Properties

Label 8649.2.a.bf
Level 86498649
Weight 22
Character orbit 8649.a
Self dual yes
Analytic conductor 69.06369.063
Analytic rank 00
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8649,2,Mod(1,8649)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8649, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8649.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8649=32312 8649 = 3^{2} \cdot 31^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8649.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 69.062612708269.0626127082
Analytic rank: 00
Dimension: 88
Coefficient field: 8.8.2051578125.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x82x79x6+19x5+14x428x311x2+6x+1 x^{8} - 2x^{7} - 9x^{6} + 19x^{5} + 14x^{4} - 28x^{3} - 11x^{2} + 6x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 31)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β5β31)q2+(β6+β1+1)q4+(β6β5+β3++β1)q5+(β7β5++β1)q7+(β7+β6++β2)q8++(2β7+β63β5+1)q98+O(q100) q + (\beta_{5} - \beta_{3} - 1) q^{2} + ( - \beta_{6} + \beta_1 + 1) q^{4} + (\beta_{6} - \beta_{5} + \beta_{3} + \cdots + \beta_1) q^{5} + ( - \beta_{7} - \beta_{5} + \cdots + \beta_1) q^{7} + (\beta_{7} + \beta_{6} + \cdots + \beta_{2}) q^{8}+ \cdots + ( - 2 \beta_{7} + \beta_{6} - 3 \beta_{5} + \cdots - 1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q2q2+8q43q52q7+9q813q10+18q118q13+9q14+4q16+14q176q19+7q204q22+22q23+13q25+9q265q28+10q98+O(q100) 8 q - 2 q^{2} + 8 q^{4} - 3 q^{5} - 2 q^{7} + 9 q^{8} - 13 q^{10} + 18 q^{11} - 8 q^{13} + 9 q^{14} + 4 q^{16} + 14 q^{17} - 6 q^{19} + 7 q^{20} - 4 q^{22} + 22 q^{23} + 13 q^{25} + 9 q^{26} - 5 q^{28}+ \cdots - 10 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x82x79x6+19x5+14x428x311x2+6x+1 x^{8} - 2x^{7} - 9x^{6} + 19x^{5} + 14x^{4} - 28x^{3} - 11x^{2} + 6x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν67ν4+2ν3+4ν2+5ν+1)/3 ( \nu^{6} - 7\nu^{4} + 2\nu^{3} + 4\nu^{2} + 5\nu + 1 ) / 3 Copy content Toggle raw display
β3\beta_{3}== (ν7+ν6+7ν59ν4+ν3ν211ν+4)/3 ( -\nu^{7} + \nu^{6} + 7\nu^{5} - 9\nu^{4} + \nu^{3} - \nu^{2} - 11\nu + 4 ) / 3 Copy content Toggle raw display
β4\beta_{4}== (2ν6+17ν44ν326ν2ν+1)/3 ( -2\nu^{6} + 17\nu^{4} - 4\nu^{3} - 26\nu^{2} - \nu + 1 ) / 3 Copy content Toggle raw display
β5\beta_{5}== (ν710ν5+2ν4+25ν34ν214ν+3)/3 ( \nu^{7} - 10\nu^{5} + 2\nu^{4} + 25\nu^{3} - 4\nu^{2} - 14\nu + 3 ) / 3 Copy content Toggle raw display
β6\beta_{6}== (ν73ν67ν5+26ν45ν328ν2+10ν+6)/3 ( \nu^{7} - 3\nu^{6} - 7\nu^{5} + 26\nu^{4} - 5\nu^{3} - 28\nu^{2} + 10\nu + 6 ) / 3 Copy content Toggle raw display
β7\beta_{7}== (ν74ν67ν5+36ν44ν347ν2ν+2)/3 ( \nu^{7} - 4\nu^{6} - 7\nu^{5} + 36\nu^{4} - 4\nu^{3} - 47\nu^{2} - \nu + 2 ) / 3 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β6+β4β3+3 -\beta_{6} + \beta_{4} - \beta_{3} + 3 Copy content Toggle raw display
ν3\nu^{3}== β72β4+β3β2+5β11 \beta_{7} - 2\beta_{4} + \beta_{3} - \beta_{2} + 5\beta _1 - 1 Copy content Toggle raw display
ν4\nu^{4}== 6β6+7β46β3+2β23β1+17 -6\beta_{6} + 7\beta_{4} - 6\beta_{3} + 2\beta_{2} - 3\beta _1 + 17 Copy content Toggle raw display
ν5\nu^{5}== 8β7+3β6β519β4+10β37β2+30β115 8\beta_{7} + 3\beta_{6} - \beta_{5} - 19\beta_{4} + 10\beta_{3} - 7\beta_{2} + 30\beta _1 - 15 Copy content Toggle raw display
ν6\nu^{6}== 2β738β6+49β440β3+19β236β1+108 -2\beta_{7} - 38\beta_{6} + 49\beta_{4} - 40\beta_{3} + 19\beta_{2} - 36\beta _1 + 108 Copy content Toggle raw display
ν7\nu^{7}== 55β7+38β67β5150β4+83β349β2+195β1150 55\beta_{7} + 38\beta_{6} - 7\beta_{5} - 150\beta_{4} + 83\beta_{3} - 49\beta_{2} + 195\beta _1 - 150 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.11562
−0.662608
0.431370
−0.143490
−1.04940
−2.73366
1.76152
2.28064
−2.30753 0 3.32468 2.49846 0 1.60188 −3.05673 0 −5.76526
1.2 −2.07212 0 2.29369 −2.34791 0 −3.67454 −0.608557 0 4.86516
1.3 −1.26660 0 −0.395721 3.80032 0 2.18899 3.03442 0 −4.81349
1.4 −1.23217 0 −0.481752 1.54562 0 −3.80376 3.05795 0 −1.90447
1.5 −0.351432 0 −1.87650 −2.97323 0 −1.08213 1.36233 0 1.04489
1.6 0.689493 0 −1.52460 −3.70752 0 0.763394 −2.43019 0 −2.55631
1.7 1.85021 0 1.42326 −1.20736 0 3.73304 −1.06708 0 −2.23387
1.8 2.69016 0 5.23694 −0.608384 0 −1.72688 8.70786 0 −1.63665
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
3131 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8649.2.a.bf 8
3.b odd 2 1 961.2.a.i 8
31.b odd 2 1 8649.2.a.be 8
31.g even 15 2 279.2.y.c 16
93.c even 2 1 961.2.a.j 8
93.g even 6 2 961.2.c.i 16
93.h odd 6 2 961.2.c.j 16
93.k even 10 2 961.2.d.n 16
93.k even 10 2 961.2.d.q 16
93.l odd 10 2 961.2.d.o 16
93.l odd 10 2 961.2.d.p 16
93.o odd 30 2 31.2.g.a 16
93.o odd 30 2 961.2.g.k 16
93.o odd 30 2 961.2.g.s 16
93.o odd 30 2 961.2.g.t 16
93.p even 30 2 961.2.g.j 16
93.p even 30 2 961.2.g.l 16
93.p even 30 2 961.2.g.m 16
93.p even 30 2 961.2.g.n 16
372.bd even 30 2 496.2.bg.c 16
465.bl odd 30 2 775.2.bl.a 16
465.bt even 60 4 775.2.ck.a 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
31.2.g.a 16 93.o odd 30 2
279.2.y.c 16 31.g even 15 2
496.2.bg.c 16 372.bd even 30 2
775.2.bl.a 16 465.bl odd 30 2
775.2.ck.a 32 465.bt even 60 4
961.2.a.i 8 3.b odd 2 1
961.2.a.j 8 93.c even 2 1
961.2.c.i 16 93.g even 6 2
961.2.c.j 16 93.h odd 6 2
961.2.d.n 16 93.k even 10 2
961.2.d.o 16 93.l odd 10 2
961.2.d.p 16 93.l odd 10 2
961.2.d.q 16 93.k even 10 2
961.2.g.j 16 93.p even 30 2
961.2.g.k 16 93.o odd 30 2
961.2.g.l 16 93.p even 30 2
961.2.g.m 16 93.p even 30 2
961.2.g.n 16 93.p even 30 2
961.2.g.s 16 93.o odd 30 2
961.2.g.t 16 93.o odd 30 2
8649.2.a.be 8 31.b odd 2 1
8649.2.a.bf 8 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(8649))S_{2}^{\mathrm{new}}(\Gamma_0(8649)):

T28+2T2710T2623T25+19T24+63T23+15T2227T29 T_{2}^{8} + 2T_{2}^{7} - 10T_{2}^{6} - 23T_{2}^{5} + 19T_{2}^{4} + 63T_{2}^{3} + 15T_{2}^{2} - 27T_{2} - 9 Copy content Toggle raw display
T58+3T5722T5669T55+115T54+411T5357T52612T5279 T_{5}^{8} + 3T_{5}^{7} - 22T_{5}^{6} - 69T_{5}^{5} + 115T_{5}^{4} + 411T_{5}^{3} - 57T_{5}^{2} - 612T_{5} - 279 Copy content Toggle raw display
T78+2T7725T7638T75+184T74+153T73435T72162T7+261 T_{7}^{8} + 2T_{7}^{7} - 25T_{7}^{6} - 38T_{7}^{5} + 184T_{7}^{4} + 153T_{7}^{3} - 435T_{7}^{2} - 162T_{7} + 261 Copy content Toggle raw display
T11818T117+131T116489T115+964T114852T11351T112+594T11279 T_{11}^{8} - 18T_{11}^{7} + 131T_{11}^{6} - 489T_{11}^{5} + 964T_{11}^{4} - 852T_{11}^{3} - 51T_{11}^{2} + 594T_{11} - 279 Copy content Toggle raw display
T138+8T1374T136161T135281T134+627T133+2064T132+1296T13279 T_{13}^{8} + 8T_{13}^{7} - 4T_{13}^{6} - 161T_{13}^{5} - 281T_{13}^{4} + 627T_{13}^{3} + 2064T_{13}^{2} + 1296T_{13} - 279 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8+2T7+9 T^{8} + 2 T^{7} + \cdots - 9 Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T8+3T7+279 T^{8} + 3 T^{7} + \cdots - 279 Copy content Toggle raw display
77 T8+2T7++261 T^{8} + 2 T^{7} + \cdots + 261 Copy content Toggle raw display
1111 T818T7+279 T^{8} - 18 T^{7} + \cdots - 279 Copy content Toggle raw display
1313 T8+8T7+279 T^{8} + 8 T^{7} + \cdots - 279 Copy content Toggle raw display
1717 T814T7+8649 T^{8} - 14 T^{7} + \cdots - 8649 Copy content Toggle raw display
1919 T8+6T7++601 T^{8} + 6 T^{7} + \cdots + 601 Copy content Toggle raw display
2323 T822T7+279 T^{8} - 22 T^{7} + \cdots - 279 Copy content Toggle raw display
2929 T812T7+279 T^{8} - 12 T^{7} + \cdots - 279 Copy content Toggle raw display
3131 T8 T^{8} Copy content Toggle raw display
3737 T88T7+18569 T^{8} - 8 T^{7} + \cdots - 18569 Copy content Toggle raw display
4141 T822T7+9 T^{8} - 22 T^{7} + \cdots - 9 Copy content Toggle raw display
4343 T82T7+2759 T^{8} - 2 T^{7} + \cdots - 2759 Copy content Toggle raw display
4747 T818T7++57501 T^{8} - 18 T^{7} + \cdots + 57501 Copy content Toggle raw display
5353 T86T7++605151 T^{8} - 6 T^{7} + \cdots + 605151 Copy content Toggle raw display
5959 T84T7++12951 T^{8} - 4 T^{7} + \cdots + 12951 Copy content Toggle raw display
6161 T8+30T7++38161 T^{8} + 30 T^{7} + \cdots + 38161 Copy content Toggle raw display
6767 T8+13T7++86521 T^{8} + 13 T^{7} + \cdots + 86521 Copy content Toggle raw display
7171 T8T7++14661 T^{8} - T^{7} + \cdots + 14661 Copy content Toggle raw display
7373 T8+2T7++4176351 T^{8} + 2 T^{7} + \cdots + 4176351 Copy content Toggle raw display
7979 T8+8T7++9198351 T^{8} + 8 T^{7} + \cdots + 9198351 Copy content Toggle raw display
8383 T839T7+1202769 T^{8} - 39 T^{7} + \cdots - 1202769 Copy content Toggle raw display
8989 T827T7+343449 T^{8} - 27 T^{7} + \cdots - 343449 Copy content Toggle raw display
9797 T834T7+2670579 T^{8} - 34 T^{7} + \cdots - 2670579 Copy content Toggle raw display
show more
show less