Properties

Label 2-93e2-1.1-c1-0-205
Degree $2$
Conductor $8649$
Sign $1$
Analytic cond. $69.0626$
Root an. cond. $8.31039$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.618·2-s − 1.61·4-s + 2.61·5-s + 3·7-s − 2.23·8-s + 1.61·10-s + 0.763·11-s + 4.85·13-s + 1.85·14-s + 1.85·16-s − 0.236·17-s + 5·19-s − 4.23·20-s + 0.472·22-s + 5.47·23-s + 1.85·25-s + 3.00·26-s − 4.85·28-s + 8.61·29-s + 5.61·32-s − 0.145·34-s + 7.85·35-s + 0.236·37-s + 3.09·38-s − 5.85·40-s − 6.47·41-s − 4.61·43-s + ⋯
L(s)  = 1  + 0.437·2-s − 0.809·4-s + 1.17·5-s + 1.13·7-s − 0.790·8-s + 0.511·10-s + 0.230·11-s + 1.34·13-s + 0.495·14-s + 0.463·16-s − 0.0572·17-s + 1.14·19-s − 0.947·20-s + 0.100·22-s + 1.14·23-s + 0.370·25-s + 0.588·26-s − 0.917·28-s + 1.60·29-s + 0.993·32-s − 0.0250·34-s + 1.32·35-s + 0.0388·37-s + 0.501·38-s − 0.925·40-s − 1.01·41-s − 0.704·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8649 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8649 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8649\)    =    \(3^{2} \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(69.0626\)
Root analytic conductor: \(8.31039\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8649,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.762248334\)
\(L(\frac12)\) \(\approx\) \(3.762248334\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
31 \( 1 \)
good2 \( 1 - 0.618T + 2T^{2} \)
5 \( 1 - 2.61T + 5T^{2} \)
7 \( 1 - 3T + 7T^{2} \)
11 \( 1 - 0.763T + 11T^{2} \)
13 \( 1 - 4.85T + 13T^{2} \)
17 \( 1 + 0.236T + 17T^{2} \)
19 \( 1 - 5T + 19T^{2} \)
23 \( 1 - 5.47T + 23T^{2} \)
29 \( 1 - 8.61T + 29T^{2} \)
37 \( 1 - 0.236T + 37T^{2} \)
41 \( 1 + 6.47T + 41T^{2} \)
43 \( 1 + 4.61T + 43T^{2} \)
47 \( 1 - 3.38T + 47T^{2} \)
53 \( 1 - 12.7T + 53T^{2} \)
59 \( 1 + 9.47T + 59T^{2} \)
61 \( 1 + 6.94T + 61T^{2} \)
67 \( 1 + 4.23T + 67T^{2} \)
71 \( 1 + 0.0901T + 71T^{2} \)
73 \( 1 + 8.56T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 4.09T + 83T^{2} \)
89 \( 1 - 6.38T + 89T^{2} \)
97 \( 1 + 5.29T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.924259286070155661360703687216, −6.93557529148765512587656196269, −6.17190875026419003414481329808, −5.58650080961782350111947535772, −5.01392599008245585185330465269, −4.45385253036367007764708372240, −3.50246521746916502767250162303, −2.78120328883169566648269881702, −1.55272497947463218213950297901, −1.02688990296808773455271997397, 1.02688990296808773455271997397, 1.55272497947463218213950297901, 2.78120328883169566648269881702, 3.50246521746916502767250162303, 4.45385253036367007764708372240, 5.01392599008245585185330465269, 5.58650080961782350111947535772, 6.17190875026419003414481329808, 6.93557529148765512587656196269, 7.924259286070155661360703687216

Graph of the $Z$-function along the critical line