L(s) = 1 | − 1.23·2-s − 0.481·4-s + 1.54·5-s − 3.80·7-s + 3.05·8-s − 1.90·10-s + 3.76·11-s − 2.63·13-s + 4.68·14-s − 2.80·16-s − 3.77·17-s + 6.09·19-s − 0.744·20-s − 4.63·22-s − 0.909·23-s − 2.61·25-s + 3.24·26-s + 1.83·28-s + 6.80·29-s − 2.66·32-s + 4.65·34-s − 5.87·35-s − 1.81·37-s − 7.51·38-s + 4.72·40-s − 0.337·41-s + 3.88·43-s + ⋯ |
L(s) = 1 | − 0.871·2-s − 0.240·4-s + 0.691·5-s − 1.43·7-s + 1.08·8-s − 0.602·10-s + 1.13·11-s − 0.730·13-s + 1.25·14-s − 0.701·16-s − 0.915·17-s + 1.39·19-s − 0.166·20-s − 0.988·22-s − 0.189·23-s − 0.522·25-s + 0.636·26-s + 0.346·28-s + 1.26·29-s − 0.470·32-s + 0.797·34-s − 0.993·35-s − 0.298·37-s − 1.21·38-s + 0.747·40-s − 0.0526·41-s + 0.592·43-s + ⋯ |
Λ(s)=(=(8649s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(8649s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.8865140186 |
L(21) |
≈ |
0.8865140186 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 31 | 1 |
good | 2 | 1+1.23T+2T2 |
| 5 | 1−1.54T+5T2 |
| 7 | 1+3.80T+7T2 |
| 11 | 1−3.76T+11T2 |
| 13 | 1+2.63T+13T2 |
| 17 | 1+3.77T+17T2 |
| 19 | 1−6.09T+19T2 |
| 23 | 1+0.909T+23T2 |
| 29 | 1−6.80T+29T2 |
| 37 | 1+1.81T+37T2 |
| 41 | 1+0.337T+41T2 |
| 43 | 1−3.88T+43T2 |
| 47 | 1−1.18T+47T2 |
| 53 | 1−2.34T+53T2 |
| 59 | 1+7.77T+59T2 |
| 61 | 1+2.72T+61T2 |
| 67 | 1+7.42T+67T2 |
| 71 | 1−5.09T+71T2 |
| 73 | 1−5.39T+73T2 |
| 79 | 1+9.73T+79T2 |
| 83 | 1−8.39T+83T2 |
| 89 | 1+5.09T+89T2 |
| 97 | 1−10.9T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.76102595848559008542190342946, −7.11062479679026086816998470195, −6.51320188548594663624822262760, −5.91422868941683068232596470587, −4.98996217672024392502305748755, −4.22866319465634262408542711787, −3.41206003910733068899875080636, −2.52448557110213957051061563805, −1.52878373452986343005696448779, −0.54685361318613941626128335031,
0.54685361318613941626128335031, 1.52878373452986343005696448779, 2.52448557110213957051061563805, 3.41206003910733068899875080636, 4.22866319465634262408542711787, 4.98996217672024392502305748755, 5.91422868941683068232596470587, 6.51320188548594663624822262760, 7.11062479679026086816998470195, 7.76102595848559008542190342946