Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [8649,2,Mod(1,8649)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8649, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8649.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 8649.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 8.8.2051578125.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 31) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.30753 | 0 | 3.32468 | 2.49846 | 0 | 1.60188 | −3.05673 | 0 | −5.76526 | ||||||||||||||||||||||||||||||||||||||||||
1.2 | −2.07212 | 0 | 2.29369 | −2.34791 | 0 | −3.67454 | −0.608557 | 0 | 4.86516 | |||||||||||||||||||||||||||||||||||||||||||
1.3 | −1.26660 | 0 | −0.395721 | 3.80032 | 0 | 2.18899 | 3.03442 | 0 | −4.81349 | |||||||||||||||||||||||||||||||||||||||||||
1.4 | −1.23217 | 0 | −0.481752 | 1.54562 | 0 | −3.80376 | 3.05795 | 0 | −1.90447 | |||||||||||||||||||||||||||||||||||||||||||
1.5 | −0.351432 | 0 | −1.87650 | −2.97323 | 0 | −1.08213 | 1.36233 | 0 | 1.04489 | |||||||||||||||||||||||||||||||||||||||||||
1.6 | 0.689493 | 0 | −1.52460 | −3.70752 | 0 | 0.763394 | −2.43019 | 0 | −2.55631 | |||||||||||||||||||||||||||||||||||||||||||
1.7 | 1.85021 | 0 | 1.42326 | −1.20736 | 0 | 3.73304 | −1.06708 | 0 | −2.23387 | |||||||||||||||||||||||||||||||||||||||||||
1.8 | 2.69016 | 0 | 5.23694 | −0.608384 | 0 | −1.72688 | 8.70786 | 0 | −1.63665 | |||||||||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 8649.2.a.bf | 8 | |
3.b | odd | 2 | 1 | 961.2.a.i | 8 | ||
31.b | odd | 2 | 1 | 8649.2.a.be | 8 | ||
31.g | even | 15 | 2 | 279.2.y.c | 16 | ||
93.c | even | 2 | 1 | 961.2.a.j | 8 | ||
93.g | even | 6 | 2 | 961.2.c.i | 16 | ||
93.h | odd | 6 | 2 | 961.2.c.j | 16 | ||
93.k | even | 10 | 2 | 961.2.d.n | 16 | ||
93.k | even | 10 | 2 | 961.2.d.q | 16 | ||
93.l | odd | 10 | 2 | 961.2.d.o | 16 | ||
93.l | odd | 10 | 2 | 961.2.d.p | 16 | ||
93.o | odd | 30 | 2 | 31.2.g.a | ✓ | 16 | |
93.o | odd | 30 | 2 | 961.2.g.k | 16 | ||
93.o | odd | 30 | 2 | 961.2.g.s | 16 | ||
93.o | odd | 30 | 2 | 961.2.g.t | 16 | ||
93.p | even | 30 | 2 | 961.2.g.j | 16 | ||
93.p | even | 30 | 2 | 961.2.g.l | 16 | ||
93.p | even | 30 | 2 | 961.2.g.m | 16 | ||
93.p | even | 30 | 2 | 961.2.g.n | 16 | ||
372.bd | even | 30 | 2 | 496.2.bg.c | 16 | ||
465.bl | odd | 30 | 2 | 775.2.bl.a | 16 | ||
465.bt | even | 60 | 4 | 775.2.ck.a | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
31.2.g.a | ✓ | 16 | 93.o | odd | 30 | 2 | |
279.2.y.c | 16 | 31.g | even | 15 | 2 | ||
496.2.bg.c | 16 | 372.bd | even | 30 | 2 | ||
775.2.bl.a | 16 | 465.bl | odd | 30 | 2 | ||
775.2.ck.a | 32 | 465.bt | even | 60 | 4 | ||
961.2.a.i | 8 | 3.b | odd | 2 | 1 | ||
961.2.a.j | 8 | 93.c | even | 2 | 1 | ||
961.2.c.i | 16 | 93.g | even | 6 | 2 | ||
961.2.c.j | 16 | 93.h | odd | 6 | 2 | ||
961.2.d.n | 16 | 93.k | even | 10 | 2 | ||
961.2.d.o | 16 | 93.l | odd | 10 | 2 | ||
961.2.d.p | 16 | 93.l | odd | 10 | 2 | ||
961.2.d.q | 16 | 93.k | even | 10 | 2 | ||
961.2.g.j | 16 | 93.p | even | 30 | 2 | ||
961.2.g.k | 16 | 93.o | odd | 30 | 2 | ||
961.2.g.l | 16 | 93.p | even | 30 | 2 | ||
961.2.g.m | 16 | 93.p | even | 30 | 2 | ||
961.2.g.n | 16 | 93.p | even | 30 | 2 | ||
961.2.g.s | 16 | 93.o | odd | 30 | 2 | ||
961.2.g.t | 16 | 93.o | odd | 30 | 2 | ||
8649.2.a.be | 8 | 31.b | odd | 2 | 1 | ||
8649.2.a.bf | 8 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|
|
|