Properties

Label 8649.2.a.g.1.2
Level 86498649
Weight 22
Character 8649.1
Self dual yes
Analytic conductor 69.06369.063
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8649,2,Mod(1,8649)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8649, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8649.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8649=32312 8649 = 3^{2} \cdot 31^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8649.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 69.062612708269.0626127082
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ10)+\Q(\zeta_{10})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x1 x^{2} - x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 31)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 0.618034-0.618034 of defining polynomial
Character χ\chi == 8649.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+0.618034q21.61803q4+2.61803q5+3.00000q72.23607q8+1.61803q10+0.763932q11+4.85410q13+1.85410q14+1.85410q160.236068q17+5.00000q194.23607q20+0.472136q22+5.47214q23+1.85410q25+3.00000q264.85410q28+8.61803q29+5.61803q320.145898q34+7.85410q35+0.236068q37+3.09017q385.85410q406.47214q414.61803q431.23607q44+3.38197q46+3.38197q47+2.00000q49+1.14590q507.85410q52+12.7082q53+2.00000q556.70820q56+5.32624q589.47214q596.94427q610.236068q64+12.7082q654.23607q67+0.381966q68+4.85410q700.0901699q718.56231q73+0.145898q748.09017q76+2.29180q77+4.85410q804.00000q82+4.09017q830.618034q852.85410q861.70820q88+6.38197q89+14.5623q918.85410q92+2.09017q94+13.0902q955.29180q97+1.23607q98+O(q100)q+0.618034 q^{2} -1.61803 q^{4} +2.61803 q^{5} +3.00000 q^{7} -2.23607 q^{8} +1.61803 q^{10} +0.763932 q^{11} +4.85410 q^{13} +1.85410 q^{14} +1.85410 q^{16} -0.236068 q^{17} +5.00000 q^{19} -4.23607 q^{20} +0.472136 q^{22} +5.47214 q^{23} +1.85410 q^{25} +3.00000 q^{26} -4.85410 q^{28} +8.61803 q^{29} +5.61803 q^{32} -0.145898 q^{34} +7.85410 q^{35} +0.236068 q^{37} +3.09017 q^{38} -5.85410 q^{40} -6.47214 q^{41} -4.61803 q^{43} -1.23607 q^{44} +3.38197 q^{46} +3.38197 q^{47} +2.00000 q^{49} +1.14590 q^{50} -7.85410 q^{52} +12.7082 q^{53} +2.00000 q^{55} -6.70820 q^{56} +5.32624 q^{58} -9.47214 q^{59} -6.94427 q^{61} -0.236068 q^{64} +12.7082 q^{65} -4.23607 q^{67} +0.381966 q^{68} +4.85410 q^{70} -0.0901699 q^{71} -8.56231 q^{73} +0.145898 q^{74} -8.09017 q^{76} +2.29180 q^{77} +4.85410 q^{80} -4.00000 q^{82} +4.09017 q^{83} -0.618034 q^{85} -2.85410 q^{86} -1.70820 q^{88} +6.38197 q^{89} +14.5623 q^{91} -8.85410 q^{92} +2.09017 q^{94} +13.0902 q^{95} -5.29180 q^{97} +1.23607 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq2q4+3q5+6q7+q10+6q11+3q133q143q16+4q17+10q194q208q22+2q233q25+6q263q28+15q29+9q32+2q98+O(q100) 2 q - q^{2} - q^{4} + 3 q^{5} + 6 q^{7} + q^{10} + 6 q^{11} + 3 q^{13} - 3 q^{14} - 3 q^{16} + 4 q^{17} + 10 q^{19} - 4 q^{20} - 8 q^{22} + 2 q^{23} - 3 q^{25} + 6 q^{26} - 3 q^{28} + 15 q^{29} + 9 q^{32}+ \cdots - 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.618034 0.437016 0.218508 0.975835i 0.429881π-0.429881\pi
0.218508 + 0.975835i 0.429881π0.429881\pi
33 0 0
44 −1.61803 −0.809017
55 2.61803 1.17082 0.585410 0.810737i 0.300933π-0.300933\pi
0.585410 + 0.810737i 0.300933π0.300933\pi
66 0 0
77 3.00000 1.13389 0.566947 0.823754i 0.308125π-0.308125\pi
0.566947 + 0.823754i 0.308125π0.308125\pi
88 −2.23607 −0.790569
99 0 0
1010 1.61803 0.511667
1111 0.763932 0.230334 0.115167 0.993346i 0.463260π-0.463260\pi
0.115167 + 0.993346i 0.463260π0.463260\pi
1212 0 0
1313 4.85410 1.34629 0.673143 0.739512i 0.264944π-0.264944\pi
0.673143 + 0.739512i 0.264944π0.264944\pi
1414 1.85410 0.495530
1515 0 0
1616 1.85410 0.463525
1717 −0.236068 −0.0572549 −0.0286274 0.999590i 0.509114π-0.509114\pi
−0.0286274 + 0.999590i 0.509114π0.509114\pi
1818 0 0
1919 5.00000 1.14708 0.573539 0.819178i 0.305570π-0.305570\pi
0.573539 + 0.819178i 0.305570π0.305570\pi
2020 −4.23607 −0.947214
2121 0 0
2222 0.472136 0.100660
2323 5.47214 1.14102 0.570510 0.821291i 0.306746π-0.306746\pi
0.570510 + 0.821291i 0.306746π0.306746\pi
2424 0 0
2525 1.85410 0.370820
2626 3.00000 0.588348
2727 0 0
2828 −4.85410 −0.917339
2929 8.61803 1.60033 0.800164 0.599781i 0.204746π-0.204746\pi
0.800164 + 0.599781i 0.204746π0.204746\pi
3030 0 0
3131 0 0
3232 5.61803 0.993137
3333 0 0
3434 −0.145898 −0.0250213
3535 7.85410 1.32759
3636 0 0
3737 0.236068 0.0388093 0.0194047 0.999812i 0.493823π-0.493823\pi
0.0194047 + 0.999812i 0.493823π0.493823\pi
3838 3.09017 0.501292
3939 0 0
4040 −5.85410 −0.925615
4141 −6.47214 −1.01078 −0.505389 0.862892i 0.668651π-0.668651\pi
−0.505389 + 0.862892i 0.668651π0.668651\pi
4242 0 0
4343 −4.61803 −0.704244 −0.352122 0.935954i 0.614540π-0.614540\pi
−0.352122 + 0.935954i 0.614540π0.614540\pi
4444 −1.23607 −0.186344
4545 0 0
4646 3.38197 0.498644
4747 3.38197 0.493310 0.246655 0.969103i 0.420668π-0.420668\pi
0.246655 + 0.969103i 0.420668π0.420668\pi
4848 0 0
4949 2.00000 0.285714
5050 1.14590 0.162054
5151 0 0
5252 −7.85410 −1.08917
5353 12.7082 1.74561 0.872803 0.488073i 0.162300π-0.162300\pi
0.872803 + 0.488073i 0.162300π0.162300\pi
5454 0 0
5555 2.00000 0.269680
5656 −6.70820 −0.896421
5757 0 0
5858 5.32624 0.699369
5959 −9.47214 −1.23317 −0.616584 0.787289i 0.711484π-0.711484\pi
−0.616584 + 0.787289i 0.711484π0.711484\pi
6060 0 0
6161 −6.94427 −0.889123 −0.444561 0.895748i 0.646640π-0.646640\pi
−0.444561 + 0.895748i 0.646640π0.646640\pi
6262 0 0
6363 0 0
6464 −0.236068 −0.0295085
6565 12.7082 1.57626
6666 0 0
6767 −4.23607 −0.517518 −0.258759 0.965942i 0.583314π-0.583314\pi
−0.258759 + 0.965942i 0.583314π0.583314\pi
6868 0.381966 0.0463202
6969 0 0
7070 4.85410 0.580176
7171 −0.0901699 −0.0107012 −0.00535060 0.999986i 0.501703π-0.501703\pi
−0.00535060 + 0.999986i 0.501703π0.501703\pi
7272 0 0
7373 −8.56231 −1.00214 −0.501071 0.865406i 0.667060π-0.667060\pi
−0.501071 + 0.865406i 0.667060π0.667060\pi
7474 0.145898 0.0169603
7575 0 0
7676 −8.09017 −0.928006
7777 2.29180 0.261174
7878 0 0
7979 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8080 4.85410 0.542705
8181 0 0
8282 −4.00000 −0.441726
8383 4.09017 0.448954 0.224477 0.974479i 0.427933π-0.427933\pi
0.224477 + 0.974479i 0.427933π0.427933\pi
8484 0 0
8585 −0.618034 −0.0670352
8686 −2.85410 −0.307766
8787 0 0
8888 −1.70820 −0.182095
8989 6.38197 0.676487 0.338244 0.941059i 0.390167π-0.390167\pi
0.338244 + 0.941059i 0.390167π0.390167\pi
9090 0 0
9191 14.5623 1.52654
9292 −8.85410 −0.923104
9393 0 0
9494 2.09017 0.215585
9595 13.0902 1.34302
9696 0 0
9797 −5.29180 −0.537300 −0.268650 0.963238i 0.586578π-0.586578\pi
−0.268650 + 0.963238i 0.586578π0.586578\pi
9898 1.23607 0.124862
9999 0 0
100100 −3.00000 −0.300000
101101 −4.76393 −0.474029 −0.237014 0.971506i 0.576169π-0.576169\pi
−0.237014 + 0.971506i 0.576169π0.576169\pi
102102 0 0
103103 −0.145898 −0.0143758 −0.00718788 0.999974i 0.502288π-0.502288\pi
−0.00718788 + 0.999974i 0.502288π0.502288\pi
104104 −10.8541 −1.06433
105105 0 0
106106 7.85410 0.762858
107107 −1.09017 −0.105391 −0.0526954 0.998611i 0.516781π-0.516781\pi
−0.0526954 + 0.998611i 0.516781π0.516781\pi
108108 0 0
109109 −8.41641 −0.806146 −0.403073 0.915168i 0.632058π-0.632058\pi
−0.403073 + 0.915168i 0.632058π0.632058\pi
110110 1.23607 0.117854
111111 0 0
112112 5.56231 0.525589
113113 1.85410 0.174419 0.0872096 0.996190i 0.472205π-0.472205\pi
0.0872096 + 0.996190i 0.472205π0.472205\pi
114114 0 0
115115 14.3262 1.33593
116116 −13.9443 −1.29469
117117 0 0
118118 −5.85410 −0.538914
119119 −0.708204 −0.0649209
120120 0 0
121121 −10.4164 −0.946946
122122 −4.29180 −0.388561
123123 0 0
124124 0 0
125125 −8.23607 −0.736656
126126 0 0
127127 10.2361 0.908304 0.454152 0.890924i 0.349942π-0.349942\pi
0.454152 + 0.890924i 0.349942π0.349942\pi
128128 −11.3820 −1.00603
129129 0 0
130130 7.85410 0.688850
131131 −0.0901699 −0.00787818 −0.00393909 0.999992i 0.501254π-0.501254\pi
−0.00393909 + 0.999992i 0.501254π0.501254\pi
132132 0 0
133133 15.0000 1.30066
134134 −2.61803 −0.226164
135135 0 0
136136 0.527864 0.0452640
137137 6.47214 0.552952 0.276476 0.961021i 0.410833π-0.410833\pi
0.276476 + 0.961021i 0.410833π0.410833\pi
138138 0 0
139139 5.85410 0.496538 0.248269 0.968691i 0.420138π-0.420138\pi
0.248269 + 0.968691i 0.420138π0.420138\pi
140140 −12.7082 −1.07404
141141 0 0
142142 −0.0557281 −0.00467660
143143 3.70820 0.310096
144144 0 0
145145 22.5623 1.87370
146146 −5.29180 −0.437952
147147 0 0
148148 −0.381966 −0.0313974
149149 17.0344 1.39552 0.697758 0.716334i 0.254181π-0.254181\pi
0.697758 + 0.716334i 0.254181π0.254181\pi
150150 0 0
151151 −19.5066 −1.58742 −0.793711 0.608295i 0.791854π-0.791854\pi
−0.793711 + 0.608295i 0.791854π0.791854\pi
152152 −11.1803 −0.906845
153153 0 0
154154 1.41641 0.114137
155155 0 0
156156 0 0
157157 9.70820 0.774799 0.387400 0.921912i 0.373373π-0.373373\pi
0.387400 + 0.921912i 0.373373π0.373373\pi
158158 0 0
159159 0 0
160160 14.7082 1.16279
161161 16.4164 1.29379
162162 0 0
163163 −12.7082 −0.995383 −0.497692 0.867354i 0.665819π-0.665819\pi
−0.497692 + 0.867354i 0.665819π0.665819\pi
164164 10.4721 0.817736
165165 0 0
166166 2.52786 0.196200
167167 9.23607 0.714708 0.357354 0.933969i 0.383679π-0.383679\pi
0.357354 + 0.933969i 0.383679π0.383679\pi
168168 0 0
169169 10.5623 0.812485
170170 −0.381966 −0.0292955
171171 0 0
172172 7.47214 0.569745
173173 −0.909830 −0.0691731 −0.0345865 0.999402i 0.511011π-0.511011\pi
−0.0345865 + 0.999402i 0.511011π0.511011\pi
174174 0 0
175175 5.56231 0.420471
176176 1.41641 0.106766
177177 0 0
178178 3.94427 0.295636
179179 −19.7984 −1.47980 −0.739900 0.672717i 0.765127π-0.765127\pi
−0.739900 + 0.672717i 0.765127π0.765127\pi
180180 0 0
181181 17.0000 1.26360 0.631800 0.775131i 0.282316π-0.282316\pi
0.631800 + 0.775131i 0.282316π0.282316\pi
182182 9.00000 0.667124
183183 0 0
184184 −12.2361 −0.902055
185185 0.618034 0.0454388
186186 0 0
187187 −0.180340 −0.0131878
188188 −5.47214 −0.399097
189189 0 0
190190 8.09017 0.586923
191191 16.0902 1.16424 0.582122 0.813102i 0.302223π-0.302223\pi
0.582122 + 0.813102i 0.302223π0.302223\pi
192192 0 0
193193 −2.38197 −0.171458 −0.0857288 0.996319i 0.527322π-0.527322\pi
−0.0857288 + 0.996319i 0.527322π0.527322\pi
194194 −3.27051 −0.234809
195195 0 0
196196 −3.23607 −0.231148
197197 −16.4164 −1.16962 −0.584810 0.811170i 0.698831π-0.698831\pi
−0.584810 + 0.811170i 0.698831π0.698831\pi
198198 0 0
199199 −26.7082 −1.89329 −0.946647 0.322272i 0.895554π-0.895554\pi
−0.946647 + 0.322272i 0.895554π0.895554\pi
200200 −4.14590 −0.293159
201201 0 0
202202 −2.94427 −0.207158
203203 25.8541 1.81460
204204 0 0
205205 −16.9443 −1.18344
206206 −0.0901699 −0.00628244
207207 0 0
208208 9.00000 0.624038
209209 3.81966 0.264211
210210 0 0
211211 −8.00000 −0.550743 −0.275371 0.961338i 0.588801π-0.588801\pi
−0.275371 + 0.961338i 0.588801π0.588801\pi
212212 −20.5623 −1.41222
213213 0 0
214214 −0.673762 −0.0460574
215215 −12.0902 −0.824543
216216 0 0
217217 0 0
218218 −5.20163 −0.352299
219219 0 0
220220 −3.23607 −0.218176
221221 −1.14590 −0.0770814
222222 0 0
223223 0.708204 0.0474248 0.0237124 0.999719i 0.492451π-0.492451\pi
0.0237124 + 0.999719i 0.492451π0.492451\pi
224224 16.8541 1.12611
225225 0 0
226226 1.14590 0.0762240
227227 20.7426 1.37674 0.688369 0.725361i 0.258327π-0.258327\pi
0.688369 + 0.725361i 0.258327π0.258327\pi
228228 0 0
229229 −7.23607 −0.478173 −0.239086 0.970998i 0.576848π-0.576848\pi
−0.239086 + 0.970998i 0.576848π0.576848\pi
230230 8.85410 0.583822
231231 0 0
232232 −19.2705 −1.26517
233233 −18.7984 −1.23152 −0.615761 0.787933i 0.711151π-0.711151\pi
−0.615761 + 0.787933i 0.711151π0.711151\pi
234234 0 0
235235 8.85410 0.577578
236236 15.3262 0.997653
237237 0 0
238238 −0.437694 −0.0283715
239239 13.4164 0.867835 0.433918 0.900953i 0.357131π-0.357131\pi
0.433918 + 0.900953i 0.357131π0.357131\pi
240240 0 0
241241 −8.52786 −0.549328 −0.274664 0.961540i 0.588567π-0.588567\pi
−0.274664 + 0.961540i 0.588567π0.588567\pi
242242 −6.43769 −0.413831
243243 0 0
244244 11.2361 0.719316
245245 5.23607 0.334520
246246 0 0
247247 24.2705 1.54430
248248 0 0
249249 0 0
250250 −5.09017 −0.321931
251251 −0.944272 −0.0596019 −0.0298010 0.999556i 0.509487π-0.509487\pi
−0.0298010 + 0.999556i 0.509487π0.509487\pi
252252 0 0
253253 4.18034 0.262816
254254 6.32624 0.396943
255255 0 0
256256 −6.56231 −0.410144
257257 −1.41641 −0.0883531 −0.0441765 0.999024i 0.514066π-0.514066\pi
−0.0441765 + 0.999024i 0.514066π0.514066\pi
258258 0 0
259259 0.708204 0.0440057
260260 −20.5623 −1.27522
261261 0 0
262262 −0.0557281 −0.00344289
263263 10.7984 0.665856 0.332928 0.942952i 0.391963π-0.391963\pi
0.332928 + 0.942952i 0.391963π0.391963\pi
264264 0 0
265265 33.2705 2.04379
266266 9.27051 0.568411
267267 0 0
268268 6.85410 0.418681
269269 1.38197 0.0842600 0.0421300 0.999112i 0.486586π-0.486586\pi
0.0421300 + 0.999112i 0.486586π0.486586\pi
270270 0 0
271271 9.56231 0.580869 0.290434 0.956895i 0.406200π-0.406200\pi
0.290434 + 0.956895i 0.406200π0.406200\pi
272272 −0.437694 −0.0265391
273273 0 0
274274 4.00000 0.241649
275275 1.41641 0.0854126
276276 0 0
277277 13.3262 0.800696 0.400348 0.916363i 0.368889π-0.368889\pi
0.400348 + 0.916363i 0.368889π0.368889\pi
278278 3.61803 0.216995
279279 0 0
280280 −17.5623 −1.04955
281281 −19.0344 −1.13550 −0.567750 0.823201i 0.692186π-0.692186\pi
−0.567750 + 0.823201i 0.692186π0.692186\pi
282282 0 0
283283 6.56231 0.390089 0.195044 0.980794i 0.437515π-0.437515\pi
0.195044 + 0.980794i 0.437515π0.437515\pi
284284 0.145898 0.00865746
285285 0 0
286286 2.29180 0.135517
287287 −19.4164 −1.14611
288288 0 0
289289 −16.9443 −0.996722
290290 13.9443 0.818836
291291 0 0
292292 13.8541 0.810750
293293 8.23607 0.481156 0.240578 0.970630i 0.422663π-0.422663\pi
0.240578 + 0.970630i 0.422663π0.422663\pi
294294 0 0
295295 −24.7984 −1.44382
296296 −0.527864 −0.0306815
297297 0 0
298298 10.5279 0.609863
299299 26.5623 1.53614
300300 0 0
301301 −13.8541 −0.798537
302302 −12.0557 −0.693729
303303 0 0
304304 9.27051 0.531700
305305 −18.1803 −1.04100
306306 0 0
307307 6.09017 0.347584 0.173792 0.984782i 0.444398π-0.444398\pi
0.173792 + 0.984782i 0.444398π0.444398\pi
308308 −3.70820 −0.211295
309309 0 0
310310 0 0
311311 −16.4721 −0.934049 −0.467025 0.884244i 0.654674π-0.654674\pi
−0.467025 + 0.884244i 0.654674π0.654674\pi
312312 0 0
313313 1.23607 0.0698667 0.0349333 0.999390i 0.488878π-0.488878\pi
0.0349333 + 0.999390i 0.488878π0.488878\pi
314314 6.00000 0.338600
315315 0 0
316316 0 0
317317 −25.8885 −1.45405 −0.727023 0.686613i 0.759097π-0.759097\pi
−0.727023 + 0.686613i 0.759097π0.759097\pi
318318 0 0
319319 6.58359 0.368610
320320 −0.618034 −0.0345492
321321 0 0
322322 10.1459 0.565409
323323 −1.18034 −0.0656759
324324 0 0
325325 9.00000 0.499230
326326 −7.85410 −0.434998
327327 0 0
328328 14.4721 0.799090
329329 10.1459 0.559361
330330 0 0
331331 11.2705 0.619483 0.309742 0.950821i 0.399757π-0.399757\pi
0.309742 + 0.950821i 0.399757π0.399757\pi
332332 −6.61803 −0.363212
333333 0 0
334334 5.70820 0.312339
335335 −11.0902 −0.605921
336336 0 0
337337 18.9787 1.03384 0.516918 0.856035i 0.327079π-0.327079\pi
0.516918 + 0.856035i 0.327079π0.327079\pi
338338 6.52786 0.355069
339339 0 0
340340 1.00000 0.0542326
341341 0 0
342342 0 0
343343 −15.0000 −0.809924
344344 10.3262 0.556753
345345 0 0
346346 −0.562306 −0.0302298
347347 −8.12461 −0.436152 −0.218076 0.975932i 0.569978π-0.569978\pi
−0.218076 + 0.975932i 0.569978π0.569978\pi
348348 0 0
349349 −16.7082 −0.894370 −0.447185 0.894442i 0.647573π-0.647573\pi
−0.447185 + 0.894442i 0.647573π0.647573\pi
350350 3.43769 0.183752
351351 0 0
352352 4.29180 0.228753
353353 32.3820 1.72352 0.861759 0.507318i 0.169363π-0.169363\pi
0.861759 + 0.507318i 0.169363π0.169363\pi
354354 0 0
355355 −0.236068 −0.0125292
356356 −10.3262 −0.547290
357357 0 0
358358 −12.2361 −0.646696
359359 25.3262 1.33667 0.668334 0.743861i 0.267008π-0.267008\pi
0.668334 + 0.743861i 0.267008π0.267008\pi
360360 0 0
361361 6.00000 0.315789
362362 10.5066 0.552213
363363 0 0
364364 −23.5623 −1.23500
365365 −22.4164 −1.17333
366366 0 0
367367 −36.2705 −1.89331 −0.946653 0.322256i 0.895559π-0.895559\pi
−0.946653 + 0.322256i 0.895559π0.895559\pi
368368 10.1459 0.528891
369369 0 0
370370 0.381966 0.0198575
371371 38.1246 1.97933
372372 0 0
373373 −0.347524 −0.0179941 −0.00899706 0.999960i 0.502864π-0.502864\pi
−0.00899706 + 0.999960i 0.502864π0.502864\pi
374374 −0.111456 −0.00576326
375375 0 0
376376 −7.56231 −0.389996
377377 41.8328 2.15450
378378 0 0
379379 −18.4164 −0.945987 −0.472994 0.881066i 0.656827π-0.656827\pi
−0.472994 + 0.881066i 0.656827π0.656827\pi
380380 −21.1803 −1.08653
381381 0 0
382382 9.94427 0.508793
383383 16.8541 0.861204 0.430602 0.902542i 0.358301π-0.358301\pi
0.430602 + 0.902542i 0.358301π0.358301\pi
384384 0 0
385385 6.00000 0.305788
386386 −1.47214 −0.0749297
387387 0 0
388388 8.56231 0.434685
389389 29.0689 1.47385 0.736925 0.675974i 0.236277π-0.236277\pi
0.736925 + 0.675974i 0.236277π0.236277\pi
390390 0 0
391391 −1.29180 −0.0653289
392392 −4.47214 −0.225877
393393 0 0
394394 −10.1459 −0.511143
395395 0 0
396396 0 0
397397 16.2918 0.817662 0.408831 0.912610i 0.365937π-0.365937\pi
0.408831 + 0.912610i 0.365937π0.365937\pi
398398 −16.5066 −0.827400
399399 0 0
400400 3.43769 0.171885
401401 29.8328 1.48978 0.744890 0.667187i 0.232502π-0.232502\pi
0.744890 + 0.667187i 0.232502π0.232502\pi
402402 0 0
403403 0 0
404404 7.70820 0.383497
405405 0 0
406406 15.9787 0.793010
407407 0.180340 0.00893912
408408 0 0
409409 −6.18034 −0.305598 −0.152799 0.988257i 0.548829π-0.548829\pi
−0.152799 + 0.988257i 0.548829π0.548829\pi
410410 −10.4721 −0.517182
411411 0 0
412412 0.236068 0.0116302
413413 −28.4164 −1.39828
414414 0 0
415415 10.7082 0.525645
416416 27.2705 1.33705
417417 0 0
418418 2.36068 0.115465
419419 −4.47214 −0.218478 −0.109239 0.994016i 0.534841π-0.534841\pi
−0.109239 + 0.994016i 0.534841π0.534841\pi
420420 0 0
421421 14.7639 0.719550 0.359775 0.933039i 0.382853π-0.382853\pi
0.359775 + 0.933039i 0.382853π0.382853\pi
422422 −4.94427 −0.240683
423423 0 0
424424 −28.4164 −1.38002
425425 −0.437694 −0.0212313
426426 0 0
427427 −20.8328 −1.00817
428428 1.76393 0.0852629
429429 0 0
430430 −7.47214 −0.360338
431431 −29.2361 −1.40825 −0.704126 0.710075i 0.748661π-0.748661\pi
−0.704126 + 0.710075i 0.748661π0.748661\pi
432432 0 0
433433 0.583592 0.0280456 0.0140228 0.999902i 0.495536π-0.495536\pi
0.0140228 + 0.999902i 0.495536π0.495536\pi
434434 0 0
435435 0 0
436436 13.6180 0.652186
437437 27.3607 1.30884
438438 0 0
439439 41.8328 1.99657 0.998286 0.0585295i 0.0186412π-0.0186412\pi
0.998286 + 0.0585295i 0.0186412π0.0186412\pi
440440 −4.47214 −0.213201
441441 0 0
442442 −0.708204 −0.0336858
443443 41.1246 1.95389 0.976945 0.213493i 0.0684840π-0.0684840\pi
0.976945 + 0.213493i 0.0684840π0.0684840\pi
444444 0 0
445445 16.7082 0.792045
446446 0.437694 0.0207254
447447 0 0
448448 −0.708204 −0.0334595
449449 −24.0689 −1.13588 −0.567940 0.823070i 0.692260π-0.692260\pi
−0.567940 + 0.823070i 0.692260π0.692260\pi
450450 0 0
451451 −4.94427 −0.232817
452452 −3.00000 −0.141108
453453 0 0
454454 12.8197 0.601656
455455 38.1246 1.78731
456456 0 0
457457 −15.7426 −0.736410 −0.368205 0.929745i 0.620028π-0.620028\pi
−0.368205 + 0.929745i 0.620028π0.620028\pi
458458 −4.47214 −0.208969
459459 0 0
460460 −23.1803 −1.08079
461461 −10.7426 −0.500335 −0.250167 0.968203i 0.580486π-0.580486\pi
−0.250167 + 0.968203i 0.580486π0.580486\pi
462462 0 0
463463 −31.1246 −1.44648 −0.723242 0.690595i 0.757349π-0.757349\pi
−0.723242 + 0.690595i 0.757349π0.757349\pi
464464 15.9787 0.741793
465465 0 0
466466 −11.6180 −0.538195
467467 32.7771 1.51674 0.758371 0.651823i 0.225995π-0.225995\pi
0.758371 + 0.651823i 0.225995π0.225995\pi
468468 0 0
469469 −12.7082 −0.586810
470470 5.47214 0.252411
471471 0 0
472472 21.1803 0.974904
473473 −3.52786 −0.162211
474474 0 0
475475 9.27051 0.425360
476476 1.14590 0.0525222
477477 0 0
478478 8.29180 0.379258
479479 8.94427 0.408674 0.204337 0.978901i 0.434496π-0.434496\pi
0.204337 + 0.978901i 0.434496π0.434496\pi
480480 0 0
481481 1.14590 0.0522485
482482 −5.27051 −0.240065
483483 0 0
484484 16.8541 0.766096
485485 −13.8541 −0.629082
486486 0 0
487487 22.9230 1.03874 0.519370 0.854550i 0.326167π-0.326167\pi
0.519370 + 0.854550i 0.326167π0.326167\pi
488488 15.5279 0.702913
489489 0 0
490490 3.23607 0.146191
491491 27.5967 1.24542 0.622712 0.782451i 0.286031π-0.286031\pi
0.622712 + 0.782451i 0.286031π0.286031\pi
492492 0 0
493493 −2.03444 −0.0916267
494494 15.0000 0.674882
495495 0 0
496496 0 0
497497 −0.270510 −0.0121340
498498 0 0
499499 4.14590 0.185596 0.0927979 0.995685i 0.470419π-0.470419\pi
0.0927979 + 0.995685i 0.470419π0.470419\pi
500500 13.3262 0.595967
501501 0 0
502502 −0.583592 −0.0260470
503503 −13.1459 −0.586147 −0.293073 0.956090i 0.594678π-0.594678\pi
−0.293073 + 0.956090i 0.594678π0.594678\pi
504504 0 0
505505 −12.4721 −0.555003
506506 2.58359 0.114855
507507 0 0
508508 −16.5623 −0.734833
509509 1.90983 0.0846517 0.0423259 0.999104i 0.486523π-0.486523\pi
0.0423259 + 0.999104i 0.486523π0.486523\pi
510510 0 0
511511 −25.6869 −1.13632
512512 18.7082 0.826794
513513 0 0
514514 −0.875388 −0.0386117
515515 −0.381966 −0.0168314
516516 0 0
517517 2.58359 0.113626
518518 0.437694 0.0192312
519519 0 0
520520 −28.4164 −1.24614
521521 −31.0689 −1.36115 −0.680576 0.732677i 0.738271π-0.738271\pi
−0.680576 + 0.732677i 0.738271π0.738271\pi
522522 0 0
523523 34.1246 1.49217 0.746083 0.665853i 0.231932π-0.231932\pi
0.746083 + 0.665853i 0.231932π0.231932\pi
524524 0.145898 0.00637359
525525 0 0
526526 6.67376 0.290990
527527 0 0
528528 0 0
529529 6.94427 0.301925
530530 20.5623 0.893169
531531 0 0
532532 −24.2705 −1.05226
533533 −31.4164 −1.36080
534534 0 0
535535 −2.85410 −0.123394
536536 9.47214 0.409134
537537 0 0
538538 0.854102 0.0368230
539539 1.52786 0.0658098
540540 0 0
541541 22.0000 0.945854 0.472927 0.881102i 0.343197π-0.343197\pi
0.472927 + 0.881102i 0.343197π0.343197\pi
542542 5.90983 0.253849
543543 0 0
544544 −1.32624 −0.0568620
545545 −22.0344 −0.943852
546546 0 0
547547 −23.7082 −1.01369 −0.506845 0.862037i 0.669188π-0.669188\pi
−0.506845 + 0.862037i 0.669188π0.669188\pi
548548 −10.4721 −0.447347
549549 0 0
550550 0.875388 0.0373267
551551 43.0902 1.83570
552552 0 0
553553 0 0
554554 8.23607 0.349917
555555 0 0
556556 −9.47214 −0.401708
557557 −35.8885 −1.52065 −0.760323 0.649545i 0.774959π-0.774959\pi
−0.760323 + 0.649545i 0.774959π0.774959\pi
558558 0 0
559559 −22.4164 −0.948113
560560 14.5623 0.615370
561561 0 0
562562 −11.7639 −0.496232
563563 8.56231 0.360858 0.180429 0.983588i 0.442251π-0.442251\pi
0.180429 + 0.983588i 0.442251π0.442251\pi
564564 0 0
565565 4.85410 0.204214
566566 4.05573 0.170475
567567 0 0
568568 0.201626 0.00846004
569569 −15.5279 −0.650962 −0.325481 0.945549i 0.605526π-0.605526\pi
−0.325481 + 0.945549i 0.605526π0.605526\pi
570570 0 0
571571 7.00000 0.292941 0.146470 0.989215i 0.453209π-0.453209\pi
0.146470 + 0.989215i 0.453209π0.453209\pi
572572 −6.00000 −0.250873
573573 0 0
574574 −12.0000 −0.500870
575575 10.1459 0.423113
576576 0 0
577577 38.9787 1.62271 0.811353 0.584557i 0.198732π-0.198732\pi
0.811353 + 0.584557i 0.198732π0.198732\pi
578578 −10.4721 −0.435583
579579 0 0
580580 −36.5066 −1.51585
581581 12.2705 0.509067
582582 0 0
583583 9.70820 0.402073
584584 19.1459 0.792263
585585 0 0
586586 5.09017 0.210273
587587 −36.0132 −1.48642 −0.743211 0.669057i 0.766698π-0.766698\pi
−0.743211 + 0.669057i 0.766698π0.766698\pi
588588 0 0
589589 0 0
590590 −15.3262 −0.630971
591591 0 0
592592 0.437694 0.0179891
593593 −6.11146 −0.250967 −0.125484 0.992096i 0.540048π-0.540048\pi
−0.125484 + 0.992096i 0.540048π0.540048\pi
594594 0 0
595595 −1.85410 −0.0760108
596596 −27.5623 −1.12900
597597 0 0
598598 16.4164 0.671317
599599 −29.7984 −1.21753 −0.608764 0.793351i 0.708334π-0.708334\pi
−0.608764 + 0.793351i 0.708334π0.708334\pi
600600 0 0
601601 22.0000 0.897399 0.448699 0.893683i 0.351887π-0.351887\pi
0.448699 + 0.893683i 0.351887π0.351887\pi
602602 −8.56231 −0.348974
603603 0 0
604604 31.5623 1.28425
605605 −27.2705 −1.10870
606606 0 0
607607 −25.4164 −1.03162 −0.515810 0.856703i 0.672509π-0.672509\pi
−0.515810 + 0.856703i 0.672509π0.672509\pi
608608 28.0902 1.13921
609609 0 0
610610 −11.2361 −0.454935
611611 16.4164 0.664137
612612 0 0
613613 25.0557 1.01199 0.505996 0.862536i 0.331125π-0.331125\pi
0.505996 + 0.862536i 0.331125π0.331125\pi
614614 3.76393 0.151900
615615 0 0
616616 −5.12461 −0.206476
617617 14.2361 0.573123 0.286561 0.958062i 0.407488π-0.407488\pi
0.286561 + 0.958062i 0.407488π0.407488\pi
618618 0 0
619619 −40.0000 −1.60774 −0.803868 0.594808i 0.797228π-0.797228\pi
−0.803868 + 0.594808i 0.797228π0.797228\pi
620620 0 0
621621 0 0
622622 −10.1803 −0.408194
623623 19.1459 0.767064
624624 0 0
625625 −30.8328 −1.23331
626626 0.763932 0.0305329
627627 0 0
628628 −15.7082 −0.626826
629629 −0.0557281 −0.00222202
630630 0 0
631631 −8.72949 −0.347516 −0.173758 0.984788i 0.555591π-0.555591\pi
−0.173758 + 0.984788i 0.555591π0.555591\pi
632632 0 0
633633 0 0
634634 −16.0000 −0.635441
635635 26.7984 1.06346
636636 0 0
637637 9.70820 0.384653
638638 4.06888 0.161089
639639 0 0
640640 −29.7984 −1.17788
641641 41.0902 1.62296 0.811482 0.584377i 0.198661π-0.198661\pi
0.811482 + 0.584377i 0.198661π0.198661\pi
642642 0 0
643643 8.14590 0.321243 0.160621 0.987016i 0.448650π-0.448650\pi
0.160621 + 0.987016i 0.448650π0.448650\pi
644644 −26.5623 −1.04670
645645 0 0
646646 −0.729490 −0.0287014
647647 29.8885 1.17504 0.587520 0.809210i 0.300104π-0.300104\pi
0.587520 + 0.809210i 0.300104π0.300104\pi
648648 0 0
649649 −7.23607 −0.284041
650650 5.56231 0.218172
651651 0 0
652652 20.5623 0.805282
653653 −39.6525 −1.55172 −0.775861 0.630904i 0.782684π-0.782684\pi
−0.775861 + 0.630904i 0.782684π0.782684\pi
654654 0 0
655655 −0.236068 −0.00922394
656656 −12.0000 −0.468521
657657 0 0
658658 6.27051 0.244450
659659 −22.6869 −0.883757 −0.441878 0.897075i 0.645688π-0.645688\pi
−0.441878 + 0.897075i 0.645688π0.645688\pi
660660 0 0
661661 −16.6180 −0.646367 −0.323183 0.946336i 0.604753π-0.604753\pi
−0.323183 + 0.946336i 0.604753π0.604753\pi
662662 6.96556 0.270724
663663 0 0
664664 −9.14590 −0.354930
665665 39.2705 1.52285
666666 0 0
667667 47.1591 1.82601
668668 −14.9443 −0.578211
669669 0 0
670670 −6.85410 −0.264797
671671 −5.30495 −0.204795
672672 0 0
673673 −4.41641 −0.170240 −0.0851200 0.996371i 0.527127π-0.527127\pi
−0.0851200 + 0.996371i 0.527127π0.527127\pi
674674 11.7295 0.451803
675675 0 0
676676 −17.0902 −0.657314
677677 −28.6525 −1.10120 −0.550602 0.834768i 0.685602π-0.685602\pi
−0.550602 + 0.834768i 0.685602π0.685602\pi
678678 0 0
679679 −15.8754 −0.609241
680680 1.38197 0.0529960
681681 0 0
682682 0 0
683683 −10.0557 −0.384772 −0.192386 0.981319i 0.561623π-0.561623\pi
−0.192386 + 0.981319i 0.561623π0.561623\pi
684684 0 0
685685 16.9443 0.647407
686686 −9.27051 −0.353950
687687 0 0
688688 −8.56231 −0.326435
689689 61.6869 2.35008
690690 0 0
691691 3.83282 0.145807 0.0729036 0.997339i 0.476773π-0.476773\pi
0.0729036 + 0.997339i 0.476773π0.476773\pi
692692 1.47214 0.0559622
693693 0 0
694694 −5.02129 −0.190605
695695 15.3262 0.581357
696696 0 0
697697 1.52786 0.0578720
698698 −10.3262 −0.390854
699699 0 0
700700 −9.00000 −0.340168
701701 30.0344 1.13439 0.567193 0.823585i 0.308030π-0.308030\pi
0.567193 + 0.823585i 0.308030π0.308030\pi
702702 0 0
703703 1.18034 0.0445174
704704 −0.180340 −0.00679682
705705 0 0
706706 20.0132 0.753205
707707 −14.2918 −0.537498
708708 0 0
709709 4.14590 0.155702 0.0778512 0.996965i 0.475194π-0.475194\pi
0.0778512 + 0.996965i 0.475194π0.475194\pi
710710 −0.145898 −0.00547546
711711 0 0
712712 −14.2705 −0.534810
713713 0 0
714714 0 0
715715 9.70820 0.363066
716716 32.0344 1.19718
717717 0 0
718718 15.6525 0.584145
719719 41.3820 1.54329 0.771643 0.636055i 0.219435π-0.219435\pi
0.771643 + 0.636055i 0.219435π0.219435\pi
720720 0 0
721721 −0.437694 −0.0163006
722722 3.70820 0.138005
723723 0 0
724724 −27.5066 −1.02227
725725 15.9787 0.593435
726726 0 0
727727 −23.8328 −0.883910 −0.441955 0.897037i 0.645715π-0.645715\pi
−0.441955 + 0.897037i 0.645715π0.645715\pi
728728 −32.5623 −1.20684
729729 0 0
730730 −13.8541 −0.512763
731731 1.09017 0.0403214
732732 0 0
733733 27.9443 1.03215 0.516073 0.856545i 0.327393π-0.327393\pi
0.516073 + 0.856545i 0.327393π0.327393\pi
734734 −22.4164 −0.827405
735735 0 0
736736 30.7426 1.13319
737737 −3.23607 −0.119202
738738 0 0
739739 21.7082 0.798549 0.399275 0.916831i 0.369262π-0.369262\pi
0.399275 + 0.916831i 0.369262π0.369262\pi
740740 −1.00000 −0.0367607
741741 0 0
742742 23.5623 0.864999
743743 3.43769 0.126117 0.0630584 0.998010i 0.479915π-0.479915\pi
0.0630584 + 0.998010i 0.479915π0.479915\pi
744744 0 0
745745 44.5967 1.63390
746746 −0.214782 −0.00786372
747747 0 0
748748 0.291796 0.0106691
749749 −3.27051 −0.119502
750750 0 0
751751 −39.8328 −1.45352 −0.726760 0.686891i 0.758975π-0.758975\pi
−0.726760 + 0.686891i 0.758975π0.758975\pi
752752 6.27051 0.228662
753753 0 0
754754 25.8541 0.941551
755755 −51.0689 −1.85859
756756 0 0
757757 43.1246 1.56739 0.783695 0.621145i 0.213332π-0.213332\pi
0.783695 + 0.621145i 0.213332π0.213332\pi
758758 −11.3820 −0.413412
759759 0 0
760760 −29.2705 −1.06175
761761 −3.50658 −0.127113 −0.0635567 0.997978i 0.520244π-0.520244\pi
−0.0635567 + 0.997978i 0.520244π0.520244\pi
762762 0 0
763763 −25.2492 −0.914083
764764 −26.0344 −0.941893
765765 0 0
766766 10.4164 0.376360
767767 −45.9787 −1.66020
768768 0 0
769769 −53.7426 −1.93801 −0.969005 0.247042i 0.920541π-0.920541\pi
−0.969005 + 0.247042i 0.920541π0.920541\pi
770770 3.70820 0.133634
771771 0 0
772772 3.85410 0.138712
773773 19.0902 0.686626 0.343313 0.939221i 0.388451π-0.388451\pi
0.343313 + 0.939221i 0.388451π0.388451\pi
774774 0 0
775775 0 0
776776 11.8328 0.424773
777777 0 0
778778 17.9656 0.644096
779779 −32.3607 −1.15944
780780 0 0
781781 −0.0688837 −0.00246485
782782 −0.798374 −0.0285498
783783 0 0
784784 3.70820 0.132436
785785 25.4164 0.907150
786786 0 0
787787 31.2918 1.11543 0.557716 0.830032i 0.311678π-0.311678\pi
0.557716 + 0.830032i 0.311678π0.311678\pi
788788 26.5623 0.946243
789789 0 0
790790 0 0
791791 5.56231 0.197773
792792 0 0
793793 −33.7082 −1.19701
794794 10.0689 0.357331
795795 0 0
796796 43.2148 1.53171
797797 −9.05573 −0.320770 −0.160385 0.987055i 0.551274π-0.551274\pi
−0.160385 + 0.987055i 0.551274π0.551274\pi
798798 0 0
799799 −0.798374 −0.0282444
800800 10.4164 0.368276
801801 0 0
802802 18.4377 0.651058
803803 −6.54102 −0.230828
804804 0 0
805805 42.9787 1.51480
806806 0 0
807807 0 0
808808 10.6525 0.374753
809809 −54.7984 −1.92661 −0.963304 0.268412i 0.913501π-0.913501\pi
−0.963304 + 0.268412i 0.913501π0.913501\pi
810810 0 0
811811 42.7771 1.50211 0.751053 0.660242i 0.229546π-0.229546\pi
0.751053 + 0.660242i 0.229546π0.229546\pi
812812 −41.8328 −1.46804
813813 0 0
814814 0.111456 0.00390654
815815 −33.2705 −1.16542
816816 0 0
817817 −23.0902 −0.807823
818818 −3.81966 −0.133551
819819 0 0
820820 27.4164 0.957422
821821 32.4721 1.13329 0.566643 0.823964i 0.308242π-0.308242\pi
0.566643 + 0.823964i 0.308242π0.308242\pi
822822 0 0
823823 −6.12461 −0.213491 −0.106745 0.994286i 0.534043π-0.534043\pi
−0.106745 + 0.994286i 0.534043π0.534043\pi
824824 0.326238 0.0113650
825825 0 0
826826 −17.5623 −0.611071
827827 −2.67376 −0.0929758 −0.0464879 0.998919i 0.514803π-0.514803\pi
−0.0464879 + 0.998919i 0.514803π0.514803\pi
828828 0 0
829829 −21.7082 −0.753957 −0.376979 0.926222i 0.623037π-0.623037\pi
−0.376979 + 0.926222i 0.623037π0.623037\pi
830830 6.61803 0.229715
831831 0 0
832832 −1.14590 −0.0397269
833833 −0.472136 −0.0163585
834834 0 0
835835 24.1803 0.836795
836836 −6.18034 −0.213752
837837 0 0
838838 −2.76393 −0.0954784
839839 −11.1803 −0.385988 −0.192994 0.981200i 0.561820π-0.561820\pi
−0.192994 + 0.981200i 0.561820π0.561820\pi
840840 0 0
841841 45.2705 1.56105
842842 9.12461 0.314455
843843 0 0
844844 12.9443 0.445560
845845 27.6525 0.951274
846846 0 0
847847 −31.2492 −1.07374
848848 23.5623 0.809133
849849 0 0
850850 −0.270510 −0.00927841
851851 1.29180 0.0442822
852852 0 0
853853 4.00000 0.136957 0.0684787 0.997653i 0.478185π-0.478185\pi
0.0684787 + 0.997653i 0.478185π0.478185\pi
854854 −12.8754 −0.440587
855855 0 0
856856 2.43769 0.0833187
857857 8.18034 0.279435 0.139718 0.990191i 0.455381π-0.455381\pi
0.139718 + 0.990191i 0.455381π0.455381\pi
858858 0 0
859859 43.2918 1.47710 0.738549 0.674200i 0.235512π-0.235512\pi
0.738549 + 0.674200i 0.235512π0.235512\pi
860860 19.5623 0.667069
861861 0 0
862862 −18.0689 −0.615429
863863 −2.49342 −0.0848771 −0.0424385 0.999099i 0.513513π-0.513513\pi
−0.0424385 + 0.999099i 0.513513π0.513513\pi
864864 0 0
865865 −2.38197 −0.0809893
866866 0.360680 0.0122564
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 −20.5623 −0.696727
872872 18.8197 0.637314
873873 0 0
874874 16.9098 0.571984
875875 −24.7082 −0.835290
876876 0 0
877877 16.2918 0.550135 0.275067 0.961425i 0.411300π-0.411300\pi
0.275067 + 0.961425i 0.411300π0.411300\pi
878878 25.8541 0.872534
879879 0 0
880880 3.70820 0.125004
881881 15.3607 0.517514 0.258757 0.965942i 0.416687π-0.416687\pi
0.258757 + 0.965942i 0.416687π0.416687\pi
882882 0 0
883883 −1.00000 −0.0336527 −0.0168263 0.999858i 0.505356π-0.505356\pi
−0.0168263 + 0.999858i 0.505356π0.505356\pi
884884 1.85410 0.0623602
885885 0 0
886886 25.4164 0.853881
887887 −39.1033 −1.31296 −0.656481 0.754343i 0.727956π-0.727956\pi
−0.656481 + 0.754343i 0.727956π0.727956\pi
888888 0 0
889889 30.7082 1.02992
890890 10.3262 0.346136
891891 0 0
892892 −1.14590 −0.0383675
893893 16.9098 0.565866
894894 0 0
895895 −51.8328 −1.73258
896896 −34.1459 −1.14073
897897 0 0
898898 −14.8754 −0.496398
899899 0 0
900900 0 0
901901 −3.00000 −0.0999445
902902 −3.05573 −0.101745
903903 0 0
904904 −4.14590 −0.137891
905905 44.5066 1.47945
906906 0 0
907907 52.9230 1.75728 0.878639 0.477486i 0.158452π-0.158452\pi
0.878639 + 0.477486i 0.158452π0.158452\pi
908908 −33.5623 −1.11380
909909 0 0
910910 23.5623 0.781083
911911 −8.18034 −0.271027 −0.135513 0.990776i 0.543268π-0.543268\pi
−0.135513 + 0.990776i 0.543268π0.543268\pi
912912 0 0
913913 3.12461 0.103410
914914 −9.72949 −0.321823
915915 0 0
916916 11.7082 0.386850
917917 −0.270510 −0.00893302
918918 0 0
919919 9.87539 0.325759 0.162879 0.986646i 0.447922π-0.447922\pi
0.162879 + 0.986646i 0.447922π0.447922\pi
920920 −32.0344 −1.05614
921921 0 0
922922 −6.63932 −0.218654
923923 −0.437694 −0.0144069
924924 0 0
925925 0.437694 0.0143913
926926 −19.2361 −0.632136
927927 0 0
928928 48.4164 1.58935
929929 −33.5410 −1.10045 −0.550223 0.835018i 0.685457π-0.685457\pi
−0.550223 + 0.835018i 0.685457π0.685457\pi
930930 0 0
931931 10.0000 0.327737
932932 30.4164 0.996323
933933 0 0
934934 20.2574 0.662841
935935 −0.472136 −0.0154405
936936 0 0
937937 40.4853 1.32260 0.661298 0.750123i 0.270006π-0.270006\pi
0.661298 + 0.750123i 0.270006π0.270006\pi
938938 −7.85410 −0.256446
939939 0 0
940940 −14.3262 −0.467270
941941 −28.5836 −0.931798 −0.465899 0.884838i 0.654269π-0.654269\pi
−0.465899 + 0.884838i 0.654269π0.654269\pi
942942 0 0
943943 −35.4164 −1.15332
944944 −17.5623 −0.571604
945945 0 0
946946 −2.18034 −0.0708890
947947 −22.0689 −0.717142 −0.358571 0.933502i 0.616736π-0.616736\pi
−0.358571 + 0.933502i 0.616736π0.616736\pi
948948 0 0
949949 −41.5623 −1.34917
950950 5.72949 0.185889
951951 0 0
952952 1.58359 0.0513245
953953 −42.2148 −1.36747 −0.683735 0.729730i 0.739646π-0.739646\pi
−0.683735 + 0.729730i 0.739646π0.739646\pi
954954 0 0
955955 42.1246 1.36312
956956 −21.7082 −0.702093
957957 0 0
958958 5.52786 0.178597
959959 19.4164 0.626989
960960 0 0
961961 0 0
962962 0.708204 0.0228334
963963 0 0
964964 13.7984 0.444416
965965 −6.23607 −0.200746
966966 0 0
967967 43.6525 1.40377 0.701884 0.712291i 0.252342π-0.252342\pi
0.701884 + 0.712291i 0.252342π0.252342\pi
968968 23.2918 0.748627
969969 0 0
970970 −8.56231 −0.274919
971971 20.5623 0.659876 0.329938 0.944003i 0.392972π-0.392972\pi
0.329938 + 0.944003i 0.392972π0.392972\pi
972972 0 0
973973 17.5623 0.563022
974974 14.1672 0.453946
975975 0 0
976976 −12.8754 −0.412131
977977 6.06888 0.194161 0.0970804 0.995277i 0.469050π-0.469050\pi
0.0970804 + 0.995277i 0.469050π0.469050\pi
978978 0 0
979979 4.87539 0.155818
980980 −8.47214 −0.270632
981981 0 0
982982 17.0557 0.544270
983983 −21.0344 −0.670895 −0.335447 0.942059i 0.608887π-0.608887\pi
−0.335447 + 0.942059i 0.608887π0.608887\pi
984984 0 0
985985 −42.9787 −1.36942
986986 −1.25735 −0.0400423
987987 0 0
988988 −39.2705 −1.24936
989989 −25.2705 −0.803555
990990 0 0
991991 −17.2705 −0.548616 −0.274308 0.961642i 0.588449π-0.588449\pi
−0.274308 + 0.961642i 0.588449π0.588449\pi
992992 0 0
993993 0 0
994994 −0.167184 −0.00530276
995995 −69.9230 −2.21671
996996 0 0
997997 −27.2492 −0.862992 −0.431496 0.902115i 0.642014π-0.642014\pi
−0.431496 + 0.902115i 0.642014π0.642014\pi
998998 2.56231 0.0811084
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8649.2.a.g.1.2 2
3.2 odd 2 961.2.a.d.1.1 2
31.2 even 5 279.2.i.a.190.1 4
31.16 even 5 279.2.i.a.163.1 4
31.30 odd 2 8649.2.a.f.1.2 2
93.2 odd 10 31.2.d.a.4.1 4
93.5 odd 6 961.2.c.f.521.1 4
93.8 odd 10 961.2.d.f.374.1 4
93.11 even 30 961.2.g.g.338.1 8
93.14 odd 30 961.2.g.f.816.1 8
93.17 even 30 961.2.g.g.816.1 8
93.20 odd 30 961.2.g.f.338.1 8
93.23 even 10 961.2.d.e.374.1 4
93.26 even 6 961.2.c.d.521.1 4
93.29 even 10 961.2.d.b.531.1 4
93.35 odd 10 961.2.d.f.388.1 4
93.38 odd 30 961.2.g.f.235.1 8
93.41 odd 30 961.2.g.b.844.1 8
93.44 even 30 961.2.g.c.448.1 8
93.47 odd 10 31.2.d.a.8.1 yes 4
93.50 odd 30 961.2.g.b.547.1 8
93.53 even 30 961.2.g.g.732.1 8
93.56 odd 6 961.2.c.f.439.1 4
93.59 odd 30 961.2.g.b.846.1 8
93.65 even 30 961.2.g.c.846.1 8
93.68 even 6 961.2.c.d.439.1 4
93.71 odd 30 961.2.g.f.732.1 8
93.74 even 30 961.2.g.c.547.1 8
93.77 even 10 961.2.d.b.628.1 4
93.80 odd 30 961.2.g.b.448.1 8
93.83 even 30 961.2.g.c.844.1 8
93.86 even 30 961.2.g.g.235.1 8
93.89 even 10 961.2.d.e.388.1 4
93.92 even 2 961.2.a.e.1.1 2
372.47 even 10 496.2.n.b.225.1 4
372.95 even 10 496.2.n.b.97.1 4
465.2 even 20 775.2.bf.a.624.2 8
465.47 even 20 775.2.bf.a.349.1 8
465.188 even 20 775.2.bf.a.624.1 8
465.233 even 20 775.2.bf.a.349.2 8
465.374 odd 10 775.2.k.c.376.1 4
465.419 odd 10 775.2.k.c.101.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.4.1 4 93.2 odd 10
31.2.d.a.8.1 yes 4 93.47 odd 10
279.2.i.a.163.1 4 31.16 even 5
279.2.i.a.190.1 4 31.2 even 5
496.2.n.b.97.1 4 372.95 even 10
496.2.n.b.225.1 4 372.47 even 10
775.2.k.c.101.1 4 465.419 odd 10
775.2.k.c.376.1 4 465.374 odd 10
775.2.bf.a.349.1 8 465.47 even 20
775.2.bf.a.349.2 8 465.233 even 20
775.2.bf.a.624.1 8 465.188 even 20
775.2.bf.a.624.2 8 465.2 even 20
961.2.a.d.1.1 2 3.2 odd 2
961.2.a.e.1.1 2 93.92 even 2
961.2.c.d.439.1 4 93.68 even 6
961.2.c.d.521.1 4 93.26 even 6
961.2.c.f.439.1 4 93.56 odd 6
961.2.c.f.521.1 4 93.5 odd 6
961.2.d.b.531.1 4 93.29 even 10
961.2.d.b.628.1 4 93.77 even 10
961.2.d.e.374.1 4 93.23 even 10
961.2.d.e.388.1 4 93.89 even 10
961.2.d.f.374.1 4 93.8 odd 10
961.2.d.f.388.1 4 93.35 odd 10
961.2.g.b.448.1 8 93.80 odd 30
961.2.g.b.547.1 8 93.50 odd 30
961.2.g.b.844.1 8 93.41 odd 30
961.2.g.b.846.1 8 93.59 odd 30
961.2.g.c.448.1 8 93.44 even 30
961.2.g.c.547.1 8 93.74 even 30
961.2.g.c.844.1 8 93.83 even 30
961.2.g.c.846.1 8 93.65 even 30
961.2.g.f.235.1 8 93.38 odd 30
961.2.g.f.338.1 8 93.20 odd 30
961.2.g.f.732.1 8 93.71 odd 30
961.2.g.f.816.1 8 93.14 odd 30
961.2.g.g.235.1 8 93.86 even 30
961.2.g.g.338.1 8 93.11 even 30
961.2.g.g.732.1 8 93.53 even 30
961.2.g.g.816.1 8 93.17 even 30
8649.2.a.f.1.2 2 31.30 odd 2
8649.2.a.g.1.2 2 1.1 even 1 trivial