0.111606\pi\)
−0.767042 + 0.641597i \(0.778272\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1170.94i 1.32911i 0.747240 + 0.664554i \(0.231378\pi\)
−0.747240 + 0.664554i \(0.768622\pi\)
\(882\) 0 0
\(883\) 1339.68 1.51719 0.758597 0.651560i \(-0.225885\pi\)
0.758597 + 0.651560i \(0.225885\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −14.4375 + 8.33547i −0.0162767 + 0.00939738i −0.508116 0.861288i \(-0.669658\pi\)
0.491840 + 0.870686i \(0.336325\pi\)
\(888\) 0 0
\(889\) −45.3261 + 78.5071i −0.0509855 + 0.0883094i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −767.362 443.037i −0.859308 0.496122i
\(894\) 0 0
\(895\) −748.323 1296.13i −0.836115 1.44819i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1311.74i 1.45911i
\(900\) 0 0
\(901\) −624.930 −0.693596
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −331.042 + 191.127i −0.365792 + 0.211190i
\(906\) 0 0
\(907\) 225.668 390.868i 0.248807 0.430946i −0.714388 0.699750i \(-0.753295\pi\)
0.963195 + 0.268803i \(0.0866282\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1243.11 + 717.711i 1.36456 + 0.787827i 0.990227 0.139468i \(-0.0445392\pi\)
0.374331 + 0.927295i \(0.377873\pi\)
\(912\) 0 0
\(913\) 390.806 + 676.895i 0.428046 + 0.741397i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 393.472i 0.429086i
\(918\) 0 0
\(919\) 380.633 0.414181 0.207091 0.978322i \(-0.433600\pi\)
0.207091 + 0.978322i \(0.433600\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 131.181 75.7374i 0.142125 0.0820557i
\(924\) 0 0
\(925\) 443.707 768.523i 0.479683 0.830836i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 856.635 + 494.578i 0.922104 + 0.532377i 0.884306 0.466908i \(-0.154632\pi\)
0.0377985 + 0.999285i \(0.487965\pi\)
\(930\) 0 0
\(931\) 71.8703 + 124.483i 0.0771969 + 0.133709i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 658.874i 0.704678i
\(936\) 0 0
\(937\) −549.202 −0.586128 −0.293064 0.956093i \(-0.594675\pi\)
−0.293064 + 0.956093i \(0.594675\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −405.479 + 234.103i −0.430902 + 0.248781i −0.699731 0.714407i \(-0.746697\pi\)
0.268829 + 0.963188i \(0.413363\pi\)
\(942\) 0 0
\(943\) 389.861 675.259i 0.413427 0.716076i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −260.869 150.613i −0.275469 0.159042i 0.355902 0.934523i \(-0.384174\pi\)
−0.631370 + 0.775482i \(0.717507\pi\)
\(948\) 0 0
\(949\) 84.0235 + 145.533i 0.0885390 + 0.153354i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 319.384i 0.335135i 0.985861 + 0.167567i \(0.0535912\pi\)
−0.985861 + 0.167567i \(0.946409\pi\)
\(954\) 0 0
\(955\) 208.630 0.218461
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 908.829 524.713i 0.947685 0.547146i
\(960\) 0 0
\(961\) 79.7892 138.199i 0.0830272 0.143807i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −230.377 133.008i −0.238732 0.137832i
\(966\) 0 0
\(967\) −302.086 523.229i −0.312395 0.541085i 0.666485 0.745518i \(-0.267798\pi\)
−0.978880 + 0.204434i \(0.934465\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 465.068i 0.478958i −0.970902 0.239479i \(-0.923023\pi\)
0.970902 0.239479i \(-0.0769766\pi\)
\(972\) 0 0
\(973\) 299.368 0.307675
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 332.512 191.976i 0.340340 0.196495i −0.320083 0.947390i \(-0.603711\pi\)
0.660422 + 0.750894i \(0.270377\pi\)
\(978\) 0 0
\(979\) 105.894 183.413i 0.108165 0.187348i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −586.197 338.441i −0.596335 0.344294i 0.171264 0.985225i \(-0.445215\pi\)
−0.767598 + 0.640931i \(0.778548\pi\)
\(984\) 0 0
\(985\) −635.589 1100.87i −0.645268 1.11764i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1871.05i 1.89186i
\(990\) 0 0
\(991\) 1097.79 1.10776 0.553878 0.832598i \(-0.313147\pi\)
0.553878 + 0.832598i \(0.313147\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −693.744 + 400.533i −0.697230 + 0.402546i
\(996\) 0 0
\(997\) −90.7127 + 157.119i −0.0909857 + 0.157592i −0.907926 0.419130i \(-0.862335\pi\)
0.816940 + 0.576722i \(0.195668\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.3.q.a.737.4 24
3.2 odd 2 288.3.q.b.65.12 yes 24
4.3 odd 2 inner 864.3.q.a.737.3 24
8.3 odd 2 1728.3.q.k.1601.9 24
8.5 even 2 1728.3.q.k.1601.10 24
9.2 odd 6 2592.3.e.i.161.6 24
9.4 even 3 288.3.q.b.257.12 yes 24
9.5 odd 6 inner 864.3.q.a.449.4 24
9.7 even 3 2592.3.e.i.161.5 24
12.11 even 2 288.3.q.b.65.1 24
24.5 odd 2 576.3.q.l.65.1 24
24.11 even 2 576.3.q.l.65.12 24
36.7 odd 6 2592.3.e.i.161.19 24
36.11 even 6 2592.3.e.i.161.20 24
36.23 even 6 inner 864.3.q.a.449.3 24
36.31 odd 6 288.3.q.b.257.1 yes 24
72.5 odd 6 1728.3.q.k.449.10 24
72.13 even 6 576.3.q.l.257.1 24
72.59 even 6 1728.3.q.k.449.9 24
72.67 odd 6 576.3.q.l.257.12 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.3.q.b.65.1 24 12.11 even 2
288.3.q.b.65.12 yes 24 3.2 odd 2
288.3.q.b.257.1 yes 24 36.31 odd 6
288.3.q.b.257.12 yes 24 9.4 even 3
576.3.q.l.65.1 24 24.5 odd 2
576.3.q.l.65.12 24 24.11 even 2
576.3.q.l.257.1 24 72.13 even 6
576.3.q.l.257.12 24 72.67 odd 6
864.3.q.a.449.3 24 36.23 even 6 inner
864.3.q.a.449.4 24 9.5 odd 6 inner
864.3.q.a.737.3 24 4.3 odd 2 inner
864.3.q.a.737.4 24 1.1 even 1 trivial
1728.3.q.k.449.9 24 72.59 even 6
1728.3.q.k.449.10 24 72.5 odd 6
1728.3.q.k.1601.9 24 8.3 odd 2
1728.3.q.k.1601.10 24 8.5 even 2
2592.3.e.i.161.5 24 9.7 even 3
2592.3.e.i.161.6 24 9.2 odd 6
2592.3.e.i.161.19 24 36.7 odd 6
2592.3.e.i.161.20 24 36.11 even 6