Properties

Label 961.2.d.q
Level 961961
Weight 22
Character orbit 961.d
Analytic conductor 7.6747.674
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(374,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 961=312 961 = 31^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 961.d (of order 55, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.673623634257.67362363425
Analytic rank: 00
Dimension: 1616
Relative dimension: 44 over Q(ζ5)\Q(\zeta_{5})
Coefficient field: Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+19x14+140x12+511x10+979x8+956x6+410x4+44x2+1 x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 52 5^{2}
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: SU(2)[C5]\mathrm{SU}(2)[C_{5}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β14+β12+β11+1)q2+(β13β11β8++1)q3+(β15+2β11+β2)q4+(β15β14+2β3)q5++(β15β14+2β13++3)q99+O(q100) q + (\beta_{14} + \beta_{12} + \beta_{11} + 1) q^{2} + (\beta_{13} - \beta_{11} - \beta_{8} + \cdots + 1) q^{3} + (\beta_{15} + 2 \beta_{11} + \cdots - \beta_{2}) q^{4} + (\beta_{15} - \beta_{14} + \cdots - 2 \beta_{3}) q^{5}+ \cdots + (\beta_{15} - \beta_{14} + 2 \beta_{13} + \cdots + 3) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+4q2+6q3+6q4+6q5+22q69q78q810q96q104q11+5q129q1318q144q152q1617q1714q187q19+36q20++12q99+O(q100) 16 q + 4 q^{2} + 6 q^{3} + 6 q^{4} + 6 q^{5} + 22 q^{6} - 9 q^{7} - 8 q^{8} - 10 q^{9} - 6 q^{10} - 4 q^{11} + 5 q^{12} - 9 q^{13} - 18 q^{14} - 4 q^{15} - 2 q^{16} - 17 q^{17} - 14 q^{18} - 7 q^{19} + 36 q^{20}+ \cdots + 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x16+19x14+140x12+511x10+979x8+956x6+410x4+44x2+1 x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== (4ν1465ν12358ν10641ν8+691ν6+3382ν4+2839ν2+255)/93 ( -4\nu^{14} - 65\nu^{12} - 358\nu^{10} - 641\nu^{8} + 691\nu^{6} + 3382\nu^{4} + 2839\nu^{2} + 255 ) / 93 Copy content Toggle raw display
β2\beta_{2}== (15ν154ν14267ν1365ν121792ν11358ν105744ν9++162)/186 ( - 15 \nu^{15} - 4 \nu^{14} - 267 \nu^{13} - 65 \nu^{12} - 1792 \nu^{11} - 358 \nu^{10} - 5744 \nu^{9} + \cdots + 162 ) / 186 Copy content Toggle raw display
β3\beta_{3}== (13ν14+219ν12+1334ν10+3517ν8+3497ν633ν41035ν2+140)/93 ( 13\nu^{14} + 219\nu^{12} + 1334\nu^{10} + 3517\nu^{8} + 3497\nu^{6} - 33\nu^{4} - 1035\nu^{2} + 140 ) / 93 Copy content Toggle raw display
β4\beta_{4}== (13ν14219ν121334ν103517ν83497ν6+33ν4+1128ν2+46)/93 ( -13\nu^{14} - 219\nu^{12} - 1334\nu^{10} - 3517\nu^{8} - 3497\nu^{6} + 33\nu^{4} + 1128\nu^{2} + 46 ) / 93 Copy content Toggle raw display
β5\beta_{5}== (8ν15+32ν14192ν13+582ν121832ν11+4011ν108815ν9++99)/186 ( - 8 \nu^{15} + 32 \nu^{14} - 192 \nu^{13} + 582 \nu^{12} - 1832 \nu^{11} + 4011 \nu^{10} - 8815 \nu^{9} + \cdots + 99 ) / 186 Copy content Toggle raw display
β6\beta_{6}== (21ν15+43ν14380ν13+753ν122608ν11+4887ν108581ν9+52)/186 ( - 21 \nu^{15} + 43 \nu^{14} - 380 \nu^{13} + 753 \nu^{12} - 2608 \nu^{11} + 4887 \nu^{10} - 8581 \nu^{9} + \cdots - 52 ) / 186 Copy content Toggle raw display
β7\beta_{7}== (42ν15+49ν14791ν13+897ν125743ν11+6261ν10++573)/186 ( - 42 \nu^{15} + 49 \nu^{14} - 791 \nu^{13} + 897 \nu^{12} - 5743 \nu^{11} + 6261 \nu^{10} + \cdots + 573 ) / 186 Copy content Toggle raw display
β8\beta_{8}== (63ν15+34ν141140ν13+599ν127793ν11+3911ν10+168)/186 ( - 63 \nu^{15} + 34 \nu^{14} - 1140 \nu^{13} + 599 \nu^{12} - 7793 \nu^{11} + 3911 \nu^{10} + \cdots - 168 ) / 186 Copy content Toggle raw display
β9\beta_{9}== (50ν1525ν14+983ν13445ν12+7575ν112966ν10+29263ν9++36)/186 ( 50 \nu^{15} - 25 \nu^{14} + 983 \nu^{13} - 445 \nu^{12} + 7575 \nu^{11} - 2966 \nu^{10} + 29263 \nu^{9} + \cdots + 36 ) / 186 Copy content Toggle raw display
β10\beta_{10}== (28ν15+38ν14+517ν13+664ν12+3653ν11+4300ν10+12516ν9++11)/186 ( 28 \nu^{15} + 38 \nu^{14} + 517 \nu^{13} + 664 \nu^{12} + 3653 \nu^{11} + 4300 \nu^{10} + 12516 \nu^{9} + \cdots + 11 ) / 186 Copy content Toggle raw display
β11\beta_{11}== (50ν1525ν14983ν13445ν127575ν112966ν1029263ν9++36)/186 ( - 50 \nu^{15} - 25 \nu^{14} - 983 \nu^{13} - 445 \nu^{12} - 7575 \nu^{11} - 2966 \nu^{10} - 29263 \nu^{9} + \cdots + 36 ) / 186 Copy content Toggle raw display
β12\beta_{12}== (59ν15+25ν14+1106ν13+445ν12+7993ν11+2966ν10+28357ν9+129)/186 ( 59 \nu^{15} + 25 \nu^{14} + 1106 \nu^{13} + 445 \nu^{12} + 7993 \nu^{11} + 2966 \nu^{10} + 28357 \nu^{9} + \cdots - 129 ) / 186 Copy content Toggle raw display
β13\beta_{13}== (63ν1534ν141140ν13599ν127793ν113911ν10++168)/186 ( - 63 \nu^{15} - 34 \nu^{14} - 1140 \nu^{13} - 599 \nu^{12} - 7793 \nu^{11} - 3911 \nu^{10} + \cdots + 168 ) / 186 Copy content Toggle raw display
β14\beta_{14}== (124ν1523ν14+2325ν13397ν12+16802ν112508ν10+231)/186 ( 124 \nu^{15} - 23 \nu^{14} + 2325 \nu^{13} - 397 \nu^{12} + 16802 \nu^{11} - 2508 \nu^{10} + \cdots - 231 ) / 186 Copy content Toggle raw display
β15\beta_{15}== (124ν15+23ν14+2325ν13+397ν12+16802ν11+2508ν10++231)/186 ( 124 \nu^{15} + 23 \nu^{14} + 2325 \nu^{13} + 397 \nu^{12} + 16802 \nu^{11} + 2508 \nu^{10} + \cdots + 231 ) / 186 Copy content Toggle raw display
ν\nu== (2β15+2β14+3β13+β112β103β9β8++2)/5 ( 2 \beta_{15} + 2 \beta_{14} + 3 \beta_{13} + \beta_{11} - 2 \beta_{10} - 3 \beta_{9} - \beta_{8} + \cdots + 2 ) / 5 Copy content Toggle raw display
ν2\nu^{2}== β4+β32 \beta_{4} + \beta_{3} - 2 Copy content Toggle raw display
ν3\nu^{3}== (9β159β1411β13+12β12+4β10+13β9+7β8+2)/5 ( - 9 \beta_{15} - 9 \beta_{14} - 11 \beta_{13} + 12 \beta_{12} + 4 \beta_{10} + 13 \beta_{9} + 7 \beta_{8} + \cdots - 2 ) / 5 Copy content Toggle raw display
ν4\nu^{4}== β15β14+β13+β11+2β9β8+β7+β5++9 \beta_{15} - \beta_{14} + \beta_{13} + \beta_{11} + 2 \beta_{9} - \beta_{8} + \beta_{7} + \beta_{5} + \cdots + 9 Copy content Toggle raw display
ν5\nu^{5}== (42β15+42β14+53β1382β1211β1112β1060β9+5)/5 ( 42 \beta_{15} + 42 \beta_{14} + 53 \beta_{13} - 82 \beta_{12} - 11 \beta_{11} - 12 \beta_{10} - 60 \beta_{9} + \cdots - 5 ) / 5 Copy content Toggle raw display
ν6\nu^{6}== 8β15+8β1411β136β1115β9+11β89β7+50 - 8 \beta_{15} + 8 \beta_{14} - 11 \beta_{13} - 6 \beta_{11} - 15 \beta_{9} + 11 \beta_{8} - 9 \beta_{7} + \cdots - 50 Copy content Toggle raw display
ν7\nu^{7}== (203β15203β14272β13+500β12+111β11+68β10++97)/5 ( - 203 \beta_{15} - 203 \beta_{14} - 272 \beta_{13} + 500 \beta_{12} + 111 \beta_{11} + 68 \beta_{10} + \cdots + 97 ) / 5 Copy content Toggle raw display
ν8\nu^{8}== 56β1556β14+92β13+25β11+89β992β8+64β7++296 56 \beta_{15} - 56 \beta_{14} + 92 \beta_{13} + 25 \beta_{11} + 89 \beta_{9} - 92 \beta_{8} + 64 \beta_{7} + \cdots + 296 Copy content Toggle raw display
ν9\nu^{9}== (1016β15+1016β14+1439β133038β12915β11516β10+937)/5 ( 1016 \beta_{15} + 1016 \beta_{14} + 1439 \beta_{13} - 3038 \beta_{12} - 915 \beta_{11} - 516 \beta_{10} + \cdots - 937 ) / 5 Copy content Toggle raw display
ν10\nu^{10}== 385β15+385β14688β1372β11495β9+688β8+1792 - 385 \beta_{15} + 385 \beta_{14} - 688 \beta_{13} - 72 \beta_{11} - 495 \beta_{9} + 688 \beta_{8} + \cdots - 1792 Copy content Toggle raw display
ν11\nu^{11}== (5253β155253β147797β13+18688β12+6944β11++7585)/5 ( - 5253 \beta_{15} - 5253 \beta_{14} - 7797 \beta_{13} + 18688 \beta_{12} + 6944 \beta_{11} + \cdots + 7585 ) / 5 Copy content Toggle raw display
ν12\nu^{12}== 2624β152624β14+4853β139β11+2712β94853β8++10977 2624 \beta_{15} - 2624 \beta_{14} + 4853 \beta_{13} - 9 \beta_{11} + 2712 \beta_{9} - 4853 \beta_{8} + \cdots + 10977 Copy content Toggle raw display
ν13\nu^{13}== (27997β15+27997β14+43223β13116270β1250099β11+56363)/5 ( 27997 \beta_{15} + 27997 \beta_{14} + 43223 \beta_{13} - 116270 \beta_{12} - 50099 \beta_{11} + \cdots - 56363 ) / 5 Copy content Toggle raw display
ν14\nu^{14}== 17693β15+17693β1433083β13+2393β1114930β9+67810 - 17693 \beta_{15} + 17693 \beta_{14} - 33083 \beta_{13} + 2393 \beta_{11} - 14930 \beta_{9} + \cdots - 67810 Copy content Toggle raw display
ν15\nu^{15}== (153509β15153509β14244981β13+729212β12+349095β11++398363)/5 ( - 153509 \beta_{15} - 153509 \beta_{14} - 244981 \beta_{13} + 729212 \beta_{12} + 349095 \beta_{11} + \cdots + 398363 ) / 5 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/961Z)×\left(\mathbb{Z}/961\mathbb{Z}\right)^\times.

nn 33
χ(n)\chi(n) β9\beta_{9}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
374.1
0.333129i
0.176392i
2.16544i
1.14660i
0.333129i
0.176392i
2.16544i
1.14660i
1.83925i
2.52368i
1.03739i
1.42343i
1.83925i
2.52368i
1.03739i
1.42343i
−1.67638 1.21796i −1.73080 + 1.25750i 0.708788 + 2.18143i 2.34791 4.43308 −1.13550 3.49470i 0.188054 0.578772i 0.487319 1.49981i −3.93600 2.85967i
374.2 −0.996848 0.724253i 1.67869 1.21964i −0.148869 0.458173i −1.54562 −2.55673 −1.17543 3.61759i −0.944957 + 2.90828i 0.403428 1.24162i 1.54075 + 1.11942i
374.3 1.49685 + 1.08752i 0.403986 0.293513i 0.439812 + 1.35360i 1.20736 0.923909 1.15357 + 3.55033i 0.329747 1.01486i −0.849996 + 2.61602i 1.80724 + 1.31303i
374.4 2.17638 + 1.58123i 1.14813 0.834164i 1.61830 + 4.98062i 0.608384 3.81777 −0.533635 1.64236i −2.69088 + 8.28167i −0.304682 + 0.937716i 1.32408 + 0.961997i
388.1 −1.67638 + 1.21796i −1.73080 1.25750i 0.708788 2.18143i 2.34791 4.43308 −1.13550 + 3.49470i 0.188054 + 0.578772i 0.487319 + 1.49981i −3.93600 + 2.85967i
388.2 −0.996848 + 0.724253i 1.67869 + 1.21964i −0.148869 + 0.458173i −1.54562 −2.55673 −1.17543 + 3.61759i −0.944957 2.90828i 0.403428 + 1.24162i 1.54075 1.11942i
388.3 1.49685 1.08752i 0.403986 + 0.293513i 0.439812 1.35360i 1.20736 0.923909 1.15357 3.55033i 0.329747 + 1.01486i −0.849996 2.61602i 1.80724 1.31303i
388.4 2.17638 1.58123i 1.14813 + 0.834164i 1.61830 4.98062i 0.608384 3.81777 −0.533635 + 1.64236i −2.69088 8.28167i −0.304682 0.937716i 1.32408 0.961997i
531.1 −0.213065 0.655747i 0.278857 0.858234i 1.23343 0.896137i 3.70752 −0.622199 −0.617599 + 0.448712i −1.96606 1.42843i 1.76825 + 1.28471i −0.789942 2.43119i
531.2 0.108599 + 0.334232i 0.894076 2.75168i 1.51812 1.10298i 2.97323 1.01680 0.875458 0.636058i 1.10215 + 0.800755i −4.34534 3.15708i 0.322889 + 0.993749i
531.3 0.391401 + 1.20461i −0.458679 + 1.41167i 0.320145 0.232599i −3.80032 −1.88004 −1.77093 + 1.28666i 2.45490 + 1.78359i 0.644632 + 0.468353i −1.48745 4.57790i
531.4 0.713065 + 2.19459i 0.785745 2.41827i −2.68972 + 1.95420i −2.49846 5.86740 −1.29595 + 0.941560i −2.47295 1.79670i −2.80360 2.03694i −1.78156 5.48309i
628.1 −0.213065 + 0.655747i 0.278857 + 0.858234i 1.23343 + 0.896137i 3.70752 −0.622199 −0.617599 0.448712i −1.96606 + 1.42843i 1.76825 1.28471i −0.789942 + 2.43119i
628.2 0.108599 0.334232i 0.894076 + 2.75168i 1.51812 + 1.10298i 2.97323 1.01680 0.875458 + 0.636058i 1.10215 0.800755i −4.34534 + 3.15708i 0.322889 0.993749i
628.3 0.391401 1.20461i −0.458679 1.41167i 0.320145 + 0.232599i −3.80032 −1.88004 −1.77093 1.28666i 2.45490 1.78359i 0.644632 0.468353i −1.48745 + 4.57790i
628.4 0.713065 2.19459i 0.785745 + 2.41827i −2.68972 1.95420i −2.49846 5.86740 −1.29595 0.941560i −2.47295 + 1.79670i −2.80360 + 2.03694i −1.78156 + 5.48309i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 374.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.d even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 961.2.d.q 16
31.b odd 2 1 961.2.d.p 16
31.c even 3 1 961.2.g.m 16
31.c even 3 1 961.2.g.n 16
31.d even 5 1 961.2.a.j 8
31.d even 5 2 961.2.d.n 16
31.d even 5 1 inner 961.2.d.q 16
31.e odd 6 1 961.2.g.s 16
31.e odd 6 1 961.2.g.t 16
31.f odd 10 1 961.2.a.i 8
31.f odd 10 2 961.2.d.o 16
31.f odd 10 1 961.2.d.p 16
31.g even 15 2 961.2.c.i 16
31.g even 15 2 961.2.g.j 16
31.g even 15 2 961.2.g.l 16
31.g even 15 1 961.2.g.m 16
31.g even 15 1 961.2.g.n 16
31.h odd 30 2 31.2.g.a 16
31.h odd 30 2 961.2.c.j 16
31.h odd 30 2 961.2.g.k 16
31.h odd 30 1 961.2.g.s 16
31.h odd 30 1 961.2.g.t 16
93.k even 10 1 8649.2.a.bf 8
93.l odd 10 1 8649.2.a.be 8
93.p even 30 2 279.2.y.c 16
124.p even 30 2 496.2.bg.c 16
155.v odd 30 2 775.2.bl.a 16
155.x even 60 4 775.2.ck.a 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
31.2.g.a 16 31.h odd 30 2
279.2.y.c 16 93.p even 30 2
496.2.bg.c 16 124.p even 30 2
775.2.bl.a 16 155.v odd 30 2
775.2.ck.a 32 155.x even 60 4
961.2.a.i 8 31.f odd 10 1
961.2.a.j 8 31.d even 5 1
961.2.c.i 16 31.g even 15 2
961.2.c.j 16 31.h odd 30 2
961.2.d.n 16 31.d even 5 2
961.2.d.o 16 31.f odd 10 2
961.2.d.p 16 31.b odd 2 1
961.2.d.p 16 31.f odd 10 1
961.2.d.q 16 1.a even 1 1 trivial
961.2.d.q 16 31.d even 5 1 inner
961.2.g.j 16 31.g even 15 2
961.2.g.k 16 31.h odd 30 2
961.2.g.l 16 31.g even 15 2
961.2.g.m 16 31.c even 3 1
961.2.g.m 16 31.g even 15 1
961.2.g.n 16 31.c even 3 1
961.2.g.n 16 31.g even 15 1
961.2.g.s 16 31.e odd 6 1
961.2.g.s 16 31.h odd 30 1
961.2.g.t 16 31.e odd 6 1
961.2.g.t 16 31.h odd 30 1
8649.2.a.be 8 93.l odd 10 1
8649.2.a.bf 8 93.k even 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(961,[χ])S_{2}^{\mathrm{new}}(961, [\chi]):

T2164T215+9T2144T213+6T21222T211+221T210++81 T_{2}^{16} - 4 T_{2}^{15} + 9 T_{2}^{14} - 4 T_{2}^{13} + 6 T_{2}^{12} - 22 T_{2}^{11} + 221 T_{2}^{10} + \cdots + 81 Copy content Toggle raw display
T3166T315+29T31481T313+186T312333T311+721T310++961 T_{3}^{16} - 6 T_{3}^{15} + 29 T_{3}^{14} - 81 T_{3}^{13} + 186 T_{3}^{12} - 333 T_{3}^{11} + 721 T_{3}^{10} + \cdots + 961 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T164T15++81 T^{16} - 4 T^{15} + \cdots + 81 Copy content Toggle raw display
33 T166T15++961 T^{16} - 6 T^{15} + \cdots + 961 Copy content Toggle raw display
55 (T83T7+279)2 (T^{8} - 3 T^{7} + \cdots - 279)^{2} Copy content Toggle raw display
77 T16+9T15++68121 T^{16} + 9 T^{15} + \cdots + 68121 Copy content Toggle raw display
1111 T16+4T15++77841 T^{16} + 4 T^{15} + \cdots + 77841 Copy content Toggle raw display
1313 T16+9T15++77841 T^{16} + 9 T^{15} + \cdots + 77841 Copy content Toggle raw display
1717 T16+17T15++74805201 T^{16} + 17 T^{15} + \cdots + 74805201 Copy content Toggle raw display
1919 T16+7T15++361201 T^{16} + 7 T^{15} + \cdots + 361201 Copy content Toggle raw display
2323 T16+21T15++77841 T^{16} + 21 T^{15} + \cdots + 77841 Copy content Toggle raw display
2929 T16+26T15++77841 T^{16} + 26 T^{15} + \cdots + 77841 Copy content Toggle raw display
3131 T16 T^{16} Copy content Toggle raw display
3737 (T8+8T7+18569)2 (T^{8} + 8 T^{7} + \cdots - 18569)^{2} Copy content Toggle raw display
4141 T166T15++81 T^{16} - 6 T^{15} + \cdots + 81 Copy content Toggle raw display
4343 T1616T15++7612081 T^{16} - 16 T^{15} + \cdots + 7612081 Copy content Toggle raw display
4747 T16++3306365001 T^{16} + \cdots + 3306365001 Copy content Toggle raw display
5353 T16++366207732801 T^{16} + \cdots + 366207732801 Copy content Toggle raw display
5959 T16++167728401 T^{16} + \cdots + 167728401 Copy content Toggle raw display
6161 (T830T7++38161)2 (T^{8} - 30 T^{7} + \cdots + 38161)^{2} Copy content Toggle raw display
6767 (T8+13T7++86521)2 (T^{8} + 13 T^{7} + \cdots + 86521)^{2} Copy content Toggle raw display
7171 T16++214944921 T^{16} + \cdots + 214944921 Copy content Toggle raw display
7373 T16++17441907675201 T^{16} + \cdots + 17441907675201 Copy content Toggle raw display
7979 T16++84609661119201 T^{16} + \cdots + 84609661119201 Copy content Toggle raw display
8383 T16++1446653267361 T^{16} + \cdots + 1446653267361 Copy content Toggle raw display
8989 T16++117957215601 T^{16} + \cdots + 117957215601 Copy content Toggle raw display
9797 T16++7131992195241 T^{16} + \cdots + 7131992195241 Copy content Toggle raw display
show more
show less