L(s) = 1 | + (0.108 + 0.334i)2-s + (0.894 − 2.75i)3-s + (1.51 − 1.10i)4-s + 2.97·5-s + 1.01·6-s + (0.875 − 0.636i)7-s + (1.10 + 0.800i)8-s + (−4.34 − 3.15i)9-s + (0.322 + 0.993i)10-s + (−1.96 + 1.42i)11-s + (−1.67 − 5.16i)12-s + (−0.888 + 2.73i)13-s + (0.307 + 0.223i)14-s + (2.65 − 8.18i)15-s + (1.01 − 3.11i)16-s + (−1.47 − 1.07i)17-s + ⋯ |
L(s) = 1 | + (0.0767 + 0.236i)2-s + (0.516 − 1.58i)3-s + (0.759 − 0.551i)4-s + 1.32·5-s + 0.415·6-s + (0.330 − 0.240i)7-s + (0.389 + 0.283i)8-s + (−1.44 − 1.05i)9-s + (0.102 + 0.314i)10-s + (−0.593 + 0.430i)11-s + (−0.484 − 1.49i)12-s + (−0.246 + 0.757i)13-s + (0.0822 + 0.0597i)14-s + (0.686 − 2.11i)15-s + (0.252 − 0.778i)16-s + (−0.358 − 0.260i)17-s + ⋯ |
Λ(s)=(=(961s/2ΓC(s)L(s)(0.0525+0.998i)Λ(2−s)
Λ(s)=(=(961s/2ΓC(s+1/2)L(s)(0.0525+0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
961
= 312
|
Sign: |
0.0525+0.998i
|
Analytic conductor: |
7.67362 |
Root analytic conductor: |
2.77013 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ961(531,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 961, ( :1/2), 0.0525+0.998i)
|
Particular Values
L(1) |
≈ |
2.09090−1.98381i |
L(21) |
≈ |
2.09090−1.98381i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | 1+(−0.108−0.334i)T+(−1.61+1.17i)T2 |
| 3 | 1+(−0.894+2.75i)T+(−2.42−1.76i)T2 |
| 5 | 1−2.97T+5T2 |
| 7 | 1+(−0.875+0.636i)T+(2.16−6.65i)T2 |
| 11 | 1+(1.96−1.42i)T+(3.39−10.4i)T2 |
| 13 | 1+(0.888−2.73i)T+(−10.5−7.64i)T2 |
| 17 | 1+(1.47+1.07i)T+(5.25+16.1i)T2 |
| 19 | 1+(−0.654−2.01i)T+(−15.3+11.1i)T2 |
| 23 | 1+(0.357+0.259i)T+(7.10+21.8i)T2 |
| 29 | 1+(−0.976−3.00i)T+(−23.4+17.0i)T2 |
| 37 | 1+3.14T+37T2 |
| 41 | 1+(2.14+6.60i)T+(−33.1+24.0i)T2 |
| 43 | 1+(−2.59−8.00i)T+(−34.7+25.2i)T2 |
| 47 | 1+(2.46−7.57i)T+(−38.0−27.6i)T2 |
| 53 | 1+(4.02+2.92i)T+(16.3+50.4i)T2 |
| 59 | 1+(3.71−11.4i)T+(−47.7−34.6i)T2 |
| 61 | 1−14.4T+61T2 |
| 67 | 1+6.43T+67T2 |
| 71 | 1+(1.35+0.986i)T+(21.9+67.5i)T2 |
| 73 | 1+(−11.6+8.44i)T+(22.5−69.4i)T2 |
| 79 | 1+(2.78+2.02i)T+(24.4+75.1i)T2 |
| 83 | 1+(3.97+12.2i)T+(−67.1+48.7i)T2 |
| 89 | 1+(−1.82+1.32i)T+(27.5−84.6i)T2 |
| 97 | 1+(2.76−2.00i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.788528022391719532682922357013, −8.923309318994388018727684652505, −7.81720798681495547633333423788, −7.21371684579672912369741841978, −6.49102185483813093984910504024, −5.86609839464488134842289688759, −4.86118482612306172529209119203, −2.78748675614598189006727887749, −2.00500301367584241673982260448, −1.38627562616953782029989164842,
2.11976821574056237037964136279, 2.85392134828851024265920624489, 3.77522617796535347956926283481, 5.01082399486813927117271898153, 5.61622343285367379816707726238, 6.73161865030371105480980530527, 8.081903585794718121243328795347, 8.621265522573228413691956200452, 9.685744452522065943413719842000, 10.14614349009165218059312622003