Properties

Label 8649.2.a.g.1.2
Level $8649$
Weight $2$
Character 8649.1
Self dual yes
Analytic conductor $69.063$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8649,2,Mod(1,8649)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8649, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8649.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8649 = 3^{2} \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8649.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.0626127082\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 8649.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.618034 q^{2} -1.61803 q^{4} +2.61803 q^{5} +3.00000 q^{7} -2.23607 q^{8} +1.61803 q^{10} +0.763932 q^{11} +4.85410 q^{13} +1.85410 q^{14} +1.85410 q^{16} -0.236068 q^{17} +5.00000 q^{19} -4.23607 q^{20} +0.472136 q^{22} +5.47214 q^{23} +1.85410 q^{25} +3.00000 q^{26} -4.85410 q^{28} +8.61803 q^{29} +5.61803 q^{32} -0.145898 q^{34} +7.85410 q^{35} +0.236068 q^{37} +3.09017 q^{38} -5.85410 q^{40} -6.47214 q^{41} -4.61803 q^{43} -1.23607 q^{44} +3.38197 q^{46} +3.38197 q^{47} +2.00000 q^{49} +1.14590 q^{50} -7.85410 q^{52} +12.7082 q^{53} +2.00000 q^{55} -6.70820 q^{56} +5.32624 q^{58} -9.47214 q^{59} -6.94427 q^{61} -0.236068 q^{64} +12.7082 q^{65} -4.23607 q^{67} +0.381966 q^{68} +4.85410 q^{70} -0.0901699 q^{71} -8.56231 q^{73} +0.145898 q^{74} -8.09017 q^{76} +2.29180 q^{77} +4.85410 q^{80} -4.00000 q^{82} +4.09017 q^{83} -0.618034 q^{85} -2.85410 q^{86} -1.70820 q^{88} +6.38197 q^{89} +14.5623 q^{91} -8.85410 q^{92} +2.09017 q^{94} +13.0902 q^{95} -5.29180 q^{97} +1.23607 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} + 3 q^{5} + 6 q^{7} + q^{10} + 6 q^{11} + 3 q^{13} - 3 q^{14} - 3 q^{16} + 4 q^{17} + 10 q^{19} - 4 q^{20} - 8 q^{22} + 2 q^{23} - 3 q^{25} + 6 q^{26} - 3 q^{28} + 15 q^{29} + 9 q^{32}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.618034 0.437016 0.218508 0.975835i \(-0.429881\pi\)
0.218508 + 0.975835i \(0.429881\pi\)
\(3\) 0 0
\(4\) −1.61803 −0.809017
\(5\) 2.61803 1.17082 0.585410 0.810737i \(-0.300933\pi\)
0.585410 + 0.810737i \(0.300933\pi\)
\(6\) 0 0
\(7\) 3.00000 1.13389 0.566947 0.823754i \(-0.308125\pi\)
0.566947 + 0.823754i \(0.308125\pi\)
\(8\) −2.23607 −0.790569
\(9\) 0 0
\(10\) 1.61803 0.511667
\(11\) 0.763932 0.230334 0.115167 0.993346i \(-0.463260\pi\)
0.115167 + 0.993346i \(0.463260\pi\)
\(12\) 0 0
\(13\) 4.85410 1.34629 0.673143 0.739512i \(-0.264944\pi\)
0.673143 + 0.739512i \(0.264944\pi\)
\(14\) 1.85410 0.495530
\(15\) 0 0
\(16\) 1.85410 0.463525
\(17\) −0.236068 −0.0572549 −0.0286274 0.999590i \(-0.509114\pi\)
−0.0286274 + 0.999590i \(0.509114\pi\)
\(18\) 0 0
\(19\) 5.00000 1.14708 0.573539 0.819178i \(-0.305570\pi\)
0.573539 + 0.819178i \(0.305570\pi\)
\(20\) −4.23607 −0.947214
\(21\) 0 0
\(22\) 0.472136 0.100660
\(23\) 5.47214 1.14102 0.570510 0.821291i \(-0.306746\pi\)
0.570510 + 0.821291i \(0.306746\pi\)
\(24\) 0 0
\(25\) 1.85410 0.370820
\(26\) 3.00000 0.588348
\(27\) 0 0
\(28\) −4.85410 −0.917339
\(29\) 8.61803 1.60033 0.800164 0.599781i \(-0.204746\pi\)
0.800164 + 0.599781i \(0.204746\pi\)
\(30\) 0 0
\(31\) 0 0
\(32\) 5.61803 0.993137
\(33\) 0 0
\(34\) −0.145898 −0.0250213
\(35\) 7.85410 1.32759
\(36\) 0 0
\(37\) 0.236068 0.0388093 0.0194047 0.999812i \(-0.493823\pi\)
0.0194047 + 0.999812i \(0.493823\pi\)
\(38\) 3.09017 0.501292
\(39\) 0 0
\(40\) −5.85410 −0.925615
\(41\) −6.47214 −1.01078 −0.505389 0.862892i \(-0.668651\pi\)
−0.505389 + 0.862892i \(0.668651\pi\)
\(42\) 0 0
\(43\) −4.61803 −0.704244 −0.352122 0.935954i \(-0.614540\pi\)
−0.352122 + 0.935954i \(0.614540\pi\)
\(44\) −1.23607 −0.186344
\(45\) 0 0
\(46\) 3.38197 0.498644
\(47\) 3.38197 0.493310 0.246655 0.969103i \(-0.420668\pi\)
0.246655 + 0.969103i \(0.420668\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 1.14590 0.162054
\(51\) 0 0
\(52\) −7.85410 −1.08917
\(53\) 12.7082 1.74561 0.872803 0.488073i \(-0.162300\pi\)
0.872803 + 0.488073i \(0.162300\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) −6.70820 −0.896421
\(57\) 0 0
\(58\) 5.32624 0.699369
\(59\) −9.47214 −1.23317 −0.616584 0.787289i \(-0.711484\pi\)
−0.616584 + 0.787289i \(0.711484\pi\)
\(60\) 0 0
\(61\) −6.94427 −0.889123 −0.444561 0.895748i \(-0.646640\pi\)
−0.444561 + 0.895748i \(0.646640\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.236068 −0.0295085
\(65\) 12.7082 1.57626
\(66\) 0 0
\(67\) −4.23607 −0.517518 −0.258759 0.965942i \(-0.583314\pi\)
−0.258759 + 0.965942i \(0.583314\pi\)
\(68\) 0.381966 0.0463202
\(69\) 0 0
\(70\) 4.85410 0.580176
\(71\) −0.0901699 −0.0107012 −0.00535060 0.999986i \(-0.501703\pi\)
−0.00535060 + 0.999986i \(0.501703\pi\)
\(72\) 0 0
\(73\) −8.56231 −1.00214 −0.501071 0.865406i \(-0.667060\pi\)
−0.501071 + 0.865406i \(0.667060\pi\)
\(74\) 0.145898 0.0169603
\(75\) 0 0
\(76\) −8.09017 −0.928006
\(77\) 2.29180 0.261174
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 4.85410 0.542705
\(81\) 0 0
\(82\) −4.00000 −0.441726
\(83\) 4.09017 0.448954 0.224477 0.974479i \(-0.427933\pi\)
0.224477 + 0.974479i \(0.427933\pi\)
\(84\) 0 0
\(85\) −0.618034 −0.0670352
\(86\) −2.85410 −0.307766
\(87\) 0 0
\(88\) −1.70820 −0.182095
\(89\) 6.38197 0.676487 0.338244 0.941059i \(-0.390167\pi\)
0.338244 + 0.941059i \(0.390167\pi\)
\(90\) 0 0
\(91\) 14.5623 1.52654
\(92\) −8.85410 −0.923104
\(93\) 0 0
\(94\) 2.09017 0.215585
\(95\) 13.0902 1.34302
\(96\) 0 0
\(97\) −5.29180 −0.537300 −0.268650 0.963238i \(-0.586578\pi\)
−0.268650 + 0.963238i \(0.586578\pi\)
\(98\) 1.23607 0.124862
\(99\) 0 0
\(100\) −3.00000 −0.300000
\(101\) −4.76393 −0.474029 −0.237014 0.971506i \(-0.576169\pi\)
−0.237014 + 0.971506i \(0.576169\pi\)
\(102\) 0 0
\(103\) −0.145898 −0.0143758 −0.00718788 0.999974i \(-0.502288\pi\)
−0.00718788 + 0.999974i \(0.502288\pi\)
\(104\) −10.8541 −1.06433
\(105\) 0 0
\(106\) 7.85410 0.762858
\(107\) −1.09017 −0.105391 −0.0526954 0.998611i \(-0.516781\pi\)
−0.0526954 + 0.998611i \(0.516781\pi\)
\(108\) 0 0
\(109\) −8.41641 −0.806146 −0.403073 0.915168i \(-0.632058\pi\)
−0.403073 + 0.915168i \(0.632058\pi\)
\(110\) 1.23607 0.117854
\(111\) 0 0
\(112\) 5.56231 0.525589
\(113\) 1.85410 0.174419 0.0872096 0.996190i \(-0.472205\pi\)
0.0872096 + 0.996190i \(0.472205\pi\)
\(114\) 0 0
\(115\) 14.3262 1.33593
\(116\) −13.9443 −1.29469
\(117\) 0 0
\(118\) −5.85410 −0.538914
\(119\) −0.708204 −0.0649209
\(120\) 0 0
\(121\) −10.4164 −0.946946
\(122\) −4.29180 −0.388561
\(123\) 0 0
\(124\) 0 0
\(125\) −8.23607 −0.736656
\(126\) 0 0
\(127\) 10.2361 0.908304 0.454152 0.890924i \(-0.349942\pi\)
0.454152 + 0.890924i \(0.349942\pi\)
\(128\) −11.3820 −1.00603
\(129\) 0 0
\(130\) 7.85410 0.688850
\(131\) −0.0901699 −0.00787818 −0.00393909 0.999992i \(-0.501254\pi\)
−0.00393909 + 0.999992i \(0.501254\pi\)
\(132\) 0 0
\(133\) 15.0000 1.30066
\(134\) −2.61803 −0.226164
\(135\) 0 0
\(136\) 0.527864 0.0452640
\(137\) 6.47214 0.552952 0.276476 0.961021i \(-0.410833\pi\)
0.276476 + 0.961021i \(0.410833\pi\)
\(138\) 0 0
\(139\) 5.85410 0.496538 0.248269 0.968691i \(-0.420138\pi\)
0.248269 + 0.968691i \(0.420138\pi\)
\(140\) −12.7082 −1.07404
\(141\) 0 0
\(142\) −0.0557281 −0.00467660
\(143\) 3.70820 0.310096
\(144\) 0 0
\(145\) 22.5623 1.87370
\(146\) −5.29180 −0.437952
\(147\) 0 0
\(148\) −0.381966 −0.0313974
\(149\) 17.0344 1.39552 0.697758 0.716334i \(-0.254181\pi\)
0.697758 + 0.716334i \(0.254181\pi\)
\(150\) 0 0
\(151\) −19.5066 −1.58742 −0.793711 0.608295i \(-0.791854\pi\)
−0.793711 + 0.608295i \(0.791854\pi\)
\(152\) −11.1803 −0.906845
\(153\) 0 0
\(154\) 1.41641 0.114137
\(155\) 0 0
\(156\) 0 0
\(157\) 9.70820 0.774799 0.387400 0.921912i \(-0.373373\pi\)
0.387400 + 0.921912i \(0.373373\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 14.7082 1.16279
\(161\) 16.4164 1.29379
\(162\) 0 0
\(163\) −12.7082 −0.995383 −0.497692 0.867354i \(-0.665819\pi\)
−0.497692 + 0.867354i \(0.665819\pi\)
\(164\) 10.4721 0.817736
\(165\) 0 0
\(166\) 2.52786 0.196200
\(167\) 9.23607 0.714708 0.357354 0.933969i \(-0.383679\pi\)
0.357354 + 0.933969i \(0.383679\pi\)
\(168\) 0 0
\(169\) 10.5623 0.812485
\(170\) −0.381966 −0.0292955
\(171\) 0 0
\(172\) 7.47214 0.569745
\(173\) −0.909830 −0.0691731 −0.0345865 0.999402i \(-0.511011\pi\)
−0.0345865 + 0.999402i \(0.511011\pi\)
\(174\) 0 0
\(175\) 5.56231 0.420471
\(176\) 1.41641 0.106766
\(177\) 0 0
\(178\) 3.94427 0.295636
\(179\) −19.7984 −1.47980 −0.739900 0.672717i \(-0.765127\pi\)
−0.739900 + 0.672717i \(0.765127\pi\)
\(180\) 0 0
\(181\) 17.0000 1.26360 0.631800 0.775131i \(-0.282316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(182\) 9.00000 0.667124
\(183\) 0 0
\(184\) −12.2361 −0.902055
\(185\) 0.618034 0.0454388
\(186\) 0 0
\(187\) −0.180340 −0.0131878
\(188\) −5.47214 −0.399097
\(189\) 0 0
\(190\) 8.09017 0.586923
\(191\) 16.0902 1.16424 0.582122 0.813102i \(-0.302223\pi\)
0.582122 + 0.813102i \(0.302223\pi\)
\(192\) 0 0
\(193\) −2.38197 −0.171458 −0.0857288 0.996319i \(-0.527322\pi\)
−0.0857288 + 0.996319i \(0.527322\pi\)
\(194\) −3.27051 −0.234809
\(195\) 0 0
\(196\) −3.23607 −0.231148
\(197\) −16.4164 −1.16962 −0.584810 0.811170i \(-0.698831\pi\)
−0.584810 + 0.811170i \(0.698831\pi\)
\(198\) 0 0
\(199\) −26.7082 −1.89329 −0.946647 0.322272i \(-0.895554\pi\)
−0.946647 + 0.322272i \(0.895554\pi\)
\(200\) −4.14590 −0.293159
\(201\) 0 0
\(202\) −2.94427 −0.207158
\(203\) 25.8541 1.81460
\(204\) 0 0
\(205\) −16.9443 −1.18344
\(206\) −0.0901699 −0.00628244
\(207\) 0 0
\(208\) 9.00000 0.624038
\(209\) 3.81966 0.264211
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) −20.5623 −1.41222
\(213\) 0 0
\(214\) −0.673762 −0.0460574
\(215\) −12.0902 −0.824543
\(216\) 0 0
\(217\) 0 0
\(218\) −5.20163 −0.352299
\(219\) 0 0
\(220\) −3.23607 −0.218176
\(221\) −1.14590 −0.0770814
\(222\) 0 0
\(223\) 0.708204 0.0474248 0.0237124 0.999719i \(-0.492451\pi\)
0.0237124 + 0.999719i \(0.492451\pi\)
\(224\) 16.8541 1.12611
\(225\) 0 0
\(226\) 1.14590 0.0762240
\(227\) 20.7426 1.37674 0.688369 0.725361i \(-0.258327\pi\)
0.688369 + 0.725361i \(0.258327\pi\)
\(228\) 0 0
\(229\) −7.23607 −0.478173 −0.239086 0.970998i \(-0.576848\pi\)
−0.239086 + 0.970998i \(0.576848\pi\)
\(230\) 8.85410 0.583822
\(231\) 0 0
\(232\) −19.2705 −1.26517
\(233\) −18.7984 −1.23152 −0.615761 0.787933i \(-0.711151\pi\)
−0.615761 + 0.787933i \(0.711151\pi\)
\(234\) 0 0
\(235\) 8.85410 0.577578
\(236\) 15.3262 0.997653
\(237\) 0 0
\(238\) −0.437694 −0.0283715
\(239\) 13.4164 0.867835 0.433918 0.900953i \(-0.357131\pi\)
0.433918 + 0.900953i \(0.357131\pi\)
\(240\) 0 0
\(241\) −8.52786 −0.549328 −0.274664 0.961540i \(-0.588567\pi\)
−0.274664 + 0.961540i \(0.588567\pi\)
\(242\) −6.43769 −0.413831
\(243\) 0 0
\(244\) 11.2361 0.719316
\(245\) 5.23607 0.334520
\(246\) 0 0
\(247\) 24.2705 1.54430
\(248\) 0 0
\(249\) 0 0
\(250\) −5.09017 −0.321931
\(251\) −0.944272 −0.0596019 −0.0298010 0.999556i \(-0.509487\pi\)
−0.0298010 + 0.999556i \(0.509487\pi\)
\(252\) 0 0
\(253\) 4.18034 0.262816
\(254\) 6.32624 0.396943
\(255\) 0 0
\(256\) −6.56231 −0.410144
\(257\) −1.41641 −0.0883531 −0.0441765 0.999024i \(-0.514066\pi\)
−0.0441765 + 0.999024i \(0.514066\pi\)
\(258\) 0 0
\(259\) 0.708204 0.0440057
\(260\) −20.5623 −1.27522
\(261\) 0 0
\(262\) −0.0557281 −0.00344289
\(263\) 10.7984 0.665856 0.332928 0.942952i \(-0.391963\pi\)
0.332928 + 0.942952i \(0.391963\pi\)
\(264\) 0 0
\(265\) 33.2705 2.04379
\(266\) 9.27051 0.568411
\(267\) 0 0
\(268\) 6.85410 0.418681
\(269\) 1.38197 0.0842600 0.0421300 0.999112i \(-0.486586\pi\)
0.0421300 + 0.999112i \(0.486586\pi\)
\(270\) 0 0
\(271\) 9.56231 0.580869 0.290434 0.956895i \(-0.406200\pi\)
0.290434 + 0.956895i \(0.406200\pi\)
\(272\) −0.437694 −0.0265391
\(273\) 0 0
\(274\) 4.00000 0.241649
\(275\) 1.41641 0.0854126
\(276\) 0 0
\(277\) 13.3262 0.800696 0.400348 0.916363i \(-0.368889\pi\)
0.400348 + 0.916363i \(0.368889\pi\)
\(278\) 3.61803 0.216995
\(279\) 0 0
\(280\) −17.5623 −1.04955
\(281\) −19.0344 −1.13550 −0.567750 0.823201i \(-0.692186\pi\)
−0.567750 + 0.823201i \(0.692186\pi\)
\(282\) 0 0
\(283\) 6.56231 0.390089 0.195044 0.980794i \(-0.437515\pi\)
0.195044 + 0.980794i \(0.437515\pi\)
\(284\) 0.145898 0.00865746
\(285\) 0 0
\(286\) 2.29180 0.135517
\(287\) −19.4164 −1.14611
\(288\) 0 0
\(289\) −16.9443 −0.996722
\(290\) 13.9443 0.818836
\(291\) 0 0
\(292\) 13.8541 0.810750
\(293\) 8.23607 0.481156 0.240578 0.970630i \(-0.422663\pi\)
0.240578 + 0.970630i \(0.422663\pi\)
\(294\) 0 0
\(295\) −24.7984 −1.44382
\(296\) −0.527864 −0.0306815
\(297\) 0 0
\(298\) 10.5279 0.609863
\(299\) 26.5623 1.53614
\(300\) 0 0
\(301\) −13.8541 −0.798537
\(302\) −12.0557 −0.693729
\(303\) 0 0
\(304\) 9.27051 0.531700
\(305\) −18.1803 −1.04100
\(306\) 0 0
\(307\) 6.09017 0.347584 0.173792 0.984782i \(-0.444398\pi\)
0.173792 + 0.984782i \(0.444398\pi\)
\(308\) −3.70820 −0.211295
\(309\) 0 0
\(310\) 0 0
\(311\) −16.4721 −0.934049 −0.467025 0.884244i \(-0.654674\pi\)
−0.467025 + 0.884244i \(0.654674\pi\)
\(312\) 0 0
\(313\) 1.23607 0.0698667 0.0349333 0.999390i \(-0.488878\pi\)
0.0349333 + 0.999390i \(0.488878\pi\)
\(314\) 6.00000 0.338600
\(315\) 0 0
\(316\) 0 0
\(317\) −25.8885 −1.45405 −0.727023 0.686613i \(-0.759097\pi\)
−0.727023 + 0.686613i \(0.759097\pi\)
\(318\) 0 0
\(319\) 6.58359 0.368610
\(320\) −0.618034 −0.0345492
\(321\) 0 0
\(322\) 10.1459 0.565409
\(323\) −1.18034 −0.0656759
\(324\) 0 0
\(325\) 9.00000 0.499230
\(326\) −7.85410 −0.434998
\(327\) 0 0
\(328\) 14.4721 0.799090
\(329\) 10.1459 0.559361
\(330\) 0 0
\(331\) 11.2705 0.619483 0.309742 0.950821i \(-0.399757\pi\)
0.309742 + 0.950821i \(0.399757\pi\)
\(332\) −6.61803 −0.363212
\(333\) 0 0
\(334\) 5.70820 0.312339
\(335\) −11.0902 −0.605921
\(336\) 0 0
\(337\) 18.9787 1.03384 0.516918 0.856035i \(-0.327079\pi\)
0.516918 + 0.856035i \(0.327079\pi\)
\(338\) 6.52786 0.355069
\(339\) 0 0
\(340\) 1.00000 0.0542326
\(341\) 0 0
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) 10.3262 0.556753
\(345\) 0 0
\(346\) −0.562306 −0.0302298
\(347\) −8.12461 −0.436152 −0.218076 0.975932i \(-0.569978\pi\)
−0.218076 + 0.975932i \(0.569978\pi\)
\(348\) 0 0
\(349\) −16.7082 −0.894370 −0.447185 0.894442i \(-0.647573\pi\)
−0.447185 + 0.894442i \(0.647573\pi\)
\(350\) 3.43769 0.183752
\(351\) 0 0
\(352\) 4.29180 0.228753
\(353\) 32.3820 1.72352 0.861759 0.507318i \(-0.169363\pi\)
0.861759 + 0.507318i \(0.169363\pi\)
\(354\) 0 0
\(355\) −0.236068 −0.0125292
\(356\) −10.3262 −0.547290
\(357\) 0 0
\(358\) −12.2361 −0.646696
\(359\) 25.3262 1.33667 0.668334 0.743861i \(-0.267008\pi\)
0.668334 + 0.743861i \(0.267008\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 10.5066 0.552213
\(363\) 0 0
\(364\) −23.5623 −1.23500
\(365\) −22.4164 −1.17333
\(366\) 0 0
\(367\) −36.2705 −1.89331 −0.946653 0.322256i \(-0.895559\pi\)
−0.946653 + 0.322256i \(0.895559\pi\)
\(368\) 10.1459 0.528891
\(369\) 0 0
\(370\) 0.381966 0.0198575
\(371\) 38.1246 1.97933
\(372\) 0 0
\(373\) −0.347524 −0.0179941 −0.00899706 0.999960i \(-0.502864\pi\)
−0.00899706 + 0.999960i \(0.502864\pi\)
\(374\) −0.111456 −0.00576326
\(375\) 0 0
\(376\) −7.56231 −0.389996
\(377\) 41.8328 2.15450
\(378\) 0 0
\(379\) −18.4164 −0.945987 −0.472994 0.881066i \(-0.656827\pi\)
−0.472994 + 0.881066i \(0.656827\pi\)
\(380\) −21.1803 −1.08653
\(381\) 0 0
\(382\) 9.94427 0.508793
\(383\) 16.8541 0.861204 0.430602 0.902542i \(-0.358301\pi\)
0.430602 + 0.902542i \(0.358301\pi\)
\(384\) 0 0
\(385\) 6.00000 0.305788
\(386\) −1.47214 −0.0749297
\(387\) 0 0
\(388\) 8.56231 0.434685
\(389\) 29.0689 1.47385 0.736925 0.675974i \(-0.236277\pi\)
0.736925 + 0.675974i \(0.236277\pi\)
\(390\) 0 0
\(391\) −1.29180 −0.0653289
\(392\) −4.47214 −0.225877
\(393\) 0 0
\(394\) −10.1459 −0.511143
\(395\) 0 0
\(396\) 0 0
\(397\) 16.2918 0.817662 0.408831 0.912610i \(-0.365937\pi\)
0.408831 + 0.912610i \(0.365937\pi\)
\(398\) −16.5066 −0.827400
\(399\) 0 0
\(400\) 3.43769 0.171885
\(401\) 29.8328 1.48978 0.744890 0.667187i \(-0.232502\pi\)
0.744890 + 0.667187i \(0.232502\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 7.70820 0.383497
\(405\) 0 0
\(406\) 15.9787 0.793010
\(407\) 0.180340 0.00893912
\(408\) 0 0
\(409\) −6.18034 −0.305598 −0.152799 0.988257i \(-0.548829\pi\)
−0.152799 + 0.988257i \(0.548829\pi\)
\(410\) −10.4721 −0.517182
\(411\) 0 0
\(412\) 0.236068 0.0116302
\(413\) −28.4164 −1.39828
\(414\) 0 0
\(415\) 10.7082 0.525645
\(416\) 27.2705 1.33705
\(417\) 0 0
\(418\) 2.36068 0.115465
\(419\) −4.47214 −0.218478 −0.109239 0.994016i \(-0.534841\pi\)
−0.109239 + 0.994016i \(0.534841\pi\)
\(420\) 0 0
\(421\) 14.7639 0.719550 0.359775 0.933039i \(-0.382853\pi\)
0.359775 + 0.933039i \(0.382853\pi\)
\(422\) −4.94427 −0.240683
\(423\) 0 0
\(424\) −28.4164 −1.38002
\(425\) −0.437694 −0.0212313
\(426\) 0 0
\(427\) −20.8328 −1.00817
\(428\) 1.76393 0.0852629
\(429\) 0 0
\(430\) −7.47214 −0.360338
\(431\) −29.2361 −1.40825 −0.704126 0.710075i \(-0.748661\pi\)
−0.704126 + 0.710075i \(0.748661\pi\)
\(432\) 0 0
\(433\) 0.583592 0.0280456 0.0140228 0.999902i \(-0.495536\pi\)
0.0140228 + 0.999902i \(0.495536\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 13.6180 0.652186
\(437\) 27.3607 1.30884
\(438\) 0 0
\(439\) 41.8328 1.99657 0.998286 0.0585295i \(-0.0186412\pi\)
0.998286 + 0.0585295i \(0.0186412\pi\)
\(440\) −4.47214 −0.213201
\(441\) 0 0
\(442\) −0.708204 −0.0336858
\(443\) 41.1246 1.95389 0.976945 0.213493i \(-0.0684840\pi\)
0.976945 + 0.213493i \(0.0684840\pi\)
\(444\) 0 0
\(445\) 16.7082 0.792045
\(446\) 0.437694 0.0207254
\(447\) 0 0
\(448\) −0.708204 −0.0334595
\(449\) −24.0689 −1.13588 −0.567940 0.823070i \(-0.692260\pi\)
−0.567940 + 0.823070i \(0.692260\pi\)
\(450\) 0 0
\(451\) −4.94427 −0.232817
\(452\) −3.00000 −0.141108
\(453\) 0 0
\(454\) 12.8197 0.601656
\(455\) 38.1246 1.78731
\(456\) 0 0
\(457\) −15.7426 −0.736410 −0.368205 0.929745i \(-0.620028\pi\)
−0.368205 + 0.929745i \(0.620028\pi\)
\(458\) −4.47214 −0.208969
\(459\) 0 0
\(460\) −23.1803 −1.08079
\(461\) −10.7426 −0.500335 −0.250167 0.968203i \(-0.580486\pi\)
−0.250167 + 0.968203i \(0.580486\pi\)
\(462\) 0 0
\(463\) −31.1246 −1.44648 −0.723242 0.690595i \(-0.757349\pi\)
−0.723242 + 0.690595i \(0.757349\pi\)
\(464\) 15.9787 0.741793
\(465\) 0 0
\(466\) −11.6180 −0.538195
\(467\) 32.7771 1.51674 0.758371 0.651823i \(-0.225995\pi\)
0.758371 + 0.651823i \(0.225995\pi\)
\(468\) 0 0
\(469\) −12.7082 −0.586810
\(470\) 5.47214 0.252411
\(471\) 0 0
\(472\) 21.1803 0.974904
\(473\) −3.52786 −0.162211
\(474\) 0 0
\(475\) 9.27051 0.425360
\(476\) 1.14590 0.0525222
\(477\) 0 0
\(478\) 8.29180 0.379258
\(479\) 8.94427 0.408674 0.204337 0.978901i \(-0.434496\pi\)
0.204337 + 0.978901i \(0.434496\pi\)
\(480\) 0 0
\(481\) 1.14590 0.0522485
\(482\) −5.27051 −0.240065
\(483\) 0 0
\(484\) 16.8541 0.766096
\(485\) −13.8541 −0.629082
\(486\) 0 0
\(487\) 22.9230 1.03874 0.519370 0.854550i \(-0.326167\pi\)
0.519370 + 0.854550i \(0.326167\pi\)
\(488\) 15.5279 0.702913
\(489\) 0 0
\(490\) 3.23607 0.146191
\(491\) 27.5967 1.24542 0.622712 0.782451i \(-0.286031\pi\)
0.622712 + 0.782451i \(0.286031\pi\)
\(492\) 0 0
\(493\) −2.03444 −0.0916267
\(494\) 15.0000 0.674882
\(495\) 0 0
\(496\) 0 0
\(497\) −0.270510 −0.0121340
\(498\) 0 0
\(499\) 4.14590 0.185596 0.0927979 0.995685i \(-0.470419\pi\)
0.0927979 + 0.995685i \(0.470419\pi\)
\(500\) 13.3262 0.595967
\(501\) 0 0
\(502\) −0.583592 −0.0260470
\(503\) −13.1459 −0.586147 −0.293073 0.956090i \(-0.594678\pi\)
−0.293073 + 0.956090i \(0.594678\pi\)
\(504\) 0 0
\(505\) −12.4721 −0.555003
\(506\) 2.58359 0.114855
\(507\) 0 0
\(508\) −16.5623 −0.734833
\(509\) 1.90983 0.0846517 0.0423259 0.999104i \(-0.486523\pi\)
0.0423259 + 0.999104i \(0.486523\pi\)
\(510\) 0 0
\(511\) −25.6869 −1.13632
\(512\) 18.7082 0.826794
\(513\) 0 0
\(514\) −0.875388 −0.0386117
\(515\) −0.381966 −0.0168314
\(516\) 0 0
\(517\) 2.58359 0.113626
\(518\) 0.437694 0.0192312
\(519\) 0 0
\(520\) −28.4164 −1.24614
\(521\) −31.0689 −1.36115 −0.680576 0.732677i \(-0.738271\pi\)
−0.680576 + 0.732677i \(0.738271\pi\)
\(522\) 0 0
\(523\) 34.1246 1.49217 0.746083 0.665853i \(-0.231932\pi\)
0.746083 + 0.665853i \(0.231932\pi\)
\(524\) 0.145898 0.00637359
\(525\) 0 0
\(526\) 6.67376 0.290990
\(527\) 0 0
\(528\) 0 0
\(529\) 6.94427 0.301925
\(530\) 20.5623 0.893169
\(531\) 0 0
\(532\) −24.2705 −1.05226
\(533\) −31.4164 −1.36080
\(534\) 0 0
\(535\) −2.85410 −0.123394
\(536\) 9.47214 0.409134
\(537\) 0 0
\(538\) 0.854102 0.0368230
\(539\) 1.52786 0.0658098
\(540\) 0 0
\(541\) 22.0000 0.945854 0.472927 0.881102i \(-0.343197\pi\)
0.472927 + 0.881102i \(0.343197\pi\)
\(542\) 5.90983 0.253849
\(543\) 0 0
\(544\) −1.32624 −0.0568620
\(545\) −22.0344 −0.943852
\(546\) 0 0
\(547\) −23.7082 −1.01369 −0.506845 0.862037i \(-0.669188\pi\)
−0.506845 + 0.862037i \(0.669188\pi\)
\(548\) −10.4721 −0.447347
\(549\) 0 0
\(550\) 0.875388 0.0373267
\(551\) 43.0902 1.83570
\(552\) 0 0
\(553\) 0 0
\(554\) 8.23607 0.349917
\(555\) 0 0
\(556\) −9.47214 −0.401708
\(557\) −35.8885 −1.52065 −0.760323 0.649545i \(-0.774959\pi\)
−0.760323 + 0.649545i \(0.774959\pi\)
\(558\) 0 0
\(559\) −22.4164 −0.948113
\(560\) 14.5623 0.615370
\(561\) 0 0
\(562\) −11.7639 −0.496232
\(563\) 8.56231 0.360858 0.180429 0.983588i \(-0.442251\pi\)
0.180429 + 0.983588i \(0.442251\pi\)
\(564\) 0 0
\(565\) 4.85410 0.204214
\(566\) 4.05573 0.170475
\(567\) 0 0
\(568\) 0.201626 0.00846004
\(569\) −15.5279 −0.650962 −0.325481 0.945549i \(-0.605526\pi\)
−0.325481 + 0.945549i \(0.605526\pi\)
\(570\) 0 0
\(571\) 7.00000 0.292941 0.146470 0.989215i \(-0.453209\pi\)
0.146470 + 0.989215i \(0.453209\pi\)
\(572\) −6.00000 −0.250873
\(573\) 0 0
\(574\) −12.0000 −0.500870
\(575\) 10.1459 0.423113
\(576\) 0 0
\(577\) 38.9787 1.62271 0.811353 0.584557i \(-0.198732\pi\)
0.811353 + 0.584557i \(0.198732\pi\)
\(578\) −10.4721 −0.435583
\(579\) 0 0
\(580\) −36.5066 −1.51585
\(581\) 12.2705 0.509067
\(582\) 0 0
\(583\) 9.70820 0.402073
\(584\) 19.1459 0.792263
\(585\) 0 0
\(586\) 5.09017 0.210273
\(587\) −36.0132 −1.48642 −0.743211 0.669057i \(-0.766698\pi\)
−0.743211 + 0.669057i \(0.766698\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −15.3262 −0.630971
\(591\) 0 0
\(592\) 0.437694 0.0179891
\(593\) −6.11146 −0.250967 −0.125484 0.992096i \(-0.540048\pi\)
−0.125484 + 0.992096i \(0.540048\pi\)
\(594\) 0 0
\(595\) −1.85410 −0.0760108
\(596\) −27.5623 −1.12900
\(597\) 0 0
\(598\) 16.4164 0.671317
\(599\) −29.7984 −1.21753 −0.608764 0.793351i \(-0.708334\pi\)
−0.608764 + 0.793351i \(0.708334\pi\)
\(600\) 0 0
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) −8.56231 −0.348974
\(603\) 0 0
\(604\) 31.5623 1.28425
\(605\) −27.2705 −1.10870
\(606\) 0 0
\(607\) −25.4164 −1.03162 −0.515810 0.856703i \(-0.672509\pi\)
−0.515810 + 0.856703i \(0.672509\pi\)
\(608\) 28.0902 1.13921
\(609\) 0 0
\(610\) −11.2361 −0.454935
\(611\) 16.4164 0.664137
\(612\) 0 0
\(613\) 25.0557 1.01199 0.505996 0.862536i \(-0.331125\pi\)
0.505996 + 0.862536i \(0.331125\pi\)
\(614\) 3.76393 0.151900
\(615\) 0 0
\(616\) −5.12461 −0.206476
\(617\) 14.2361 0.573123 0.286561 0.958062i \(-0.407488\pi\)
0.286561 + 0.958062i \(0.407488\pi\)
\(618\) 0 0
\(619\) −40.0000 −1.60774 −0.803868 0.594808i \(-0.797228\pi\)
−0.803868 + 0.594808i \(0.797228\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −10.1803 −0.408194
\(623\) 19.1459 0.767064
\(624\) 0 0
\(625\) −30.8328 −1.23331
\(626\) 0.763932 0.0305329
\(627\) 0 0
\(628\) −15.7082 −0.626826
\(629\) −0.0557281 −0.00222202
\(630\) 0 0
\(631\) −8.72949 −0.347516 −0.173758 0.984788i \(-0.555591\pi\)
−0.173758 + 0.984788i \(0.555591\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −16.0000 −0.635441
\(635\) 26.7984 1.06346
\(636\) 0 0
\(637\) 9.70820 0.384653
\(638\) 4.06888 0.161089
\(639\) 0 0
\(640\) −29.7984 −1.17788
\(641\) 41.0902 1.62296 0.811482 0.584377i \(-0.198661\pi\)
0.811482 + 0.584377i \(0.198661\pi\)
\(642\) 0 0
\(643\) 8.14590 0.321243 0.160621 0.987016i \(-0.448650\pi\)
0.160621 + 0.987016i \(0.448650\pi\)
\(644\) −26.5623 −1.04670
\(645\) 0 0
\(646\) −0.729490 −0.0287014
\(647\) 29.8885 1.17504 0.587520 0.809210i \(-0.300104\pi\)
0.587520 + 0.809210i \(0.300104\pi\)
\(648\) 0 0
\(649\) −7.23607 −0.284041
\(650\) 5.56231 0.218172
\(651\) 0 0
\(652\) 20.5623 0.805282
\(653\) −39.6525 −1.55172 −0.775861 0.630904i \(-0.782684\pi\)
−0.775861 + 0.630904i \(0.782684\pi\)
\(654\) 0 0
\(655\) −0.236068 −0.00922394
\(656\) −12.0000 −0.468521
\(657\) 0 0
\(658\) 6.27051 0.244450
\(659\) −22.6869 −0.883757 −0.441878 0.897075i \(-0.645688\pi\)
−0.441878 + 0.897075i \(0.645688\pi\)
\(660\) 0 0
\(661\) −16.6180 −0.646367 −0.323183 0.946336i \(-0.604753\pi\)
−0.323183 + 0.946336i \(0.604753\pi\)
\(662\) 6.96556 0.270724
\(663\) 0 0
\(664\) −9.14590 −0.354930
\(665\) 39.2705 1.52285
\(666\) 0 0
\(667\) 47.1591 1.82601
\(668\) −14.9443 −0.578211
\(669\) 0 0
\(670\) −6.85410 −0.264797
\(671\) −5.30495 −0.204795
\(672\) 0 0
\(673\) −4.41641 −0.170240 −0.0851200 0.996371i \(-0.527127\pi\)
−0.0851200 + 0.996371i \(0.527127\pi\)
\(674\) 11.7295 0.451803
\(675\) 0 0
\(676\) −17.0902 −0.657314
\(677\) −28.6525 −1.10120 −0.550602 0.834768i \(-0.685602\pi\)
−0.550602 + 0.834768i \(0.685602\pi\)
\(678\) 0 0
\(679\) −15.8754 −0.609241
\(680\) 1.38197 0.0529960
\(681\) 0 0
\(682\) 0 0
\(683\) −10.0557 −0.384772 −0.192386 0.981319i \(-0.561623\pi\)
−0.192386 + 0.981319i \(0.561623\pi\)
\(684\) 0 0
\(685\) 16.9443 0.647407
\(686\) −9.27051 −0.353950
\(687\) 0 0
\(688\) −8.56231 −0.326435
\(689\) 61.6869 2.35008
\(690\) 0 0
\(691\) 3.83282 0.145807 0.0729036 0.997339i \(-0.476773\pi\)
0.0729036 + 0.997339i \(0.476773\pi\)
\(692\) 1.47214 0.0559622
\(693\) 0 0
\(694\) −5.02129 −0.190605
\(695\) 15.3262 0.581357
\(696\) 0 0
\(697\) 1.52786 0.0578720
\(698\) −10.3262 −0.390854
\(699\) 0 0
\(700\) −9.00000 −0.340168
\(701\) 30.0344 1.13439 0.567193 0.823585i \(-0.308030\pi\)
0.567193 + 0.823585i \(0.308030\pi\)
\(702\) 0 0
\(703\) 1.18034 0.0445174
\(704\) −0.180340 −0.00679682
\(705\) 0 0
\(706\) 20.0132 0.753205
\(707\) −14.2918 −0.537498
\(708\) 0 0
\(709\) 4.14590 0.155702 0.0778512 0.996965i \(-0.475194\pi\)
0.0778512 + 0.996965i \(0.475194\pi\)
\(710\) −0.145898 −0.00547546
\(711\) 0 0
\(712\) −14.2705 −0.534810
\(713\) 0 0
\(714\) 0 0
\(715\) 9.70820 0.363066
\(716\) 32.0344 1.19718
\(717\) 0 0
\(718\) 15.6525 0.584145
\(719\) 41.3820 1.54329 0.771643 0.636055i \(-0.219435\pi\)
0.771643 + 0.636055i \(0.219435\pi\)
\(720\) 0 0
\(721\) −0.437694 −0.0163006
\(722\) 3.70820 0.138005
\(723\) 0 0
\(724\) −27.5066 −1.02227
\(725\) 15.9787 0.593435
\(726\) 0 0
\(727\) −23.8328 −0.883910 −0.441955 0.897037i \(-0.645715\pi\)
−0.441955 + 0.897037i \(0.645715\pi\)
\(728\) −32.5623 −1.20684
\(729\) 0 0
\(730\) −13.8541 −0.512763
\(731\) 1.09017 0.0403214
\(732\) 0 0
\(733\) 27.9443 1.03215 0.516073 0.856545i \(-0.327393\pi\)
0.516073 + 0.856545i \(0.327393\pi\)
\(734\) −22.4164 −0.827405
\(735\) 0 0
\(736\) 30.7426 1.13319
\(737\) −3.23607 −0.119202
\(738\) 0 0
\(739\) 21.7082 0.798549 0.399275 0.916831i \(-0.369262\pi\)
0.399275 + 0.916831i \(0.369262\pi\)
\(740\) −1.00000 −0.0367607
\(741\) 0 0
\(742\) 23.5623 0.864999
\(743\) 3.43769 0.126117 0.0630584 0.998010i \(-0.479915\pi\)
0.0630584 + 0.998010i \(0.479915\pi\)
\(744\) 0 0
\(745\) 44.5967 1.63390
\(746\) −0.214782 −0.00786372
\(747\) 0 0
\(748\) 0.291796 0.0106691
\(749\) −3.27051 −0.119502
\(750\) 0 0
\(751\) −39.8328 −1.45352 −0.726760 0.686891i \(-0.758975\pi\)
−0.726760 + 0.686891i \(0.758975\pi\)
\(752\) 6.27051 0.228662
\(753\) 0 0
\(754\) 25.8541 0.941551
\(755\) −51.0689 −1.85859
\(756\) 0 0
\(757\) 43.1246 1.56739 0.783695 0.621145i \(-0.213332\pi\)
0.783695 + 0.621145i \(0.213332\pi\)
\(758\) −11.3820 −0.413412
\(759\) 0 0
\(760\) −29.2705 −1.06175
\(761\) −3.50658 −0.127113 −0.0635567 0.997978i \(-0.520244\pi\)
−0.0635567 + 0.997978i \(0.520244\pi\)
\(762\) 0 0
\(763\) −25.2492 −0.914083
\(764\) −26.0344 −0.941893
\(765\) 0 0
\(766\) 10.4164 0.376360
\(767\) −45.9787 −1.66020
\(768\) 0 0
\(769\) −53.7426 −1.93801 −0.969005 0.247042i \(-0.920541\pi\)
−0.969005 + 0.247042i \(0.920541\pi\)
\(770\) 3.70820 0.133634
\(771\) 0 0
\(772\) 3.85410 0.138712
\(773\) 19.0902 0.686626 0.343313 0.939221i \(-0.388451\pi\)
0.343313 + 0.939221i \(0.388451\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 11.8328 0.424773
\(777\) 0 0
\(778\) 17.9656 0.644096
\(779\) −32.3607 −1.15944
\(780\) 0 0
\(781\) −0.0688837 −0.00246485
\(782\) −0.798374 −0.0285498
\(783\) 0 0
\(784\) 3.70820 0.132436
\(785\) 25.4164 0.907150
\(786\) 0 0
\(787\) 31.2918 1.11543 0.557716 0.830032i \(-0.311678\pi\)
0.557716 + 0.830032i \(0.311678\pi\)
\(788\) 26.5623 0.946243
\(789\) 0 0
\(790\) 0 0
\(791\) 5.56231 0.197773
\(792\) 0 0
\(793\) −33.7082 −1.19701
\(794\) 10.0689 0.357331
\(795\) 0 0
\(796\) 43.2148 1.53171
\(797\) −9.05573 −0.320770 −0.160385 0.987055i \(-0.551274\pi\)
−0.160385 + 0.987055i \(0.551274\pi\)
\(798\) 0 0
\(799\) −0.798374 −0.0282444
\(800\) 10.4164 0.368276
\(801\) 0 0
\(802\) 18.4377 0.651058
\(803\) −6.54102 −0.230828
\(804\) 0 0
\(805\) 42.9787 1.51480
\(806\) 0 0
\(807\) 0 0
\(808\) 10.6525 0.374753
\(809\) −54.7984 −1.92661 −0.963304 0.268412i \(-0.913501\pi\)
−0.963304 + 0.268412i \(0.913501\pi\)
\(810\) 0 0
\(811\) 42.7771 1.50211 0.751053 0.660242i \(-0.229546\pi\)
0.751053 + 0.660242i \(0.229546\pi\)
\(812\) −41.8328 −1.46804
\(813\) 0 0
\(814\) 0.111456 0.00390654
\(815\) −33.2705 −1.16542
\(816\) 0 0
\(817\) −23.0902 −0.807823
\(818\) −3.81966 −0.133551
\(819\) 0 0
\(820\) 27.4164 0.957422
\(821\) 32.4721 1.13329 0.566643 0.823964i \(-0.308242\pi\)
0.566643 + 0.823964i \(0.308242\pi\)
\(822\) 0 0
\(823\) −6.12461 −0.213491 −0.106745 0.994286i \(-0.534043\pi\)
−0.106745 + 0.994286i \(0.534043\pi\)
\(824\) 0.326238 0.0113650
\(825\) 0 0
\(826\) −17.5623 −0.611071
\(827\) −2.67376 −0.0929758 −0.0464879 0.998919i \(-0.514803\pi\)
−0.0464879 + 0.998919i \(0.514803\pi\)
\(828\) 0 0
\(829\) −21.7082 −0.753957 −0.376979 0.926222i \(-0.623037\pi\)
−0.376979 + 0.926222i \(0.623037\pi\)
\(830\) 6.61803 0.229715
\(831\) 0 0
\(832\) −1.14590 −0.0397269
\(833\) −0.472136 −0.0163585
\(834\) 0 0
\(835\) 24.1803 0.836795
\(836\) −6.18034 −0.213752
\(837\) 0 0
\(838\) −2.76393 −0.0954784
\(839\) −11.1803 −0.385988 −0.192994 0.981200i \(-0.561820\pi\)
−0.192994 + 0.981200i \(0.561820\pi\)
\(840\) 0 0
\(841\) 45.2705 1.56105
\(842\) 9.12461 0.314455
\(843\) 0 0
\(844\) 12.9443 0.445560
\(845\) 27.6525 0.951274
\(846\) 0 0
\(847\) −31.2492 −1.07374
\(848\) 23.5623 0.809133
\(849\) 0 0
\(850\) −0.270510 −0.00927841
\(851\) 1.29180 0.0442822
\(852\) 0 0
\(853\) 4.00000 0.136957 0.0684787 0.997653i \(-0.478185\pi\)
0.0684787 + 0.997653i \(0.478185\pi\)
\(854\) −12.8754 −0.440587
\(855\) 0 0
\(856\) 2.43769 0.0833187
\(857\) 8.18034 0.279435 0.139718 0.990191i \(-0.455381\pi\)
0.139718 + 0.990191i \(0.455381\pi\)
\(858\) 0 0
\(859\) 43.2918 1.47710 0.738549 0.674200i \(-0.235512\pi\)
0.738549 + 0.674200i \(0.235512\pi\)
\(860\) 19.5623 0.667069
\(861\) 0 0
\(862\) −18.0689 −0.615429
\(863\) −2.49342 −0.0848771 −0.0424385 0.999099i \(-0.513513\pi\)
−0.0424385 + 0.999099i \(0.513513\pi\)
\(864\) 0 0
\(865\) −2.38197 −0.0809893
\(866\) 0.360680 0.0122564
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −20.5623 −0.696727
\(872\) 18.8197 0.637314
\(873\) 0 0
\(874\) 16.9098 0.571984
\(875\) −24.7082 −0.835290
\(876\) 0 0
\(877\) 16.2918 0.550135 0.275067 0.961425i \(-0.411300\pi\)
0.275067 + 0.961425i \(0.411300\pi\)
\(878\) 25.8541 0.872534
\(879\) 0 0
\(880\) 3.70820 0.125004
\(881\) 15.3607 0.517514 0.258757 0.965942i \(-0.416687\pi\)
0.258757 + 0.965942i \(0.416687\pi\)
\(882\) 0 0
\(883\) −1.00000 −0.0336527 −0.0168263 0.999858i \(-0.505356\pi\)
−0.0168263 + 0.999858i \(0.505356\pi\)
\(884\) 1.85410 0.0623602
\(885\) 0 0
\(886\) 25.4164 0.853881
\(887\) −39.1033 −1.31296 −0.656481 0.754343i \(-0.727956\pi\)
−0.656481 + 0.754343i \(0.727956\pi\)
\(888\) 0 0
\(889\) 30.7082 1.02992
\(890\) 10.3262 0.346136
\(891\) 0 0
\(892\) −1.14590 −0.0383675
\(893\) 16.9098 0.565866
\(894\) 0 0
\(895\) −51.8328 −1.73258
\(896\) −34.1459 −1.14073
\(897\) 0 0
\(898\) −14.8754 −0.496398
\(899\) 0 0
\(900\) 0 0
\(901\) −3.00000 −0.0999445
\(902\) −3.05573 −0.101745
\(903\) 0 0
\(904\) −4.14590 −0.137891
\(905\) 44.5066 1.47945
\(906\) 0 0
\(907\) 52.9230 1.75728 0.878639 0.477486i \(-0.158452\pi\)
0.878639 + 0.477486i \(0.158452\pi\)
\(908\) −33.5623 −1.11380
\(909\) 0 0
\(910\) 23.5623 0.781083
\(911\) −8.18034 −0.271027 −0.135513 0.990776i \(-0.543268\pi\)
−0.135513 + 0.990776i \(0.543268\pi\)
\(912\) 0 0
\(913\) 3.12461 0.103410
\(914\) −9.72949 −0.321823
\(915\) 0 0
\(916\) 11.7082 0.386850
\(917\) −0.270510 −0.00893302
\(918\) 0 0
\(919\) 9.87539 0.325759 0.162879 0.986646i \(-0.447922\pi\)
0.162879 + 0.986646i \(0.447922\pi\)
\(920\) −32.0344 −1.05614
\(921\) 0 0
\(922\) −6.63932 −0.218654
\(923\) −0.437694 −0.0144069
\(924\) 0 0
\(925\) 0.437694 0.0143913
\(926\) −19.2361 −0.632136
\(927\) 0 0
\(928\) 48.4164 1.58935
\(929\) −33.5410 −1.10045 −0.550223 0.835018i \(-0.685457\pi\)
−0.550223 + 0.835018i \(0.685457\pi\)
\(930\) 0 0
\(931\) 10.0000 0.327737
\(932\) 30.4164 0.996323
\(933\) 0 0
\(934\) 20.2574 0.662841
\(935\) −0.472136 −0.0154405
\(936\) 0 0
\(937\) 40.4853 1.32260 0.661298 0.750123i \(-0.270006\pi\)
0.661298 + 0.750123i \(0.270006\pi\)
\(938\) −7.85410 −0.256446
\(939\) 0 0
\(940\) −14.3262 −0.467270
\(941\) −28.5836 −0.931798 −0.465899 0.884838i \(-0.654269\pi\)
−0.465899 + 0.884838i \(0.654269\pi\)
\(942\) 0 0
\(943\) −35.4164 −1.15332
\(944\) −17.5623 −0.571604
\(945\) 0 0
\(946\) −2.18034 −0.0708890
\(947\) −22.0689 −0.717142 −0.358571 0.933502i \(-0.616736\pi\)
−0.358571 + 0.933502i \(0.616736\pi\)
\(948\) 0 0
\(949\) −41.5623 −1.34917
\(950\) 5.72949 0.185889
\(951\) 0 0
\(952\) 1.58359 0.0513245
\(953\) −42.2148 −1.36747 −0.683735 0.729730i \(-0.739646\pi\)
−0.683735 + 0.729730i \(0.739646\pi\)
\(954\) 0 0
\(955\) 42.1246 1.36312
\(956\) −21.7082 −0.702093
\(957\) 0 0
\(958\) 5.52786 0.178597
\(959\) 19.4164 0.626989
\(960\) 0 0
\(961\) 0 0
\(962\) 0.708204 0.0228334
\(963\) 0 0
\(964\) 13.7984 0.444416
\(965\) −6.23607 −0.200746
\(966\) 0 0
\(967\) 43.6525 1.40377 0.701884 0.712291i \(-0.252342\pi\)
0.701884 + 0.712291i \(0.252342\pi\)
\(968\) 23.2918 0.748627
\(969\) 0 0
\(970\) −8.56231 −0.274919
\(971\) 20.5623 0.659876 0.329938 0.944003i \(-0.392972\pi\)
0.329938 + 0.944003i \(0.392972\pi\)
\(972\) 0 0
\(973\) 17.5623 0.563022
\(974\) 14.1672 0.453946
\(975\) 0 0
\(976\) −12.8754 −0.412131
\(977\) 6.06888 0.194161 0.0970804 0.995277i \(-0.469050\pi\)
0.0970804 + 0.995277i \(0.469050\pi\)
\(978\) 0 0
\(979\) 4.87539 0.155818
\(980\) −8.47214 −0.270632
\(981\) 0 0
\(982\) 17.0557 0.544270
\(983\) −21.0344 −0.670895 −0.335447 0.942059i \(-0.608887\pi\)
−0.335447 + 0.942059i \(0.608887\pi\)
\(984\) 0 0
\(985\) −42.9787 −1.36942
\(986\) −1.25735 −0.0400423
\(987\) 0 0
\(988\) −39.2705 −1.24936
\(989\) −25.2705 −0.803555
\(990\) 0 0
\(991\) −17.2705 −0.548616 −0.274308 0.961642i \(-0.588449\pi\)
−0.274308 + 0.961642i \(0.588449\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −0.167184 −0.00530276
\(995\) −69.9230 −2.21671
\(996\) 0 0
\(997\) −27.2492 −0.862992 −0.431496 0.902115i \(-0.642014\pi\)
−0.431496 + 0.902115i \(0.642014\pi\)
\(998\) 2.56231 0.0811084
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8649.2.a.g.1.2 2
3.2 odd 2 961.2.a.d.1.1 2
31.2 even 5 279.2.i.a.190.1 4
31.16 even 5 279.2.i.a.163.1 4
31.30 odd 2 8649.2.a.f.1.2 2
93.2 odd 10 31.2.d.a.4.1 4
93.5 odd 6 961.2.c.f.521.1 4
93.8 odd 10 961.2.d.f.374.1 4
93.11 even 30 961.2.g.g.338.1 8
93.14 odd 30 961.2.g.f.816.1 8
93.17 even 30 961.2.g.g.816.1 8
93.20 odd 30 961.2.g.f.338.1 8
93.23 even 10 961.2.d.e.374.1 4
93.26 even 6 961.2.c.d.521.1 4
93.29 even 10 961.2.d.b.531.1 4
93.35 odd 10 961.2.d.f.388.1 4
93.38 odd 30 961.2.g.f.235.1 8
93.41 odd 30 961.2.g.b.844.1 8
93.44 even 30 961.2.g.c.448.1 8
93.47 odd 10 31.2.d.a.8.1 yes 4
93.50 odd 30 961.2.g.b.547.1 8
93.53 even 30 961.2.g.g.732.1 8
93.56 odd 6 961.2.c.f.439.1 4
93.59 odd 30 961.2.g.b.846.1 8
93.65 even 30 961.2.g.c.846.1 8
93.68 even 6 961.2.c.d.439.1 4
93.71 odd 30 961.2.g.f.732.1 8
93.74 even 30 961.2.g.c.547.1 8
93.77 even 10 961.2.d.b.628.1 4
93.80 odd 30 961.2.g.b.448.1 8
93.83 even 30 961.2.g.c.844.1 8
93.86 even 30 961.2.g.g.235.1 8
93.89 even 10 961.2.d.e.388.1 4
93.92 even 2 961.2.a.e.1.1 2
372.47 even 10 496.2.n.b.225.1 4
372.95 even 10 496.2.n.b.97.1 4
465.2 even 20 775.2.bf.a.624.2 8
465.47 even 20 775.2.bf.a.349.1 8
465.188 even 20 775.2.bf.a.624.1 8
465.233 even 20 775.2.bf.a.349.2 8
465.374 odd 10 775.2.k.c.376.1 4
465.419 odd 10 775.2.k.c.101.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.4.1 4 93.2 odd 10
31.2.d.a.8.1 yes 4 93.47 odd 10
279.2.i.a.163.1 4 31.16 even 5
279.2.i.a.190.1 4 31.2 even 5
496.2.n.b.97.1 4 372.95 even 10
496.2.n.b.225.1 4 372.47 even 10
775.2.k.c.101.1 4 465.419 odd 10
775.2.k.c.376.1 4 465.374 odd 10
775.2.bf.a.349.1 8 465.47 even 20
775.2.bf.a.349.2 8 465.233 even 20
775.2.bf.a.624.1 8 465.188 even 20
775.2.bf.a.624.2 8 465.2 even 20
961.2.a.d.1.1 2 3.2 odd 2
961.2.a.e.1.1 2 93.92 even 2
961.2.c.d.439.1 4 93.68 even 6
961.2.c.d.521.1 4 93.26 even 6
961.2.c.f.439.1 4 93.56 odd 6
961.2.c.f.521.1 4 93.5 odd 6
961.2.d.b.531.1 4 93.29 even 10
961.2.d.b.628.1 4 93.77 even 10
961.2.d.e.374.1 4 93.23 even 10
961.2.d.e.388.1 4 93.89 even 10
961.2.d.f.374.1 4 93.8 odd 10
961.2.d.f.388.1 4 93.35 odd 10
961.2.g.b.448.1 8 93.80 odd 30
961.2.g.b.547.1 8 93.50 odd 30
961.2.g.b.844.1 8 93.41 odd 30
961.2.g.b.846.1 8 93.59 odd 30
961.2.g.c.448.1 8 93.44 even 30
961.2.g.c.547.1 8 93.74 even 30
961.2.g.c.844.1 8 93.83 even 30
961.2.g.c.846.1 8 93.65 even 30
961.2.g.f.235.1 8 93.38 odd 30
961.2.g.f.338.1 8 93.20 odd 30
961.2.g.f.732.1 8 93.71 odd 30
961.2.g.f.816.1 8 93.14 odd 30
961.2.g.g.235.1 8 93.86 even 30
961.2.g.g.338.1 8 93.11 even 30
961.2.g.g.732.1 8 93.53 even 30
961.2.g.g.816.1 8 93.17 even 30
8649.2.a.f.1.2 2 31.30 odd 2
8649.2.a.g.1.2 2 1.1 even 1 trivial