Properties

Label 2-93e2-1.1-c1-0-73
Degree $2$
Conductor $8649$
Sign $1$
Analytic cond. $69.0626$
Root an. cond. $8.31039$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.23·2-s − 0.481·4-s + 1.54·5-s − 3.80·7-s + 3.05·8-s − 1.90·10-s + 3.76·11-s − 2.63·13-s + 4.68·14-s − 2.80·16-s − 3.77·17-s + 6.09·19-s − 0.744·20-s − 4.63·22-s − 0.909·23-s − 2.61·25-s + 3.24·26-s + 1.83·28-s + 6.80·29-s − 2.66·32-s + 4.65·34-s − 5.87·35-s − 1.81·37-s − 7.51·38-s + 4.72·40-s − 0.337·41-s + 3.88·43-s + ⋯
L(s)  = 1  − 0.871·2-s − 0.240·4-s + 0.691·5-s − 1.43·7-s + 1.08·8-s − 0.602·10-s + 1.13·11-s − 0.730·13-s + 1.25·14-s − 0.701·16-s − 0.915·17-s + 1.39·19-s − 0.166·20-s − 0.988·22-s − 0.189·23-s − 0.522·25-s + 0.636·26-s + 0.346·28-s + 1.26·29-s − 0.470·32-s + 0.797·34-s − 0.993·35-s − 0.298·37-s − 1.21·38-s + 0.747·40-s − 0.0526·41-s + 0.592·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8649 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8649 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8649\)    =    \(3^{2} \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(69.0626\)
Root analytic conductor: \(8.31039\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8649,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8865140186\)
\(L(\frac12)\) \(\approx\) \(0.8865140186\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
31 \( 1 \)
good2 \( 1 + 1.23T + 2T^{2} \)
5 \( 1 - 1.54T + 5T^{2} \)
7 \( 1 + 3.80T + 7T^{2} \)
11 \( 1 - 3.76T + 11T^{2} \)
13 \( 1 + 2.63T + 13T^{2} \)
17 \( 1 + 3.77T + 17T^{2} \)
19 \( 1 - 6.09T + 19T^{2} \)
23 \( 1 + 0.909T + 23T^{2} \)
29 \( 1 - 6.80T + 29T^{2} \)
37 \( 1 + 1.81T + 37T^{2} \)
41 \( 1 + 0.337T + 41T^{2} \)
43 \( 1 - 3.88T + 43T^{2} \)
47 \( 1 - 1.18T + 47T^{2} \)
53 \( 1 - 2.34T + 53T^{2} \)
59 \( 1 + 7.77T + 59T^{2} \)
61 \( 1 + 2.72T + 61T^{2} \)
67 \( 1 + 7.42T + 67T^{2} \)
71 \( 1 - 5.09T + 71T^{2} \)
73 \( 1 - 5.39T + 73T^{2} \)
79 \( 1 + 9.73T + 79T^{2} \)
83 \( 1 - 8.39T + 83T^{2} \)
89 \( 1 + 5.09T + 89T^{2} \)
97 \( 1 - 10.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.76102595848559008542190342946, −7.11062479679026086816998470195, −6.51320188548594663624822262760, −5.91422868941683068232596470587, −4.98996217672024392502305748755, −4.22866319465634262408542711787, −3.41206003910733068899875080636, −2.52448557110213957051061563805, −1.52878373452986343005696448779, −0.54685361318613941626128335031, 0.54685361318613941626128335031, 1.52878373452986343005696448779, 2.52448557110213957051061563805, 3.41206003910733068899875080636, 4.22866319465634262408542711787, 4.98996217672024392502305748755, 5.91422868941683068232596470587, 6.51320188548594663624822262760, 7.11062479679026086816998470195, 7.76102595848559008542190342946

Graph of the $Z$-function along the critical line