Properties

Label 2-31e2-31.4-c1-0-54
Degree $2$
Conductor $961$
Sign $0.0525 + 0.998i$
Analytic cond. $7.67362$
Root an. cond. $2.77013$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.713 + 2.19i)2-s + (0.785 − 2.41i)3-s + (−2.68 + 1.95i)4-s − 2.49·5-s + 5.86·6-s + (−1.29 + 0.941i)7-s + (−2.47 − 1.79i)8-s + (−2.80 − 2.03i)9-s + (−1.78 − 5.48i)10-s + (0.593 − 0.431i)11-s + (2.61 + 8.03i)12-s + (0.585 − 1.80i)13-s + (−2.99 − 2.17i)14-s + (−1.96 + 6.04i)15-s + (0.124 − 0.384i)16-s + (−3.54 − 2.57i)17-s + ⋯
L(s)  = 1  + (0.504 + 1.55i)2-s + (0.453 − 1.39i)3-s + (−1.34 + 0.977i)4-s − 1.11·5-s + 2.39·6-s + (−0.489 + 0.355i)7-s + (−0.874 − 0.635i)8-s + (−0.934 − 0.678i)9-s + (−0.563 − 1.73i)10-s + (0.178 − 0.130i)11-s + (0.754 + 2.32i)12-s + (0.162 − 0.500i)13-s + (−0.799 − 0.580i)14-s + (−0.506 + 1.56i)15-s + (0.0312 − 0.0960i)16-s + (−0.859 − 0.624i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0525 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0525 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(961\)    =    \(31^{2}\)
Sign: $0.0525 + 0.998i$
Analytic conductor: \(7.67362\)
Root analytic conductor: \(2.77013\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{961} (531, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 961,\ (\ :1/2),\ 0.0525 + 0.998i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.459246 - 0.435724i\)
\(L(\frac12)\) \(\approx\) \(0.459246 - 0.435724i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 \)
good2 \( 1 + (-0.713 - 2.19i)T + (-1.61 + 1.17i)T^{2} \)
3 \( 1 + (-0.785 + 2.41i)T + (-2.42 - 1.76i)T^{2} \)
5 \( 1 + 2.49T + 5T^{2} \)
7 \( 1 + (1.29 - 0.941i)T + (2.16 - 6.65i)T^{2} \)
11 \( 1 + (-0.593 + 0.431i)T + (3.39 - 10.4i)T^{2} \)
13 \( 1 + (-0.585 + 1.80i)T + (-10.5 - 7.64i)T^{2} \)
17 \( 1 + (3.54 + 2.57i)T + (5.25 + 16.1i)T^{2} \)
19 \( 1 + (1.43 + 4.41i)T + (-15.3 + 11.1i)T^{2} \)
23 \( 1 + (5.75 + 4.18i)T + (7.10 + 21.8i)T^{2} \)
29 \( 1 + (-0.0398 - 0.122i)T + (-23.4 + 17.0i)T^{2} \)
37 \( 1 + 8.42T + 37T^{2} \)
41 \( 1 + (2.27 + 7.01i)T + (-33.1 + 24.0i)T^{2} \)
43 \( 1 + (0.0712 + 0.219i)T + (-34.7 + 25.2i)T^{2} \)
47 \( 1 + (2.48 - 7.64i)T + (-38.0 - 27.6i)T^{2} \)
53 \( 1 + (-4.63 - 3.37i)T + (16.3 + 50.4i)T^{2} \)
59 \( 1 + (-2.93 + 9.03i)T + (-47.7 - 34.6i)T^{2} \)
61 \( 1 - 7.84T + 61T^{2} \)
67 \( 1 - 4.82T + 67T^{2} \)
71 \( 1 + (-2.75 - 2.00i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (-2.17 + 1.58i)T + (22.5 - 69.4i)T^{2} \)
79 \( 1 + (-3.66 - 2.66i)T + (24.4 + 75.1i)T^{2} \)
83 \( 1 + (0.825 + 2.53i)T + (-67.1 + 48.7i)T^{2} \)
89 \( 1 + (1.78 - 1.29i)T + (27.5 - 84.6i)T^{2} \)
97 \( 1 + (9.94 - 7.22i)T + (29.9 - 92.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.214278659631135212738466375703, −8.355717273555426557634110307481, −8.060608385180809573751965049520, −7.00459827942929016065225042328, −6.79978139675404916506529760258, −5.84773245369507318811698496084, −4.68987384876542656475497323637, −3.66360441629272783302313001923, −2.38123932808696742197914133882, −0.22532914477825193375949485169, 1.91208460628878764704604611697, 3.34014365016814768715346224078, 3.94026901159330246134798621907, 4.16057375466177920836534053398, 5.32006687036229781196569747484, 6.79614673764623115066306538576, 8.139921516745580233114424646791, 8.882865385600584492259733813381, 9.928074349744737010386740928740, 10.13891932582356319978436239070

Graph of the $Z$-function along the critical line