Properties

Label 961.2.a.e.1.1
Level 961961
Weight 22
Character 961.1
Self dual yes
Analytic conductor 7.6747.674
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(1,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 961=312 961 = 31^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 961.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 7.673623634257.67362363425
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ10)+\Q(\zeta_{10})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x1 x^{2} - x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 31)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 0.618034-0.618034 of defining polynomial
Character χ\chi == 961.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q0.618034q2+1.00000q31.61803q42.61803q50.618034q6+3.00000q7+2.23607q82.00000q9+1.61803q10+0.763932q111.61803q124.85410q131.85410q142.61803q15+1.85410q160.236068q17+1.23607q18+5.00000q19+4.23607q20+3.00000q210.472136q22+5.47214q23+2.23607q24+1.85410q25+3.00000q265.00000q274.85410q28+8.61803q29+1.61803q305.61803q32+0.763932q33+0.145898q347.85410q35+3.23607q360.236068q373.09017q384.85410q395.85410q40+6.47214q411.85410q42+4.61803q431.23607q44+5.23607q453.38197q463.38197q47+1.85410q48+2.00000q491.14590q500.236068q51+7.85410q52+12.7082q53+3.09017q542.00000q55+6.70820q56+5.00000q575.32624q58+9.47214q59+4.23607q60+6.94427q616.00000q630.236068q64+12.7082q650.472136q664.23607q67+0.381966q68+5.47214q69+4.85410q70+0.0901699q714.47214q72+8.56231q73+0.145898q74+1.85410q758.09017q76+2.29180q77+3.00000q784.85410q80+1.00000q814.00000q82+4.09017q834.85410q84+0.618034q852.85410q86+8.61803q87+1.70820q88+6.38197q893.23607q9014.5623q918.85410q92+2.09017q9413.0902q955.61803q965.29180q971.23607q981.52786q99+O(q100)q-0.618034 q^{2} +1.00000 q^{3} -1.61803 q^{4} -2.61803 q^{5} -0.618034 q^{6} +3.00000 q^{7} +2.23607 q^{8} -2.00000 q^{9} +1.61803 q^{10} +0.763932 q^{11} -1.61803 q^{12} -4.85410 q^{13} -1.85410 q^{14} -2.61803 q^{15} +1.85410 q^{16} -0.236068 q^{17} +1.23607 q^{18} +5.00000 q^{19} +4.23607 q^{20} +3.00000 q^{21} -0.472136 q^{22} +5.47214 q^{23} +2.23607 q^{24} +1.85410 q^{25} +3.00000 q^{26} -5.00000 q^{27} -4.85410 q^{28} +8.61803 q^{29} +1.61803 q^{30} -5.61803 q^{32} +0.763932 q^{33} +0.145898 q^{34} -7.85410 q^{35} +3.23607 q^{36} -0.236068 q^{37} -3.09017 q^{38} -4.85410 q^{39} -5.85410 q^{40} +6.47214 q^{41} -1.85410 q^{42} +4.61803 q^{43} -1.23607 q^{44} +5.23607 q^{45} -3.38197 q^{46} -3.38197 q^{47} +1.85410 q^{48} +2.00000 q^{49} -1.14590 q^{50} -0.236068 q^{51} +7.85410 q^{52} +12.7082 q^{53} +3.09017 q^{54} -2.00000 q^{55} +6.70820 q^{56} +5.00000 q^{57} -5.32624 q^{58} +9.47214 q^{59} +4.23607 q^{60} +6.94427 q^{61} -6.00000 q^{63} -0.236068 q^{64} +12.7082 q^{65} -0.472136 q^{66} -4.23607 q^{67} +0.381966 q^{68} +5.47214 q^{69} +4.85410 q^{70} +0.0901699 q^{71} -4.47214 q^{72} +8.56231 q^{73} +0.145898 q^{74} +1.85410 q^{75} -8.09017 q^{76} +2.29180 q^{77} +3.00000 q^{78} -4.85410 q^{80} +1.00000 q^{81} -4.00000 q^{82} +4.09017 q^{83} -4.85410 q^{84} +0.618034 q^{85} -2.85410 q^{86} +8.61803 q^{87} +1.70820 q^{88} +6.38197 q^{89} -3.23607 q^{90} -14.5623 q^{91} -8.85410 q^{92} +2.09017 q^{94} -13.0902 q^{95} -5.61803 q^{96} -5.29180 q^{97} -1.23607 q^{98} -1.52786 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q2+2q3q43q5+q6+6q74q9+q10+6q11q123q13+3q143q153q16+4q172q18+10q19+4q20+6q21+12q99+O(q100) 2 q + q^{2} + 2 q^{3} - q^{4} - 3 q^{5} + q^{6} + 6 q^{7} - 4 q^{9} + q^{10} + 6 q^{11} - q^{12} - 3 q^{13} + 3 q^{14} - 3 q^{15} - 3 q^{16} + 4 q^{17} - 2 q^{18} + 10 q^{19} + 4 q^{20} + 6 q^{21}+ \cdots - 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.618034 −0.437016 −0.218508 0.975835i 0.570119π-0.570119\pi
−0.218508 + 0.975835i 0.570119π0.570119\pi
33 1.00000 0.577350 0.288675 0.957427i 0.406785π-0.406785\pi
0.288675 + 0.957427i 0.406785π0.406785\pi
44 −1.61803 −0.809017
55 −2.61803 −1.17082 −0.585410 0.810737i 0.699067π-0.699067\pi
−0.585410 + 0.810737i 0.699067π0.699067\pi
66 −0.618034 −0.252311
77 3.00000 1.13389 0.566947 0.823754i 0.308125π-0.308125\pi
0.566947 + 0.823754i 0.308125π0.308125\pi
88 2.23607 0.790569
99 −2.00000 −0.666667
1010 1.61803 0.511667
1111 0.763932 0.230334 0.115167 0.993346i 0.463260π-0.463260\pi
0.115167 + 0.993346i 0.463260π0.463260\pi
1212 −1.61803 −0.467086
1313 −4.85410 −1.34629 −0.673143 0.739512i 0.735056π-0.735056\pi
−0.673143 + 0.739512i 0.735056π0.735056\pi
1414 −1.85410 −0.495530
1515 −2.61803 −0.675973
1616 1.85410 0.463525
1717 −0.236068 −0.0572549 −0.0286274 0.999590i 0.509114π-0.509114\pi
−0.0286274 + 0.999590i 0.509114π0.509114\pi
1818 1.23607 0.291344
1919 5.00000 1.14708 0.573539 0.819178i 0.305570π-0.305570\pi
0.573539 + 0.819178i 0.305570π0.305570\pi
2020 4.23607 0.947214
2121 3.00000 0.654654
2222 −0.472136 −0.100660
2323 5.47214 1.14102 0.570510 0.821291i 0.306746π-0.306746\pi
0.570510 + 0.821291i 0.306746π0.306746\pi
2424 2.23607 0.456435
2525 1.85410 0.370820
2626 3.00000 0.588348
2727 −5.00000 −0.962250
2828 −4.85410 −0.917339
2929 8.61803 1.60033 0.800164 0.599781i 0.204746π-0.204746\pi
0.800164 + 0.599781i 0.204746π0.204746\pi
3030 1.61803 0.295411
3131 0 0
3232 −5.61803 −0.993137
3333 0.763932 0.132983
3434 0.145898 0.0250213
3535 −7.85410 −1.32759
3636 3.23607 0.539345
3737 −0.236068 −0.0388093 −0.0194047 0.999812i 0.506177π-0.506177\pi
−0.0194047 + 0.999812i 0.506177π0.506177\pi
3838 −3.09017 −0.501292
3939 −4.85410 −0.777278
4040 −5.85410 −0.925615
4141 6.47214 1.01078 0.505389 0.862892i 0.331349π-0.331349\pi
0.505389 + 0.862892i 0.331349π0.331349\pi
4242 −1.85410 −0.286094
4343 4.61803 0.704244 0.352122 0.935954i 0.385460π-0.385460\pi
0.352122 + 0.935954i 0.385460π0.385460\pi
4444 −1.23607 −0.186344
4545 5.23607 0.780547
4646 −3.38197 −0.498644
4747 −3.38197 −0.493310 −0.246655 0.969103i 0.579332π-0.579332\pi
−0.246655 + 0.969103i 0.579332π0.579332\pi
4848 1.85410 0.267617
4949 2.00000 0.285714
5050 −1.14590 −0.162054
5151 −0.236068 −0.0330561
5252 7.85410 1.08917
5353 12.7082 1.74561 0.872803 0.488073i 0.162300π-0.162300\pi
0.872803 + 0.488073i 0.162300π0.162300\pi
5454 3.09017 0.420519
5555 −2.00000 −0.269680
5656 6.70820 0.896421
5757 5.00000 0.662266
5858 −5.32624 −0.699369
5959 9.47214 1.23317 0.616584 0.787289i 0.288516π-0.288516\pi
0.616584 + 0.787289i 0.288516π0.288516\pi
6060 4.23607 0.546874
6161 6.94427 0.889123 0.444561 0.895748i 0.353360π-0.353360\pi
0.444561 + 0.895748i 0.353360π0.353360\pi
6262 0 0
6363 −6.00000 −0.755929
6464 −0.236068 −0.0295085
6565 12.7082 1.57626
6666 −0.472136 −0.0581159
6767 −4.23607 −0.517518 −0.258759 0.965942i 0.583314π-0.583314\pi
−0.258759 + 0.965942i 0.583314π0.583314\pi
6868 0.381966 0.0463202
6969 5.47214 0.658768
7070 4.85410 0.580176
7171 0.0901699 0.0107012 0.00535060 0.999986i 0.498297π-0.498297\pi
0.00535060 + 0.999986i 0.498297π0.498297\pi
7272 −4.47214 −0.527046
7373 8.56231 1.00214 0.501071 0.865406i 0.332940π-0.332940\pi
0.501071 + 0.865406i 0.332940π0.332940\pi
7474 0.145898 0.0169603
7575 1.85410 0.214093
7676 −8.09017 −0.928006
7777 2.29180 0.261174
7878 3.00000 0.339683
7979 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8080 −4.85410 −0.542705
8181 1.00000 0.111111
8282 −4.00000 −0.441726
8383 4.09017 0.448954 0.224477 0.974479i 0.427933π-0.427933\pi
0.224477 + 0.974479i 0.427933π0.427933\pi
8484 −4.85410 −0.529626
8585 0.618034 0.0670352
8686 −2.85410 −0.307766
8787 8.61803 0.923950
8888 1.70820 0.182095
8989 6.38197 0.676487 0.338244 0.941059i 0.390167π-0.390167\pi
0.338244 + 0.941059i 0.390167π0.390167\pi
9090 −3.23607 −0.341112
9191 −14.5623 −1.52654
9292 −8.85410 −0.923104
9393 0 0
9494 2.09017 0.215585
9595 −13.0902 −1.34302
9696 −5.61803 −0.573388
9797 −5.29180 −0.537300 −0.268650 0.963238i 0.586578π-0.586578\pi
−0.268650 + 0.963238i 0.586578π0.586578\pi
9898 −1.23607 −0.124862
9999 −1.52786 −0.153556
100100 −3.00000 −0.300000
101101 4.76393 0.474029 0.237014 0.971506i 0.423831π-0.423831\pi
0.237014 + 0.971506i 0.423831π0.423831\pi
102102 0.145898 0.0144461
103103 −0.145898 −0.0143758 −0.00718788 0.999974i 0.502288π-0.502288\pi
−0.00718788 + 0.999974i 0.502288π0.502288\pi
104104 −10.8541 −1.06433
105105 −7.85410 −0.766482
106106 −7.85410 −0.762858
107107 1.09017 0.105391 0.0526954 0.998611i 0.483219π-0.483219\pi
0.0526954 + 0.998611i 0.483219π0.483219\pi
108108 8.09017 0.778477
109109 −8.41641 −0.806146 −0.403073 0.915168i 0.632058π-0.632058\pi
−0.403073 + 0.915168i 0.632058π0.632058\pi
110110 1.23607 0.117854
111111 −0.236068 −0.0224066
112112 5.56231 0.525589
113113 −1.85410 −0.174419 −0.0872096 0.996190i 0.527795π-0.527795\pi
−0.0872096 + 0.996190i 0.527795π0.527795\pi
114114 −3.09017 −0.289421
115115 −14.3262 −1.33593
116116 −13.9443 −1.29469
117117 9.70820 0.897524
118118 −5.85410 −0.538914
119119 −0.708204 −0.0649209
120120 −5.85410 −0.534404
121121 −10.4164 −0.946946
122122 −4.29180 −0.388561
123123 6.47214 0.583573
124124 0 0
125125 8.23607 0.736656
126126 3.70820 0.330353
127127 −10.2361 −0.908304 −0.454152 0.890924i 0.650058π-0.650058\pi
−0.454152 + 0.890924i 0.650058π0.650058\pi
128128 11.3820 1.00603
129129 4.61803 0.406595
130130 −7.85410 −0.688850
131131 0.0901699 0.00787818 0.00393909 0.999992i 0.498746π-0.498746\pi
0.00393909 + 0.999992i 0.498746π0.498746\pi
132132 −1.23607 −0.107586
133133 15.0000 1.30066
134134 2.61803 0.226164
135135 13.0902 1.12662
136136 −0.527864 −0.0452640
137137 6.47214 0.552952 0.276476 0.961021i 0.410833π-0.410833\pi
0.276476 + 0.961021i 0.410833π0.410833\pi
138138 −3.38197 −0.287892
139139 −5.85410 −0.496538 −0.248269 0.968691i 0.579862π-0.579862\pi
−0.248269 + 0.968691i 0.579862π0.579862\pi
140140 12.7082 1.07404
141141 −3.38197 −0.284813
142142 −0.0557281 −0.00467660
143143 −3.70820 −0.310096
144144 −3.70820 −0.309017
145145 −22.5623 −1.87370
146146 −5.29180 −0.437952
147147 2.00000 0.164957
148148 0.381966 0.0313974
149149 −17.0344 −1.39552 −0.697758 0.716334i 0.745819π-0.745819\pi
−0.697758 + 0.716334i 0.745819π0.745819\pi
150150 −1.14590 −0.0935622
151151 19.5066 1.58742 0.793711 0.608295i 0.208146π-0.208146\pi
0.793711 + 0.608295i 0.208146π0.208146\pi
152152 11.1803 0.906845
153153 0.472136 0.0381699
154154 −1.41641 −0.114137
155155 0 0
156156 7.85410 0.628831
157157 9.70820 0.774799 0.387400 0.921912i 0.373373π-0.373373\pi
0.387400 + 0.921912i 0.373373π0.373373\pi
158158 0 0
159159 12.7082 1.00783
160160 14.7082 1.16279
161161 16.4164 1.29379
162162 −0.618034 −0.0485573
163163 −12.7082 −0.995383 −0.497692 0.867354i 0.665819π-0.665819\pi
−0.497692 + 0.867354i 0.665819π0.665819\pi
164164 −10.4721 −0.817736
165165 −2.00000 −0.155700
166166 −2.52786 −0.196200
167167 9.23607 0.714708 0.357354 0.933969i 0.383679π-0.383679\pi
0.357354 + 0.933969i 0.383679π0.383679\pi
168168 6.70820 0.517549
169169 10.5623 0.812485
170170 −0.381966 −0.0292955
171171 −10.0000 −0.764719
172172 −7.47214 −0.569745
173173 0.909830 0.0691731 0.0345865 0.999402i 0.488989π-0.488989\pi
0.0345865 + 0.999402i 0.488989π0.488989\pi
174174 −5.32624 −0.403781
175175 5.56231 0.420471
176176 1.41641 0.106766
177177 9.47214 0.711969
178178 −3.94427 −0.295636
179179 −19.7984 −1.47980 −0.739900 0.672717i 0.765127π-0.765127\pi
−0.739900 + 0.672717i 0.765127π0.765127\pi
180180 −8.47214 −0.631476
181181 −17.0000 −1.26360 −0.631800 0.775131i 0.717684π-0.717684\pi
−0.631800 + 0.775131i 0.717684π0.717684\pi
182182 9.00000 0.667124
183183 6.94427 0.513335
184184 12.2361 0.902055
185185 0.618034 0.0454388
186186 0 0
187187 −0.180340 −0.0131878
188188 5.47214 0.399097
189189 −15.0000 −1.09109
190190 8.09017 0.586923
191191 −16.0902 −1.16424 −0.582122 0.813102i 0.697777π-0.697777\pi
−0.582122 + 0.813102i 0.697777π0.697777\pi
192192 −0.236068 −0.0170367
193193 −2.38197 −0.171458 −0.0857288 0.996319i 0.527322π-0.527322\pi
−0.0857288 + 0.996319i 0.527322π0.527322\pi
194194 3.27051 0.234809
195195 12.7082 0.910053
196196 −3.23607 −0.231148
197197 −16.4164 −1.16962 −0.584810 0.811170i 0.698831π-0.698831\pi
−0.584810 + 0.811170i 0.698831π0.698831\pi
198198 0.944272 0.0671065
199199 26.7082 1.89329 0.946647 0.322272i 0.104446π-0.104446\pi
0.946647 + 0.322272i 0.104446π0.104446\pi
200200 4.14590 0.293159
201201 −4.23607 −0.298789
202202 −2.94427 −0.207158
203203 25.8541 1.81460
204204 0.381966 0.0267430
205205 −16.9443 −1.18344
206206 0.0901699 0.00628244
207207 −10.9443 −0.760679
208208 −9.00000 −0.624038
209209 3.81966 0.264211
210210 4.85410 0.334965
211211 −8.00000 −0.550743 −0.275371 0.961338i 0.588801π-0.588801\pi
−0.275371 + 0.961338i 0.588801π0.588801\pi
212212 −20.5623 −1.41222
213213 0.0901699 0.00617834
214214 −0.673762 −0.0460574
215215 −12.0902 −0.824543
216216 −11.1803 −0.760726
217217 0 0
218218 5.20163 0.352299
219219 8.56231 0.578587
220220 3.23607 0.218176
221221 1.14590 0.0770814
222222 0.145898 0.00979203
223223 −0.708204 −0.0474248 −0.0237124 0.999719i 0.507549π-0.507549\pi
−0.0237124 + 0.999719i 0.507549π0.507549\pi
224224 −16.8541 −1.12611
225225 −3.70820 −0.247214
226226 1.14590 0.0762240
227227 −20.7426 −1.37674 −0.688369 0.725361i 0.741673π-0.741673\pi
−0.688369 + 0.725361i 0.741673π0.741673\pi
228228 −8.09017 −0.535785
229229 7.23607 0.478173 0.239086 0.970998i 0.423152π-0.423152\pi
0.239086 + 0.970998i 0.423152π0.423152\pi
230230 8.85410 0.583822
231231 2.29180 0.150789
232232 19.2705 1.26517
233233 18.7984 1.23152 0.615761 0.787933i 0.288849π-0.288849\pi
0.615761 + 0.787933i 0.288849π0.288849\pi
234234 −6.00000 −0.392232
235235 8.85410 0.577578
236236 −15.3262 −0.997653
237237 0 0
238238 0.437694 0.0283715
239239 13.4164 0.867835 0.433918 0.900953i 0.357131π-0.357131\pi
0.433918 + 0.900953i 0.357131π0.357131\pi
240240 −4.85410 −0.313331
241241 8.52786 0.549328 0.274664 0.961540i 0.411433π-0.411433\pi
0.274664 + 0.961540i 0.411433π0.411433\pi
242242 6.43769 0.413831
243243 16.0000 1.02640
244244 −11.2361 −0.719316
245245 −5.23607 −0.334520
246246 −4.00000 −0.255031
247247 −24.2705 −1.54430
248248 0 0
249249 4.09017 0.259204
250250 −5.09017 −0.321931
251251 −0.944272 −0.0596019 −0.0298010 0.999556i 0.509487π-0.509487\pi
−0.0298010 + 0.999556i 0.509487π0.509487\pi
252252 9.70820 0.611559
253253 4.18034 0.262816
254254 6.32624 0.396943
255255 0.618034 0.0387028
256256 −6.56231 −0.410144
257257 1.41641 0.0883531 0.0441765 0.999024i 0.485934π-0.485934\pi
0.0441765 + 0.999024i 0.485934π0.485934\pi
258258 −2.85410 −0.177689
259259 −0.708204 −0.0440057
260260 −20.5623 −1.27522
261261 −17.2361 −1.06689
262262 −0.0557281 −0.00344289
263263 10.7984 0.665856 0.332928 0.942952i 0.391963π-0.391963\pi
0.332928 + 0.942952i 0.391963π0.391963\pi
264264 1.70820 0.105133
265265 −33.2705 −2.04379
266266 −9.27051 −0.568411
267267 6.38197 0.390570
268268 6.85410 0.418681
269269 1.38197 0.0842600 0.0421300 0.999112i 0.486586π-0.486586\pi
0.0421300 + 0.999112i 0.486586π0.486586\pi
270270 −8.09017 −0.492352
271271 −9.56231 −0.580869 −0.290434 0.956895i 0.593800π-0.593800\pi
−0.290434 + 0.956895i 0.593800π0.593800\pi
272272 −0.437694 −0.0265391
273273 −14.5623 −0.881351
274274 −4.00000 −0.241649
275275 1.41641 0.0854126
276276 −8.85410 −0.532954
277277 −13.3262 −0.800696 −0.400348 0.916363i 0.631111π-0.631111\pi
−0.400348 + 0.916363i 0.631111π0.631111\pi
278278 3.61803 0.216995
279279 0 0
280280 −17.5623 −1.04955
281281 19.0344 1.13550 0.567750 0.823201i 0.307814π-0.307814\pi
0.567750 + 0.823201i 0.307814π0.307814\pi
282282 2.09017 0.124468
283283 6.56231 0.390089 0.195044 0.980794i 0.437515π-0.437515\pi
0.195044 + 0.980794i 0.437515π0.437515\pi
284284 −0.145898 −0.00865746
285285 −13.0902 −0.775395
286286 2.29180 0.135517
287287 19.4164 1.14611
288288 11.2361 0.662092
289289 −16.9443 −0.996722
290290 13.9443 0.818836
291291 −5.29180 −0.310211
292292 −13.8541 −0.810750
293293 −8.23607 −0.481156 −0.240578 0.970630i 0.577337π-0.577337\pi
−0.240578 + 0.970630i 0.577337π0.577337\pi
294294 −1.23607 −0.0720889
295295 −24.7984 −1.44382
296296 −0.527864 −0.0306815
297297 −3.81966 −0.221639
298298 10.5279 0.609863
299299 −26.5623 −1.53614
300300 −3.00000 −0.173205
301301 13.8541 0.798537
302302 −12.0557 −0.693729
303303 4.76393 0.273681
304304 9.27051 0.531700
305305 −18.1803 −1.04100
306306 −0.291796 −0.0166809
307307 6.09017 0.347584 0.173792 0.984782i 0.444398π-0.444398\pi
0.173792 + 0.984782i 0.444398π0.444398\pi
308308 −3.70820 −0.211295
309309 −0.145898 −0.00829985
310310 0 0
311311 16.4721 0.934049 0.467025 0.884244i 0.345326π-0.345326\pi
0.467025 + 0.884244i 0.345326π0.345326\pi
312312 −10.8541 −0.614493
313313 −1.23607 −0.0698667 −0.0349333 0.999390i 0.511122π-0.511122\pi
−0.0349333 + 0.999390i 0.511122π0.511122\pi
314314 −6.00000 −0.338600
315315 15.7082 0.885057
316316 0 0
317317 25.8885 1.45405 0.727023 0.686613i 0.240903π-0.240903\pi
0.727023 + 0.686613i 0.240903π0.240903\pi
318318 −7.85410 −0.440436
319319 6.58359 0.368610
320320 0.618034 0.0345492
321321 1.09017 0.0608474
322322 −10.1459 −0.565409
323323 −1.18034 −0.0656759
324324 −1.61803 −0.0898908
325325 −9.00000 −0.499230
326326 7.85410 0.434998
327327 −8.41641 −0.465428
328328 14.4721 0.799090
329329 −10.1459 −0.559361
330330 1.23607 0.0680433
331331 −11.2705 −0.619483 −0.309742 0.950821i 0.600243π-0.600243\pi
−0.309742 + 0.950821i 0.600243π0.600243\pi
332332 −6.61803 −0.363212
333333 0.472136 0.0258729
334334 −5.70820 −0.312339
335335 11.0902 0.605921
336336 5.56231 0.303449
337337 −18.9787 −1.03384 −0.516918 0.856035i 0.672921π-0.672921\pi
−0.516918 + 0.856035i 0.672921π0.672921\pi
338338 −6.52786 −0.355069
339339 −1.85410 −0.100701
340340 −1.00000 −0.0542326
341341 0 0
342342 6.18034 0.334195
343343 −15.0000 −0.809924
344344 10.3262 0.556753
345345 −14.3262 −0.771299
346346 −0.562306 −0.0302298
347347 −8.12461 −0.436152 −0.218076 0.975932i 0.569978π-0.569978\pi
−0.218076 + 0.975932i 0.569978π0.569978\pi
348348 −13.9443 −0.747491
349349 −16.7082 −0.894370 −0.447185 0.894442i 0.647573π-0.647573\pi
−0.447185 + 0.894442i 0.647573π0.647573\pi
350350 −3.43769 −0.183752
351351 24.2705 1.29546
352352 −4.29180 −0.228753
353353 32.3820 1.72352 0.861759 0.507318i 0.169363π-0.169363\pi
0.861759 + 0.507318i 0.169363π0.169363\pi
354354 −5.85410 −0.311142
355355 −0.236068 −0.0125292
356356 −10.3262 −0.547290
357357 −0.708204 −0.0374821
358358 12.2361 0.646696
359359 −25.3262 −1.33667 −0.668334 0.743861i 0.732992π-0.732992\pi
−0.668334 + 0.743861i 0.732992π0.732992\pi
360360 11.7082 0.617077
361361 6.00000 0.315789
362362 10.5066 0.552213
363363 −10.4164 −0.546720
364364 23.5623 1.23500
365365 −22.4164 −1.17333
366366 −4.29180 −0.224336
367367 36.2705 1.89331 0.946653 0.322256i 0.104441π-0.104441\pi
0.946653 + 0.322256i 0.104441π0.104441\pi
368368 10.1459 0.528891
369369 −12.9443 −0.673852
370370 −0.381966 −0.0198575
371371 38.1246 1.97933
372372 0 0
373373 −0.347524 −0.0179941 −0.00899706 0.999960i 0.502864π-0.502864\pi
−0.00899706 + 0.999960i 0.502864π0.502864\pi
374374 0.111456 0.00576326
375375 8.23607 0.425309
376376 −7.56231 −0.389996
377377 −41.8328 −2.15450
378378 9.27051 0.476824
379379 −18.4164 −0.945987 −0.472994 0.881066i 0.656827π-0.656827\pi
−0.472994 + 0.881066i 0.656827π0.656827\pi
380380 21.1803 1.08653
381381 −10.2361 −0.524410
382382 9.94427 0.508793
383383 16.8541 0.861204 0.430602 0.902542i 0.358301π-0.358301\pi
0.430602 + 0.902542i 0.358301π0.358301\pi
384384 11.3820 0.580834
385385 −6.00000 −0.305788
386386 1.47214 0.0749297
387387 −9.23607 −0.469496
388388 8.56231 0.434685
389389 29.0689 1.47385 0.736925 0.675974i 0.236277π-0.236277\pi
0.736925 + 0.675974i 0.236277π0.236277\pi
390390 −7.85410 −0.397708
391391 −1.29180 −0.0653289
392392 4.47214 0.225877
393393 0.0901699 0.00454847
394394 10.1459 0.511143
395395 0 0
396396 2.47214 0.124230
397397 16.2918 0.817662 0.408831 0.912610i 0.365937π-0.365937\pi
0.408831 + 0.912610i 0.365937π0.365937\pi
398398 −16.5066 −0.827400
399399 15.0000 0.750939
400400 3.43769 0.171885
401401 29.8328 1.48978 0.744890 0.667187i 0.232502π-0.232502\pi
0.744890 + 0.667187i 0.232502π0.232502\pi
402402 2.61803 0.130576
403403 0 0
404404 −7.70820 −0.383497
405405 −2.61803 −0.130091
406406 −15.9787 −0.793010
407407 −0.180340 −0.00893912
408408 −0.527864 −0.0261332
409409 6.18034 0.305598 0.152799 0.988257i 0.451171π-0.451171\pi
0.152799 + 0.988257i 0.451171π0.451171\pi
410410 10.4721 0.517182
411411 6.47214 0.319247
412412 0.236068 0.0116302
413413 28.4164 1.39828
414414 6.76393 0.332429
415415 −10.7082 −0.525645
416416 27.2705 1.33705
417417 −5.85410 −0.286677
418418 −2.36068 −0.115465
419419 4.47214 0.218478 0.109239 0.994016i 0.465159π-0.465159\pi
0.109239 + 0.994016i 0.465159π0.465159\pi
420420 12.7082 0.620097
421421 14.7639 0.719550 0.359775 0.933039i 0.382853π-0.382853\pi
0.359775 + 0.933039i 0.382853π0.382853\pi
422422 4.94427 0.240683
423423 6.76393 0.328874
424424 28.4164 1.38002
425425 −0.437694 −0.0212313
426426 −0.0557281 −0.00270003
427427 20.8328 1.00817
428428 −1.76393 −0.0852629
429429 −3.70820 −0.179034
430430 7.47214 0.360338
431431 29.2361 1.40825 0.704126 0.710075i 0.251339π-0.251339\pi
0.704126 + 0.710075i 0.251339π0.251339\pi
432432 −9.27051 −0.446028
433433 −0.583592 −0.0280456 −0.0140228 0.999902i 0.504464π-0.504464\pi
−0.0140228 + 0.999902i 0.504464π0.504464\pi
434434 0 0
435435 −22.5623 −1.08178
436436 13.6180 0.652186
437437 27.3607 1.30884
438438 −5.29180 −0.252852
439439 41.8328 1.99657 0.998286 0.0585295i 0.0186412π-0.0186412\pi
0.998286 + 0.0585295i 0.0186412π0.0186412\pi
440440 −4.47214 −0.213201
441441 −4.00000 −0.190476
442442 −0.708204 −0.0336858
443443 −41.1246 −1.95389 −0.976945 0.213493i 0.931516π-0.931516\pi
−0.976945 + 0.213493i 0.931516π0.931516\pi
444444 0.381966 0.0181273
445445 −16.7082 −0.792045
446446 0.437694 0.0207254
447447 −17.0344 −0.805701
448448 −0.708204 −0.0334595
449449 −24.0689 −1.13588 −0.567940 0.823070i 0.692260π-0.692260\pi
−0.567940 + 0.823070i 0.692260π0.692260\pi
450450 2.29180 0.108036
451451 4.94427 0.232817
452452 3.00000 0.141108
453453 19.5066 0.916499
454454 12.8197 0.601656
455455 38.1246 1.78731
456456 11.1803 0.523567
457457 15.7426 0.736410 0.368205 0.929745i 0.379972π-0.379972\pi
0.368205 + 0.929745i 0.379972π0.379972\pi
458458 −4.47214 −0.208969
459459 1.18034 0.0550935
460460 23.1803 1.08079
461461 −10.7426 −0.500335 −0.250167 0.968203i 0.580486π-0.580486\pi
−0.250167 + 0.968203i 0.580486π0.580486\pi
462462 −1.41641 −0.0658973
463463 31.1246 1.44648 0.723242 0.690595i 0.242651π-0.242651\pi
0.723242 + 0.690595i 0.242651π0.242651\pi
464464 15.9787 0.741793
465465 0 0
466466 −11.6180 −0.538195
467467 −32.7771 −1.51674 −0.758371 0.651823i 0.774005π-0.774005\pi
−0.758371 + 0.651823i 0.774005π0.774005\pi
468468 −15.7082 −0.726112
469469 −12.7082 −0.586810
470470 −5.47214 −0.252411
471471 9.70820 0.447330
472472 21.1803 0.974904
473473 3.52786 0.162211
474474 0 0
475475 9.27051 0.425360
476476 1.14590 0.0525222
477477 −25.4164 −1.16374
478478 −8.29180 −0.379258
479479 −8.94427 −0.408674 −0.204337 0.978901i 0.565504π-0.565504\pi
−0.204337 + 0.978901i 0.565504π0.565504\pi
480480 14.7082 0.671335
481481 1.14590 0.0522485
482482 −5.27051 −0.240065
483483 16.4164 0.746972
484484 16.8541 0.766096
485485 13.8541 0.629082
486486 −9.88854 −0.448553
487487 −22.9230 −1.03874 −0.519370 0.854550i 0.673833π-0.673833\pi
−0.519370 + 0.854550i 0.673833π0.673833\pi
488488 15.5279 0.702913
489489 −12.7082 −0.574685
490490 3.23607 0.146191
491491 27.5967 1.24542 0.622712 0.782451i 0.286031π-0.286031\pi
0.622712 + 0.782451i 0.286031π0.286031\pi
492492 −10.4721 −0.472120
493493 −2.03444 −0.0916267
494494 15.0000 0.674882
495495 4.00000 0.179787
496496 0 0
497497 0.270510 0.0121340
498498 −2.52786 −0.113276
499499 −4.14590 −0.185596 −0.0927979 0.995685i 0.529581π-0.529581\pi
−0.0927979 + 0.995685i 0.529581π0.529581\pi
500500 −13.3262 −0.595967
501501 9.23607 0.412637
502502 0.583592 0.0260470
503503 13.1459 0.586147 0.293073 0.956090i 0.405322π-0.405322\pi
0.293073 + 0.956090i 0.405322π0.405322\pi
504504 −13.4164 −0.597614
505505 −12.4721 −0.555003
506506 −2.58359 −0.114855
507507 10.5623 0.469088
508508 16.5623 0.734833
509509 1.90983 0.0846517 0.0423259 0.999104i 0.486523π-0.486523\pi
0.0423259 + 0.999104i 0.486523π0.486523\pi
510510 −0.381966 −0.0169137
511511 25.6869 1.13632
512512 −18.7082 −0.826794
513513 −25.0000 −1.10378
514514 −0.875388 −0.0386117
515515 0.381966 0.0168314
516516 −7.47214 −0.328942
517517 −2.58359 −0.113626
518518 0.437694 0.0192312
519519 0.909830 0.0399371
520520 28.4164 1.24614
521521 31.0689 1.36115 0.680576 0.732677i 0.261729π-0.261729\pi
0.680576 + 0.732677i 0.261729π0.261729\pi
522522 10.6525 0.466246
523523 −34.1246 −1.49217 −0.746083 0.665853i 0.768068π-0.768068\pi
−0.746083 + 0.665853i 0.768068π0.768068\pi
524524 −0.145898 −0.00637359
525525 5.56231 0.242759
526526 −6.67376 −0.290990
527527 0 0
528528 1.41641 0.0616412
529529 6.94427 0.301925
530530 20.5623 0.893169
531531 −18.9443 −0.822111
532532 −24.2705 −1.05226
533533 −31.4164 −1.36080
534534 −3.94427 −0.170685
535535 −2.85410 −0.123394
536536 −9.47214 −0.409134
537537 −19.7984 −0.854363
538538 −0.854102 −0.0368230
539539 1.52786 0.0658098
540540 −21.1803 −0.911457
541541 22.0000 0.945854 0.472927 0.881102i 0.343197π-0.343197\pi
0.472927 + 0.881102i 0.343197π0.343197\pi
542542 5.90983 0.253849
543543 −17.0000 −0.729540
544544 1.32624 0.0568620
545545 22.0344 0.943852
546546 9.00000 0.385164
547547 −23.7082 −1.01369 −0.506845 0.862037i 0.669188π-0.669188\pi
−0.506845 + 0.862037i 0.669188π0.669188\pi
548548 −10.4721 −0.447347
549549 −13.8885 −0.592749
550550 −0.875388 −0.0373267
551551 43.0902 1.83570
552552 12.2361 0.520802
553553 0 0
554554 8.23607 0.349917
555555 0.618034 0.0262341
556556 9.47214 0.401708
557557 −35.8885 −1.52065 −0.760323 0.649545i 0.774959π-0.774959\pi
−0.760323 + 0.649545i 0.774959π0.774959\pi
558558 0 0
559559 −22.4164 −0.948113
560560 −14.5623 −0.615370
561561 −0.180340 −0.00761396
562562 −11.7639 −0.496232
563563 −8.56231 −0.360858 −0.180429 0.983588i 0.557749π-0.557749\pi
−0.180429 + 0.983588i 0.557749π0.557749\pi
564564 5.47214 0.230418
565565 4.85410 0.204214
566566 −4.05573 −0.170475
567567 3.00000 0.125988
568568 0.201626 0.00846004
569569 −15.5279 −0.650962 −0.325481 0.945549i 0.605526π-0.605526\pi
−0.325481 + 0.945549i 0.605526π0.605526\pi
570570 8.09017 0.338860
571571 −7.00000 −0.292941 −0.146470 0.989215i 0.546791π-0.546791\pi
−0.146470 + 0.989215i 0.546791π0.546791\pi
572572 6.00000 0.250873
573573 −16.0902 −0.672176
574574 −12.0000 −0.500870
575575 10.1459 0.423113
576576 0.472136 0.0196723
577577 38.9787 1.62271 0.811353 0.584557i 0.198732π-0.198732\pi
0.811353 + 0.584557i 0.198732π0.198732\pi
578578 10.4721 0.435583
579579 −2.38197 −0.0989911
580580 36.5066 1.51585
581581 12.2705 0.509067
582582 3.27051 0.135567
583583 9.70820 0.402073
584584 19.1459 0.792263
585585 −25.4164 −1.05084
586586 5.09017 0.210273
587587 −36.0132 −1.48642 −0.743211 0.669057i 0.766698π-0.766698\pi
−0.743211 + 0.669057i 0.766698π0.766698\pi
588588 −3.23607 −0.133453
589589 0 0
590590 15.3262 0.630971
591591 −16.4164 −0.675281
592592 −0.437694 −0.0179891
593593 6.11146 0.250967 0.125484 0.992096i 0.459952π-0.459952\pi
0.125484 + 0.992096i 0.459952π0.459952\pi
594594 2.36068 0.0968599
595595 1.85410 0.0760108
596596 27.5623 1.12900
597597 26.7082 1.09309
598598 16.4164 0.671317
599599 29.7984 1.21753 0.608764 0.793351i 0.291666π-0.291666\pi
0.608764 + 0.793351i 0.291666π0.291666\pi
600600 4.14590 0.169256
601601 −22.0000 −0.897399 −0.448699 0.893683i 0.648113π-0.648113\pi
−0.448699 + 0.893683i 0.648113π0.648113\pi
602602 −8.56231 −0.348974
603603 8.47214 0.345012
604604 −31.5623 −1.28425
605605 27.2705 1.10870
606606 −2.94427 −0.119603
607607 −25.4164 −1.03162 −0.515810 0.856703i 0.672509π-0.672509\pi
−0.515810 + 0.856703i 0.672509π0.672509\pi
608608 −28.0902 −1.13921
609609 25.8541 1.04766
610610 11.2361 0.454935
611611 16.4164 0.664137
612612 −0.763932 −0.0308801
613613 −25.0557 −1.01199 −0.505996 0.862536i 0.668875π-0.668875\pi
−0.505996 + 0.862536i 0.668875π0.668875\pi
614614 −3.76393 −0.151900
615615 −16.9443 −0.683259
616616 5.12461 0.206476
617617 −14.2361 −0.573123 −0.286561 0.958062i 0.592512π-0.592512\pi
−0.286561 + 0.958062i 0.592512π0.592512\pi
618618 0.0901699 0.00362717
619619 40.0000 1.60774 0.803868 0.594808i 0.202772π-0.202772\pi
0.803868 + 0.594808i 0.202772π0.202772\pi
620620 0 0
621621 −27.3607 −1.09795
622622 −10.1803 −0.408194
623623 19.1459 0.767064
624624 −9.00000 −0.360288
625625 −30.8328 −1.23331
626626 0.763932 0.0305329
627627 3.81966 0.152543
628628 −15.7082 −0.626826
629629 0.0557281 0.00222202
630630 −9.70820 −0.386784
631631 8.72949 0.347516 0.173758 0.984788i 0.444409π-0.444409\pi
0.173758 + 0.984788i 0.444409π0.444409\pi
632632 0 0
633633 −8.00000 −0.317971
634634 −16.0000 −0.635441
635635 26.7984 1.06346
636636 −20.5623 −0.815348
637637 −9.70820 −0.384653
638638 −4.06888 −0.161089
639639 −0.180340 −0.00713414
640640 −29.7984 −1.17788
641641 41.0902 1.62296 0.811482 0.584377i 0.198661π-0.198661\pi
0.811482 + 0.584377i 0.198661π0.198661\pi
642642 −0.673762 −0.0265913
643643 −8.14590 −0.321243 −0.160621 0.987016i 0.551350π-0.551350\pi
−0.160621 + 0.987016i 0.551350π0.551350\pi
644644 −26.5623 −1.04670
645645 −12.0902 −0.476050
646646 0.729490 0.0287014
647647 29.8885 1.17504 0.587520 0.809210i 0.300104π-0.300104\pi
0.587520 + 0.809210i 0.300104π0.300104\pi
648648 2.23607 0.0878410
649649 7.23607 0.284041
650650 5.56231 0.218172
651651 0 0
652652 20.5623 0.805282
653653 39.6525 1.55172 0.775861 0.630904i 0.217316π-0.217316\pi
0.775861 + 0.630904i 0.217316π0.217316\pi
654654 5.20163 0.203400
655655 −0.236068 −0.00922394
656656 12.0000 0.468521
657657 −17.1246 −0.668095
658658 6.27051 0.244450
659659 22.6869 0.883757 0.441878 0.897075i 0.354312π-0.354312\pi
0.441878 + 0.897075i 0.354312π0.354312\pi
660660 3.23607 0.125964
661661 −16.6180 −0.646367 −0.323183 0.946336i 0.604753π-0.604753\pi
−0.323183 + 0.946336i 0.604753π0.604753\pi
662662 6.96556 0.270724
663663 1.14590 0.0445030
664664 9.14590 0.354930
665665 −39.2705 −1.52285
666666 −0.291796 −0.0113069
667667 47.1591 1.82601
668668 −14.9443 −0.578211
669669 −0.708204 −0.0273807
670670 −6.85410 −0.264797
671671 5.30495 0.204795
672672 −16.8541 −0.650161
673673 4.41641 0.170240 0.0851200 0.996371i 0.472873π-0.472873\pi
0.0851200 + 0.996371i 0.472873π0.472873\pi
674674 11.7295 0.451803
675675 −9.27051 −0.356822
676676 −17.0902 −0.657314
677677 −28.6525 −1.10120 −0.550602 0.834768i 0.685602π-0.685602\pi
−0.550602 + 0.834768i 0.685602π0.685602\pi
678678 1.14590 0.0440079
679679 −15.8754 −0.609241
680680 1.38197 0.0529960
681681 −20.7426 −0.794860
682682 0 0
683683 10.0557 0.384772 0.192386 0.981319i 0.438377π-0.438377\pi
0.192386 + 0.981319i 0.438377π0.438377\pi
684684 16.1803 0.618671
685685 −16.9443 −0.647407
686686 9.27051 0.353950
687687 7.23607 0.276073
688688 8.56231 0.326435
689689 −61.6869 −2.35008
690690 8.85410 0.337070
691691 3.83282 0.145807 0.0729036 0.997339i 0.476773π-0.476773\pi
0.0729036 + 0.997339i 0.476773π0.476773\pi
692692 −1.47214 −0.0559622
693693 −4.58359 −0.174116
694694 5.02129 0.190605
695695 15.3262 0.581357
696696 19.2705 0.730447
697697 −1.52786 −0.0578720
698698 10.3262 0.390854
699699 18.7984 0.711020
700700 −9.00000 −0.340168
701701 −30.0344 −1.13439 −0.567193 0.823585i 0.691970π-0.691970\pi
−0.567193 + 0.823585i 0.691970π0.691970\pi
702702 −15.0000 −0.566139
703703 −1.18034 −0.0445174
704704 −0.180340 −0.00679682
705705 8.85410 0.333465
706706 −20.0132 −0.753205
707707 14.2918 0.537498
708708 −15.3262 −0.575995
709709 −4.14590 −0.155702 −0.0778512 0.996965i 0.524806π-0.524806\pi
−0.0778512 + 0.996965i 0.524806π0.524806\pi
710710 0.145898 0.00547546
711711 0 0
712712 14.2705 0.534810
713713 0 0
714714 0.437694 0.0163803
715715 9.70820 0.363066
716716 32.0344 1.19718
717717 13.4164 0.501045
718718 15.6525 0.584145
719719 41.3820 1.54329 0.771643 0.636055i 0.219435π-0.219435\pi
0.771643 + 0.636055i 0.219435π0.219435\pi
720720 9.70820 0.361803
721721 −0.437694 −0.0163006
722722 −3.70820 −0.138005
723723 8.52786 0.317155
724724 27.5066 1.02227
725725 15.9787 0.593435
726726 6.43769 0.238925
727727 −23.8328 −0.883910 −0.441955 0.897037i 0.645715π-0.645715\pi
−0.441955 + 0.897037i 0.645715π0.645715\pi
728728 −32.5623 −1.20684
729729 13.0000 0.481481
730730 13.8541 0.512763
731731 −1.09017 −0.0403214
732732 −11.2361 −0.415297
733733 27.9443 1.03215 0.516073 0.856545i 0.327393π-0.327393\pi
0.516073 + 0.856545i 0.327393π0.327393\pi
734734 −22.4164 −0.827405
735735 −5.23607 −0.193135
736736 −30.7426 −1.13319
737737 −3.23607 −0.119202
738738 8.00000 0.294484
739739 −21.7082 −0.798549 −0.399275 0.916831i 0.630738π-0.630738\pi
−0.399275 + 0.916831i 0.630738π0.630738\pi
740740 −1.00000 −0.0367607
741741 −24.2705 −0.891599
742742 −23.5623 −0.864999
743743 3.43769 0.126117 0.0630584 0.998010i 0.479915π-0.479915\pi
0.0630584 + 0.998010i 0.479915π0.479915\pi
744744 0 0
745745 44.5967 1.63390
746746 0.214782 0.00786372
747747 −8.18034 −0.299303
748748 0.291796 0.0106691
749749 3.27051 0.119502
750750 −5.09017 −0.185867
751751 −39.8328 −1.45352 −0.726760 0.686891i 0.758975π-0.758975\pi
−0.726760 + 0.686891i 0.758975π0.758975\pi
752752 −6.27051 −0.228662
753753 −0.944272 −0.0344112
754754 25.8541 0.941551
755755 −51.0689 −1.85859
756756 24.2705 0.882710
757757 −43.1246 −1.56739 −0.783695 0.621145i 0.786668π-0.786668\pi
−0.783695 + 0.621145i 0.786668π0.786668\pi
758758 11.3820 0.413412
759759 4.18034 0.151737
760760 −29.2705 −1.06175
761761 −3.50658 −0.127113 −0.0635567 0.997978i 0.520244π-0.520244\pi
−0.0635567 + 0.997978i 0.520244π0.520244\pi
762762 6.32624 0.229175
763763 −25.2492 −0.914083
764764 26.0344 0.941893
765765 −1.23607 −0.0446901
766766 −10.4164 −0.376360
767767 −45.9787 −1.66020
768768 −6.56231 −0.236797
769769 −53.7426 −1.93801 −0.969005 0.247042i 0.920541π-0.920541\pi
−0.969005 + 0.247042i 0.920541π0.920541\pi
770770 3.70820 0.133634
771771 1.41641 0.0510107
772772 3.85410 0.138712
773773 19.0902 0.686626 0.343313 0.939221i 0.388451π-0.388451\pi
0.343313 + 0.939221i 0.388451π0.388451\pi
774774 5.70820 0.205177
775775 0 0
776776 −11.8328 −0.424773
777777 −0.708204 −0.0254067
778778 −17.9656 −0.644096
779779 32.3607 1.15944
780780 −20.5623 −0.736249
781781 0.0688837 0.00246485
782782 0.798374 0.0285498
783783 −43.0902 −1.53992
784784 3.70820 0.132436
785785 −25.4164 −0.907150
786786 −0.0557281 −0.00198776
787787 −31.2918 −1.11543 −0.557716 0.830032i 0.688322π-0.688322\pi
−0.557716 + 0.830032i 0.688322π0.688322\pi
788788 26.5623 0.946243
789789 10.7984 0.384432
790790 0 0
791791 −5.56231 −0.197773
792792 −3.41641 −0.121397
793793 −33.7082 −1.19701
794794 −10.0689 −0.357331
795795 −33.2705 −1.17998
796796 −43.2148 −1.53171
797797 −9.05573 −0.320770 −0.160385 0.987055i 0.551274π-0.551274\pi
−0.160385 + 0.987055i 0.551274π0.551274\pi
798798 −9.27051 −0.328172
799799 0.798374 0.0282444
800800 −10.4164 −0.368276
801801 −12.7639 −0.450991
802802 −18.4377 −0.651058
803803 6.54102 0.230828
804804 6.85410 0.241726
805805 −42.9787 −1.51480
806806 0 0
807807 1.38197 0.0486475
808808 10.6525 0.374753
809809 −54.7984 −1.92661 −0.963304 0.268412i 0.913501π-0.913501\pi
−0.963304 + 0.268412i 0.913501π0.913501\pi
810810 1.61803 0.0568519
811811 42.7771 1.50211 0.751053 0.660242i 0.229546π-0.229546\pi
0.751053 + 0.660242i 0.229546π0.229546\pi
812812 −41.8328 −1.46804
813813 −9.56231 −0.335365
814814 0.111456 0.00390654
815815 33.2705 1.16542
816816 −0.437694 −0.0153224
817817 23.0902 0.807823
818818 −3.81966 −0.133551
819819 29.1246 1.01770
820820 27.4164 0.957422
821821 32.4721 1.13329 0.566643 0.823964i 0.308242π-0.308242\pi
0.566643 + 0.823964i 0.308242π0.308242\pi
822822 −4.00000 −0.139516
823823 6.12461 0.213491 0.106745 0.994286i 0.465957π-0.465957\pi
0.106745 + 0.994286i 0.465957π0.465957\pi
824824 −0.326238 −0.0113650
825825 1.41641 0.0493130
826826 −17.5623 −0.611071
827827 −2.67376 −0.0929758 −0.0464879 0.998919i 0.514803π-0.514803\pi
−0.0464879 + 0.998919i 0.514803π0.514803\pi
828828 17.7082 0.615403
829829 21.7082 0.753957 0.376979 0.926222i 0.376963π-0.376963\pi
0.376979 + 0.926222i 0.376963π0.376963\pi
830830 6.61803 0.229715
831831 −13.3262 −0.462282
832832 1.14590 0.0397269
833833 −0.472136 −0.0163585
834834 3.61803 0.125282
835835 −24.1803 −0.836795
836836 −6.18034 −0.213752
837837 0 0
838838 −2.76393 −0.0954784
839839 11.1803 0.385988 0.192994 0.981200i 0.438180π-0.438180\pi
0.192994 + 0.981200i 0.438180π0.438180\pi
840840 −17.5623 −0.605957
841841 45.2705 1.56105
842842 −9.12461 −0.314455
843843 19.0344 0.655581
844844 12.9443 0.445560
845845 −27.6525 −0.951274
846846 −4.18034 −0.143723
847847 −31.2492 −1.07374
848848 23.5623 0.809133
849849 6.56231 0.225218
850850 0.270510 0.00927841
851851 −1.29180 −0.0442822
852852 −0.145898 −0.00499838
853853 4.00000 0.136957 0.0684787 0.997653i 0.478185π-0.478185\pi
0.0684787 + 0.997653i 0.478185π0.478185\pi
854854 −12.8754 −0.440587
855855 26.1803 0.895349
856856 2.43769 0.0833187
857857 −8.18034 −0.279435 −0.139718 0.990191i 0.544619π-0.544619\pi
−0.139718 + 0.990191i 0.544619π0.544619\pi
858858 2.29180 0.0782406
859859 −43.2918 −1.47710 −0.738549 0.674200i 0.764488π-0.764488\pi
−0.738549 + 0.674200i 0.764488π0.764488\pi
860860 19.5623 0.667069
861861 19.4164 0.661709
862862 −18.0689 −0.615429
863863 −2.49342 −0.0848771 −0.0424385 0.999099i 0.513513π-0.513513\pi
−0.0424385 + 0.999099i 0.513513π0.513513\pi
864864 28.0902 0.955647
865865 −2.38197 −0.0809893
866866 0.360680 0.0122564
867867 −16.9443 −0.575458
868868 0 0
869869 0 0
870870 13.9443 0.472755
871871 20.5623 0.696727
872872 −18.8197 −0.637314
873873 10.5836 0.358200
874874 −16.9098 −0.571984
875875 24.7082 0.835290
876876 −13.8541 −0.468087
877877 16.2918 0.550135 0.275067 0.961425i 0.411300π-0.411300\pi
0.275067 + 0.961425i 0.411300π0.411300\pi
878878 −25.8541 −0.872534
879879 −8.23607 −0.277796
880880 −3.70820 −0.125004
881881 15.3607 0.517514 0.258757 0.965942i 0.416687π-0.416687\pi
0.258757 + 0.965942i 0.416687π0.416687\pi
882882 2.47214 0.0832411
883883 1.00000 0.0336527 0.0168263 0.999858i 0.494644π-0.494644\pi
0.0168263 + 0.999858i 0.494644π0.494644\pi
884884 −1.85410 −0.0623602
885885 −24.7984 −0.833588
886886 25.4164 0.853881
887887 39.1033 1.31296 0.656481 0.754343i 0.272044π-0.272044\pi
0.656481 + 0.754343i 0.272044π0.272044\pi
888888 −0.527864 −0.0177140
889889 −30.7082 −1.02992
890890 10.3262 0.346136
891891 0.763932 0.0255927
892892 1.14590 0.0383675
893893 −16.9098 −0.565866
894894 10.5279 0.352104
895895 51.8328 1.73258
896896 34.1459 1.14073
897897 −26.5623 −0.886890
898898 14.8754 0.496398
899899 0 0
900900 6.00000 0.200000
901901 −3.00000 −0.0999445
902902 −3.05573 −0.101745
903903 13.8541 0.461036
904904 −4.14590 −0.137891
905905 44.5066 1.47945
906906 −12.0557 −0.400525
907907 52.9230 1.75728 0.878639 0.477486i 0.158452π-0.158452\pi
0.878639 + 0.477486i 0.158452π0.158452\pi
908908 33.5623 1.11380
909909 −9.52786 −0.316019
910910 −23.5623 −0.781083
911911 −8.18034 −0.271027 −0.135513 0.990776i 0.543268π-0.543268\pi
−0.135513 + 0.990776i 0.543268π0.543268\pi
912912 9.27051 0.306977
913913 3.12461 0.103410
914914 −9.72949 −0.321823
915915 −18.1803 −0.601023
916916 −11.7082 −0.386850
917917 0.270510 0.00893302
918918 −0.729490 −0.0240768
919919 9.87539 0.325759 0.162879 0.986646i 0.447922π-0.447922\pi
0.162879 + 0.986646i 0.447922π0.447922\pi
920920 −32.0344 −1.05614
921921 6.09017 0.200678
922922 6.63932 0.218654
923923 −0.437694 −0.0144069
924924 −3.70820 −0.121991
925925 −0.437694 −0.0143913
926926 −19.2361 −0.632136
927927 0.291796 0.00958384
928928 −48.4164 −1.58935
929929 −33.5410 −1.10045 −0.550223 0.835018i 0.685457π-0.685457\pi
−0.550223 + 0.835018i 0.685457π0.685457\pi
930930 0 0
931931 10.0000 0.327737
932932 −30.4164 −0.996323
933933 16.4721 0.539274
934934 20.2574 0.662841
935935 0.472136 0.0154405
936936 21.7082 0.709555
937937 40.4853 1.32260 0.661298 0.750123i 0.270006π-0.270006\pi
0.661298 + 0.750123i 0.270006π0.270006\pi
938938 7.85410 0.256446
939939 −1.23607 −0.0403376
940940 −14.3262 −0.467270
941941 −28.5836 −0.931798 −0.465899 0.884838i 0.654269π-0.654269\pi
−0.465899 + 0.884838i 0.654269π0.654269\pi
942942 −6.00000 −0.195491
943943 35.4164 1.15332
944944 17.5623 0.571604
945945 39.2705 1.27747
946946 −2.18034 −0.0708890
947947 −22.0689 −0.717142 −0.358571 0.933502i 0.616736π-0.616736\pi
−0.358571 + 0.933502i 0.616736π0.616736\pi
948948 0 0
949949 −41.5623 −1.34917
950950 −5.72949 −0.185889
951951 25.8885 0.839494
952952 −1.58359 −0.0513245
953953 −42.2148 −1.36747 −0.683735 0.729730i 0.739646π-0.739646\pi
−0.683735 + 0.729730i 0.739646π0.739646\pi
954954 15.7082 0.508572
955955 42.1246 1.36312
956956 −21.7082 −0.702093
957957 6.58359 0.212817
958958 5.52786 0.178597
959959 19.4164 0.626989
960960 0.618034 0.0199470
961961 0 0
962962 −0.708204 −0.0228334
963963 −2.18034 −0.0702605
964964 −13.7984 −0.444416
965965 6.23607 0.200746
966966 −10.1459 −0.326439
967967 −43.6525 −1.40377 −0.701884 0.712291i 0.747658π-0.747658\pi
−0.701884 + 0.712291i 0.747658π0.747658\pi
968968 −23.2918 −0.748627
969969 −1.18034 −0.0379180
970970 −8.56231 −0.274919
971971 −20.5623 −0.659876 −0.329938 0.944003i 0.607028π-0.607028\pi
−0.329938 + 0.944003i 0.607028π0.607028\pi
972972 −25.8885 −0.830375
973973 −17.5623 −0.563022
974974 14.1672 0.453946
975975 −9.00000 −0.288231
976976 12.8754 0.412131
977977 −6.06888 −0.194161 −0.0970804 0.995277i 0.530950π-0.530950\pi
−0.0970804 + 0.995277i 0.530950π0.530950\pi
978978 7.85410 0.251146
979979 4.87539 0.155818
980980 8.47214 0.270632
981981 16.8328 0.537430
982982 −17.0557 −0.544270
983983 −21.0344 −0.670895 −0.335447 0.942059i 0.608887π-0.608887\pi
−0.335447 + 0.942059i 0.608887π0.608887\pi
984984 14.4721 0.461355
985985 42.9787 1.36942
986986 1.25735 0.0400423
987987 −10.1459 −0.322947
988988 39.2705 1.24936
989989 25.2705 0.803555
990990 −2.47214 −0.0785696
991991 17.2705 0.548616 0.274308 0.961642i 0.411551π-0.411551\pi
0.274308 + 0.961642i 0.411551π0.411551\pi
992992 0 0
993993 −11.2705 −0.357659
994994 −0.167184 −0.00530276
995995 −69.9230 −2.21671
996996 −6.61803 −0.209700
997997 −27.2492 −0.862992 −0.431496 0.902115i 0.642014π-0.642014\pi
−0.431496 + 0.902115i 0.642014π0.642014\pi
998998 2.56231 0.0811084
999999 1.18034 0.0373443
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.a.e.1.1 2
3.2 odd 2 8649.2.a.f.1.2 2
31.2 even 5 961.2.d.b.531.1 4
31.3 odd 30 961.2.g.b.846.1 8
31.4 even 5 961.2.d.e.388.1 4
31.5 even 3 961.2.c.d.521.1 4
31.6 odd 6 961.2.c.f.439.1 4
31.7 even 15 961.2.g.g.235.1 8
31.8 even 5 961.2.d.e.374.1 4
31.9 even 15 961.2.g.g.732.1 8
31.10 even 15 961.2.g.c.844.1 8
31.11 odd 30 961.2.g.f.338.1 8
31.12 odd 30 961.2.g.b.547.1 8
31.13 odd 30 961.2.g.b.448.1 8
31.14 even 15 961.2.g.g.816.1 8
31.15 odd 10 31.2.d.a.8.1 yes 4
31.16 even 5 961.2.d.b.628.1 4
31.17 odd 30 961.2.g.f.816.1 8
31.18 even 15 961.2.g.c.448.1 8
31.19 even 15 961.2.g.c.547.1 8
31.20 even 15 961.2.g.g.338.1 8
31.21 odd 30 961.2.g.b.844.1 8
31.22 odd 30 961.2.g.f.732.1 8
31.23 odd 10 961.2.d.f.374.1 4
31.24 odd 30 961.2.g.f.235.1 8
31.25 even 3 961.2.c.d.439.1 4
31.26 odd 6 961.2.c.f.521.1 4
31.27 odd 10 961.2.d.f.388.1 4
31.28 even 15 961.2.g.c.846.1 8
31.29 odd 10 31.2.d.a.4.1 4
31.30 odd 2 961.2.a.d.1.1 2
93.29 even 10 279.2.i.a.190.1 4
93.77 even 10 279.2.i.a.163.1 4
93.92 even 2 8649.2.a.g.1.2 2
124.15 even 10 496.2.n.b.225.1 4
124.91 even 10 496.2.n.b.97.1 4
155.29 odd 10 775.2.k.c.376.1 4
155.77 even 20 775.2.bf.a.349.1 8
155.108 even 20 775.2.bf.a.349.2 8
155.122 even 20 775.2.bf.a.624.2 8
155.139 odd 10 775.2.k.c.101.1 4
155.153 even 20 775.2.bf.a.624.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.4.1 4 31.29 odd 10
31.2.d.a.8.1 yes 4 31.15 odd 10
279.2.i.a.163.1 4 93.77 even 10
279.2.i.a.190.1 4 93.29 even 10
496.2.n.b.97.1 4 124.91 even 10
496.2.n.b.225.1 4 124.15 even 10
775.2.k.c.101.1 4 155.139 odd 10
775.2.k.c.376.1 4 155.29 odd 10
775.2.bf.a.349.1 8 155.77 even 20
775.2.bf.a.349.2 8 155.108 even 20
775.2.bf.a.624.1 8 155.153 even 20
775.2.bf.a.624.2 8 155.122 even 20
961.2.a.d.1.1 2 31.30 odd 2
961.2.a.e.1.1 2 1.1 even 1 trivial
961.2.c.d.439.1 4 31.25 even 3
961.2.c.d.521.1 4 31.5 even 3
961.2.c.f.439.1 4 31.6 odd 6
961.2.c.f.521.1 4 31.26 odd 6
961.2.d.b.531.1 4 31.2 even 5
961.2.d.b.628.1 4 31.16 even 5
961.2.d.e.374.1 4 31.8 even 5
961.2.d.e.388.1 4 31.4 even 5
961.2.d.f.374.1 4 31.23 odd 10
961.2.d.f.388.1 4 31.27 odd 10
961.2.g.b.448.1 8 31.13 odd 30
961.2.g.b.547.1 8 31.12 odd 30
961.2.g.b.844.1 8 31.21 odd 30
961.2.g.b.846.1 8 31.3 odd 30
961.2.g.c.448.1 8 31.18 even 15
961.2.g.c.547.1 8 31.19 even 15
961.2.g.c.844.1 8 31.10 even 15
961.2.g.c.846.1 8 31.28 even 15
961.2.g.f.235.1 8 31.24 odd 30
961.2.g.f.338.1 8 31.11 odd 30
961.2.g.f.732.1 8 31.22 odd 30
961.2.g.f.816.1 8 31.17 odd 30
961.2.g.g.235.1 8 31.7 even 15
961.2.g.g.338.1 8 31.20 even 15
961.2.g.g.732.1 8 31.9 even 15
961.2.g.g.816.1 8 31.14 even 15
8649.2.a.f.1.2 2 3.2 odd 2
8649.2.a.g.1.2 2 93.92 even 2