L(s) = 1 | + (0.108 + 0.334i)2-s + (0.894 − 2.75i)3-s + (1.51 − 1.10i)4-s + 2.97·5-s + 1.01·6-s + (0.875 − 0.636i)7-s + (1.10 + 0.800i)8-s + (−4.34 − 3.15i)9-s + (0.322 + 0.993i)10-s + (−1.96 + 1.42i)11-s + (−1.67 − 5.16i)12-s + (−0.888 + 2.73i)13-s + (0.307 + 0.223i)14-s + (2.65 − 8.18i)15-s + (1.01 − 3.11i)16-s + (−1.47 − 1.07i)17-s + ⋯ |
L(s) = 1 | + (0.0767 + 0.236i)2-s + (0.516 − 1.58i)3-s + (0.759 − 0.551i)4-s + 1.32·5-s + 0.415·6-s + (0.330 − 0.240i)7-s + (0.389 + 0.283i)8-s + (−1.44 − 1.05i)9-s + (0.102 + 0.314i)10-s + (−0.593 + 0.430i)11-s + (−0.484 − 1.49i)12-s + (−0.246 + 0.757i)13-s + (0.0822 + 0.0597i)14-s + (0.686 − 2.11i)15-s + (0.252 − 0.778i)16-s + (−0.358 − 0.260i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0525 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0525 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.09090 - 1.98381i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.09090 - 1.98381i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + (-0.108 - 0.334i)T + (-1.61 + 1.17i)T^{2} \) |
| 3 | \( 1 + (-0.894 + 2.75i)T + (-2.42 - 1.76i)T^{2} \) |
| 5 | \( 1 - 2.97T + 5T^{2} \) |
| 7 | \( 1 + (-0.875 + 0.636i)T + (2.16 - 6.65i)T^{2} \) |
| 11 | \( 1 + (1.96 - 1.42i)T + (3.39 - 10.4i)T^{2} \) |
| 13 | \( 1 + (0.888 - 2.73i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (1.47 + 1.07i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.654 - 2.01i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + (0.357 + 0.259i)T + (7.10 + 21.8i)T^{2} \) |
| 29 | \( 1 + (-0.976 - 3.00i)T + (-23.4 + 17.0i)T^{2} \) |
| 37 | \( 1 + 3.14T + 37T^{2} \) |
| 41 | \( 1 + (2.14 + 6.60i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + (-2.59 - 8.00i)T + (-34.7 + 25.2i)T^{2} \) |
| 47 | \( 1 + (2.46 - 7.57i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (4.02 + 2.92i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (3.71 - 11.4i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 - 14.4T + 61T^{2} \) |
| 67 | \( 1 + 6.43T + 67T^{2} \) |
| 71 | \( 1 + (1.35 + 0.986i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-11.6 + 8.44i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (2.78 + 2.02i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (3.97 + 12.2i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + (-1.82 + 1.32i)T + (27.5 - 84.6i)T^{2} \) |
| 97 | \( 1 + (2.76 - 2.00i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.788528022391719532682922357013, −8.923309318994388018727684652505, −7.81720798681495547633333423788, −7.21371684579672912369741841978, −6.49102185483813093984910504024, −5.86609839464488134842289688759, −4.86118482612306172529209119203, −2.78748675614598189006727887749, −2.00500301367584241673982260448, −1.38627562616953782029989164842,
2.11976821574056237037964136279, 2.85392134828851024265920624489, 3.77522617796535347956926283481, 5.01082399486813927117271898153, 5.61622343285367379816707726238, 6.73161865030371105480980530527, 8.081903585794718121243328795347, 8.621265522573228413691956200452, 9.685744452522065943413719842000, 10.14614349009165218059312622003