Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [961,2,Mod(374,961)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(961, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([8]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("961.374");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 961.d (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 31) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
374.1 |
|
−1.67638 | − | 1.21796i | −1.73080 | + | 1.25750i | 0.708788 | + | 2.18143i | 2.34791 | 4.43308 | −1.13550 | − | 3.49470i | 0.188054 | − | 0.578772i | 0.487319 | − | 1.49981i | −3.93600 | − | 2.85967i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
374.2 | −0.996848 | − | 0.724253i | 1.67869 | − | 1.21964i | −0.148869 | − | 0.458173i | −1.54562 | −2.55673 | −1.17543 | − | 3.61759i | −0.944957 | + | 2.90828i | 0.403428 | − | 1.24162i | 1.54075 | + | 1.11942i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
374.3 | 1.49685 | + | 1.08752i | 0.403986 | − | 0.293513i | 0.439812 | + | 1.35360i | 1.20736 | 0.923909 | 1.15357 | + | 3.55033i | 0.329747 | − | 1.01486i | −0.849996 | + | 2.61602i | 1.80724 | + | 1.31303i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
374.4 | 2.17638 | + | 1.58123i | 1.14813 | − | 0.834164i | 1.61830 | + | 4.98062i | 0.608384 | 3.81777 | −0.533635 | − | 1.64236i | −2.69088 | + | 8.28167i | −0.304682 | + | 0.937716i | 1.32408 | + | 0.961997i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
388.1 | −1.67638 | + | 1.21796i | −1.73080 | − | 1.25750i | 0.708788 | − | 2.18143i | 2.34791 | 4.43308 | −1.13550 | + | 3.49470i | 0.188054 | + | 0.578772i | 0.487319 | + | 1.49981i | −3.93600 | + | 2.85967i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
388.2 | −0.996848 | + | 0.724253i | 1.67869 | + | 1.21964i | −0.148869 | + | 0.458173i | −1.54562 | −2.55673 | −1.17543 | + | 3.61759i | −0.944957 | − | 2.90828i | 0.403428 | + | 1.24162i | 1.54075 | − | 1.11942i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
388.3 | 1.49685 | − | 1.08752i | 0.403986 | + | 0.293513i | 0.439812 | − | 1.35360i | 1.20736 | 0.923909 | 1.15357 | − | 3.55033i | 0.329747 | + | 1.01486i | −0.849996 | − | 2.61602i | 1.80724 | − | 1.31303i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
388.4 | 2.17638 | − | 1.58123i | 1.14813 | + | 0.834164i | 1.61830 | − | 4.98062i | 0.608384 | 3.81777 | −0.533635 | + | 1.64236i | −2.69088 | − | 8.28167i | −0.304682 | − | 0.937716i | 1.32408 | − | 0.961997i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
531.1 | −0.213065 | − | 0.655747i | 0.278857 | − | 0.858234i | 1.23343 | − | 0.896137i | 3.70752 | −0.622199 | −0.617599 | + | 0.448712i | −1.96606 | − | 1.42843i | 1.76825 | + | 1.28471i | −0.789942 | − | 2.43119i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
531.2 | 0.108599 | + | 0.334232i | 0.894076 | − | 2.75168i | 1.51812 | − | 1.10298i | 2.97323 | 1.01680 | 0.875458 | − | 0.636058i | 1.10215 | + | 0.800755i | −4.34534 | − | 3.15708i | 0.322889 | + | 0.993749i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
531.3 | 0.391401 | + | 1.20461i | −0.458679 | + | 1.41167i | 0.320145 | − | 0.232599i | −3.80032 | −1.88004 | −1.77093 | + | 1.28666i | 2.45490 | + | 1.78359i | 0.644632 | + | 0.468353i | −1.48745 | − | 4.57790i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
531.4 | 0.713065 | + | 2.19459i | 0.785745 | − | 2.41827i | −2.68972 | + | 1.95420i | −2.49846 | 5.86740 | −1.29595 | + | 0.941560i | −2.47295 | − | 1.79670i | −2.80360 | − | 2.03694i | −1.78156 | − | 5.48309i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
628.1 | −0.213065 | + | 0.655747i | 0.278857 | + | 0.858234i | 1.23343 | + | 0.896137i | 3.70752 | −0.622199 | −0.617599 | − | 0.448712i | −1.96606 | + | 1.42843i | 1.76825 | − | 1.28471i | −0.789942 | + | 2.43119i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
628.2 | 0.108599 | − | 0.334232i | 0.894076 | + | 2.75168i | 1.51812 | + | 1.10298i | 2.97323 | 1.01680 | 0.875458 | + | 0.636058i | 1.10215 | − | 0.800755i | −4.34534 | + | 3.15708i | 0.322889 | − | 0.993749i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
628.3 | 0.391401 | − | 1.20461i | −0.458679 | − | 1.41167i | 0.320145 | + | 0.232599i | −3.80032 | −1.88004 | −1.77093 | − | 1.28666i | 2.45490 | − | 1.78359i | 0.644632 | − | 0.468353i | −1.48745 | + | 4.57790i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
628.4 | 0.713065 | − | 2.19459i | 0.785745 | + | 2.41827i | −2.68972 | − | 1.95420i | −2.49846 | 5.86740 | −1.29595 | − | 0.941560i | −2.47295 | + | 1.79670i | −2.80360 | + | 2.03694i | −1.78156 | + | 5.48309i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
31.d | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 961.2.d.q | 16 | |
31.b | odd | 2 | 1 | 961.2.d.p | 16 | ||
31.c | even | 3 | 1 | 961.2.g.m | 16 | ||
31.c | even | 3 | 1 | 961.2.g.n | 16 | ||
31.d | even | 5 | 1 | 961.2.a.j | 8 | ||
31.d | even | 5 | 2 | 961.2.d.n | 16 | ||
31.d | even | 5 | 1 | inner | 961.2.d.q | 16 | |
31.e | odd | 6 | 1 | 961.2.g.s | 16 | ||
31.e | odd | 6 | 1 | 961.2.g.t | 16 | ||
31.f | odd | 10 | 1 | 961.2.a.i | 8 | ||
31.f | odd | 10 | 2 | 961.2.d.o | 16 | ||
31.f | odd | 10 | 1 | 961.2.d.p | 16 | ||
31.g | even | 15 | 2 | 961.2.c.i | 16 | ||
31.g | even | 15 | 2 | 961.2.g.j | 16 | ||
31.g | even | 15 | 2 | 961.2.g.l | 16 | ||
31.g | even | 15 | 1 | 961.2.g.m | 16 | ||
31.g | even | 15 | 1 | 961.2.g.n | 16 | ||
31.h | odd | 30 | 2 | 31.2.g.a | ✓ | 16 | |
31.h | odd | 30 | 2 | 961.2.c.j | 16 | ||
31.h | odd | 30 | 2 | 961.2.g.k | 16 | ||
31.h | odd | 30 | 1 | 961.2.g.s | 16 | ||
31.h | odd | 30 | 1 | 961.2.g.t | 16 | ||
93.k | even | 10 | 1 | 8649.2.a.bf | 8 | ||
93.l | odd | 10 | 1 | 8649.2.a.be | 8 | ||
93.p | even | 30 | 2 | 279.2.y.c | 16 | ||
124.p | even | 30 | 2 | 496.2.bg.c | 16 | ||
155.v | odd | 30 | 2 | 775.2.bl.a | 16 | ||
155.x | even | 60 | 4 | 775.2.ck.a | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
31.2.g.a | ✓ | 16 | 31.h | odd | 30 | 2 | |
279.2.y.c | 16 | 93.p | even | 30 | 2 | ||
496.2.bg.c | 16 | 124.p | even | 30 | 2 | ||
775.2.bl.a | 16 | 155.v | odd | 30 | 2 | ||
775.2.ck.a | 32 | 155.x | even | 60 | 4 | ||
961.2.a.i | 8 | 31.f | odd | 10 | 1 | ||
961.2.a.j | 8 | 31.d | even | 5 | 1 | ||
961.2.c.i | 16 | 31.g | even | 15 | 2 | ||
961.2.c.j | 16 | 31.h | odd | 30 | 2 | ||
961.2.d.n | 16 | 31.d | even | 5 | 2 | ||
961.2.d.o | 16 | 31.f | odd | 10 | 2 | ||
961.2.d.p | 16 | 31.b | odd | 2 | 1 | ||
961.2.d.p | 16 | 31.f | odd | 10 | 1 | ||
961.2.d.q | 16 | 1.a | even | 1 | 1 | trivial | |
961.2.d.q | 16 | 31.d | even | 5 | 1 | inner | |
961.2.g.j | 16 | 31.g | even | 15 | 2 | ||
961.2.g.k | 16 | 31.h | odd | 30 | 2 | ||
961.2.g.l | 16 | 31.g | even | 15 | 2 | ||
961.2.g.m | 16 | 31.c | even | 3 | 1 | ||
961.2.g.m | 16 | 31.g | even | 15 | 1 | ||
961.2.g.n | 16 | 31.c | even | 3 | 1 | ||
961.2.g.n | 16 | 31.g | even | 15 | 1 | ||
961.2.g.s | 16 | 31.e | odd | 6 | 1 | ||
961.2.g.s | 16 | 31.h | odd | 30 | 1 | ||
961.2.g.t | 16 | 31.e | odd | 6 | 1 | ||
961.2.g.t | 16 | 31.h | odd | 30 | 1 | ||
8649.2.a.be | 8 | 93.l | odd | 10 | 1 | ||
8649.2.a.bf | 8 | 93.k | even | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|