Properties

Label 961.2.g.g.338.1
Level $961$
Weight $2$
Character 961.338
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(235,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([26]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.235");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{15})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 338.1
Root \(-0.978148 + 0.207912i\) of defining polynomial
Character \(\chi\) \(=\) 961.338
Dual form 961.2.g.g.816.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.363271i) q^{2} +(-0.104528 + 0.994522i) q^{3} +(-0.500000 + 1.53884i) q^{4} +(1.30902 - 2.26728i) q^{5} +(0.309017 + 0.535233i) q^{6} +(-2.93444 + 0.623735i) q^{7} +(0.690983 + 2.12663i) q^{8} +(1.95630 + 0.415823i) q^{9} +(-0.169131 - 1.60917i) q^{10} +(0.511170 + 0.567712i) q^{11} +(-1.47815 - 0.658114i) q^{12} +(-4.43444 + 1.97434i) q^{13} +(-1.24064 + 1.37787i) q^{14} +(2.11803 + 1.53884i) q^{15} +(-1.50000 - 1.08981i) q^{16} +(-0.157960 + 0.175433i) q^{17} +(1.12920 - 0.502754i) q^{18} +(4.56773 + 2.03368i) q^{19} +(2.83448 + 3.14801i) q^{20} +(-0.313585 - 2.98357i) q^{21} +(0.461819 + 0.0981626i) q^{22} +(1.69098 + 5.20431i) q^{23} +(-2.18720 + 0.464905i) q^{24} +(-0.927051 - 1.60570i) q^{25} +(-1.50000 + 2.59808i) q^{26} +(-1.54508 + 4.75528i) q^{27} +(0.507392 - 4.82751i) q^{28} +(-6.97214 + 5.06555i) q^{29} +1.61803 q^{30} -5.61803 q^{32} +(-0.618034 + 0.449028i) q^{33} +(-0.0152505 + 0.145099i) q^{34} +(-2.42705 + 7.46969i) q^{35} +(-1.61803 + 2.80252i) q^{36} +(0.118034 + 0.204441i) q^{37} +(3.02264 - 0.642482i) q^{38} +(-1.50000 - 4.61653i) q^{39} +(5.72618 + 1.21714i) q^{40} +(-0.676522 - 6.43668i) q^{41} +(-1.24064 - 1.37787i) q^{42} +(4.21878 + 1.87832i) q^{43} +(-1.12920 + 0.502754i) q^{44} +(3.50361 - 3.89116i) q^{45} +(2.73607 + 1.98787i) q^{46} +(2.73607 + 1.98787i) q^{47} +(1.24064 - 1.37787i) q^{48} +(1.82709 - 0.813473i) q^{49} +(-1.04683 - 0.466079i) q^{50} +(-0.157960 - 0.175433i) q^{51} +(-0.820977 - 7.81108i) q^{52} +(-12.4305 - 2.64218i) q^{53} +(0.954915 + 2.93893i) q^{54} +(1.95630 - 0.415823i) q^{55} +(-3.35410 - 5.80948i) q^{56} +(-2.50000 + 4.33013i) q^{57} +(-1.64590 + 5.06555i) q^{58} +(-0.990108 + 9.42025i) q^{59} +(-3.42705 + 2.48990i) q^{60} +6.94427 q^{61} -6.00000 q^{63} +(0.190983 - 0.138757i) q^{64} +(-1.32837 + 12.6386i) q^{65} +(-0.145898 + 0.449028i) q^{66} +(2.11803 - 3.66854i) q^{67} +(-0.190983 - 0.330792i) q^{68} +(-5.35256 + 1.13772i) q^{69} +(1.50000 + 4.61653i) q^{70} +(-0.0881995 - 0.0187474i) q^{71} +(0.467465 + 4.44764i) q^{72} +(5.72930 + 6.36303i) q^{73} +(0.133284 + 0.0593421i) q^{74} +(1.69381 - 0.754131i) q^{75} +(-5.41338 + 6.01217i) q^{76} +(-1.85410 - 1.34708i) q^{77} +(-2.42705 - 1.76336i) q^{78} +(-4.43444 + 1.97434i) q^{80} +(0.913545 + 0.406737i) q^{81} +(-2.67652 - 2.97258i) q^{82} +(-0.427539 - 4.06776i) q^{83} +(4.74803 + 1.00922i) q^{84} +(0.190983 + 0.587785i) q^{85} +(2.79173 - 0.593401i) q^{86} +(-4.30902 - 7.46344i) q^{87} +(-0.854102 + 1.47935i) q^{88} +(1.97214 - 6.06961i) q^{89} +(0.338261 - 3.21834i) q^{90} +(11.7812 - 8.55951i) q^{91} -8.85410 q^{92} +2.09017 q^{94} +(10.5902 - 7.69421i) q^{95} +(0.587244 - 5.58726i) q^{96} +(-1.63525 + 5.03280i) q^{97} +(0.618034 - 1.07047i) q^{98} +(0.763932 + 1.32317i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + q^{3} - 4 q^{4} + 6 q^{5} - 2 q^{6} + 3 q^{7} + 10 q^{8} - 2 q^{9} + 3 q^{10} + 8 q^{11} - 3 q^{12} - 9 q^{13} + 9 q^{14} + 8 q^{15} - 12 q^{16} + 7 q^{17} + 4 q^{18} + 5 q^{19} - 3 q^{20}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{8}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.363271i 0.353553 0.256872i −0.396805 0.917903i \(-0.629881\pi\)
0.750358 + 0.661031i \(0.229881\pi\)
\(3\) −0.104528 + 0.994522i −0.0603495 + 0.574187i 0.922007 + 0.387172i \(0.126548\pi\)
−0.982357 + 0.187015i \(0.940119\pi\)
\(4\) −0.500000 + 1.53884i −0.250000 + 0.769421i
\(5\) 1.30902 2.26728i 0.585410 1.01396i −0.409414 0.912349i \(-0.634267\pi\)
0.994824 0.101611i \(-0.0323999\pi\)
\(6\) 0.309017 + 0.535233i 0.126156 + 0.218508i
\(7\) −2.93444 + 0.623735i −1.10912 + 0.235750i −0.725826 0.687879i \(-0.758542\pi\)
−0.383289 + 0.923628i \(0.625209\pi\)
\(8\) 0.690983 + 2.12663i 0.244299 + 0.751876i
\(9\) 1.95630 + 0.415823i 0.652098 + 0.138608i
\(10\) −0.169131 1.60917i −0.0534838 0.508864i
\(11\) 0.511170 + 0.567712i 0.154124 + 0.171172i 0.815262 0.579092i \(-0.196593\pi\)
−0.661138 + 0.750264i \(0.729926\pi\)
\(12\) −1.47815 0.658114i −0.426704 0.189981i
\(13\) −4.43444 + 1.97434i −1.22989 + 0.547584i −0.915733 0.401786i \(-0.868389\pi\)
−0.314160 + 0.949370i \(0.601723\pi\)
\(14\) −1.24064 + 1.37787i −0.331574 + 0.368250i
\(15\) 2.11803 + 1.53884i 0.546874 + 0.397327i
\(16\) −1.50000 1.08981i −0.375000 0.272453i
\(17\) −0.157960 + 0.175433i −0.0383110 + 0.0425487i −0.761996 0.647582i \(-0.775780\pi\)
0.723685 + 0.690131i \(0.242447\pi\)
\(18\) 1.12920 0.502754i 0.266156 0.118500i
\(19\) 4.56773 + 2.03368i 1.04791 + 0.466559i 0.857144 0.515077i \(-0.172237\pi\)
0.190765 + 0.981636i \(0.438903\pi\)
\(20\) 2.83448 + 3.14801i 0.633810 + 0.703917i
\(21\) −0.313585 2.98357i −0.0684299 0.651067i
\(22\) 0.461819 + 0.0981626i 0.0984601 + 0.0209283i
\(23\) 1.69098 + 5.20431i 0.352594 + 1.08517i 0.957391 + 0.288794i \(0.0932543\pi\)
−0.604797 + 0.796380i \(0.706746\pi\)
\(24\) −2.18720 + 0.464905i −0.446461 + 0.0948983i
\(25\) −0.927051 1.60570i −0.185410 0.321140i
\(26\) −1.50000 + 2.59808i −0.294174 + 0.509525i
\(27\) −1.54508 + 4.75528i −0.297352 + 0.915155i
\(28\) 0.507392 4.82751i 0.0958880 0.912314i
\(29\) −6.97214 + 5.06555i −1.29469 + 0.940650i −0.999889 0.0149080i \(-0.995254\pi\)
−0.294804 + 0.955558i \(0.595254\pi\)
\(30\) 1.61803 0.295411
\(31\) 0 0
\(32\) −5.61803 −0.993137
\(33\) −0.618034 + 0.449028i −0.107586 + 0.0781657i
\(34\) −0.0152505 + 0.145099i −0.00261544 + 0.0248842i
\(35\) −2.42705 + 7.46969i −0.410246 + 1.26261i
\(36\) −1.61803 + 2.80252i −0.269672 + 0.467086i
\(37\) 0.118034 + 0.204441i 0.0194047 + 0.0336099i 0.875565 0.483101i \(-0.160490\pi\)
−0.856160 + 0.516711i \(0.827156\pi\)
\(38\) 3.02264 0.642482i 0.490337 0.104224i
\(39\) −1.50000 4.61653i −0.240192 0.739236i
\(40\) 5.72618 + 1.21714i 0.905388 + 0.192446i
\(41\) −0.676522 6.43668i −0.105655 1.00524i −0.910992 0.412424i \(-0.864682\pi\)
0.805337 0.592817i \(-0.201984\pi\)
\(42\) −1.24064 1.37787i −0.191434 0.212609i
\(43\) 4.21878 + 1.87832i 0.643359 + 0.286442i 0.702366 0.711816i \(-0.252127\pi\)
−0.0590076 + 0.998258i \(0.518794\pi\)
\(44\) −1.12920 + 0.502754i −0.170234 + 0.0757930i
\(45\) 3.50361 3.89116i 0.522288 0.580059i
\(46\) 2.73607 + 1.98787i 0.403411 + 0.293095i
\(47\) 2.73607 + 1.98787i 0.399097 + 0.289961i 0.769173 0.639041i \(-0.220668\pi\)
−0.370076 + 0.929001i \(0.620668\pi\)
\(48\) 1.24064 1.37787i 0.179070 0.198878i
\(49\) 1.82709 0.813473i 0.261013 0.116210i
\(50\) −1.04683 0.466079i −0.148044 0.0659135i
\(51\) −0.157960 0.175433i −0.0221189 0.0245655i
\(52\) −0.820977 7.81108i −0.113849 1.08320i
\(53\) −12.4305 2.64218i −1.70746 0.362932i −0.752254 0.658873i \(-0.771033\pi\)
−0.955206 + 0.295941i \(0.904367\pi\)
\(54\) 0.954915 + 2.93893i 0.129947 + 0.399937i
\(55\) 1.95630 0.415823i 0.263787 0.0560696i
\(56\) −3.35410 5.80948i −0.448211 0.776324i
\(57\) −2.50000 + 4.33013i −0.331133 + 0.573539i
\(58\) −1.64590 + 5.06555i −0.216117 + 0.665140i
\(59\) −0.990108 + 9.42025i −0.128901 + 1.22641i 0.718526 + 0.695500i \(0.244817\pi\)
−0.847427 + 0.530912i \(0.821850\pi\)
\(60\) −3.42705 + 2.48990i −0.442430 + 0.321444i
\(61\) 6.94427 0.889123 0.444561 0.895748i \(-0.353360\pi\)
0.444561 + 0.895748i \(0.353360\pi\)
\(62\) 0 0
\(63\) −6.00000 −0.755929
\(64\) 0.190983 0.138757i 0.0238729 0.0173447i
\(65\) −1.32837 + 12.6386i −0.164764 + 1.56762i
\(66\) −0.145898 + 0.449028i −0.0179588 + 0.0552715i
\(67\) 2.11803 3.66854i 0.258759 0.448184i −0.707151 0.707063i \(-0.750020\pi\)
0.965910 + 0.258879i \(0.0833531\pi\)
\(68\) −0.190983 0.330792i −0.0231601 0.0401145i
\(69\) −5.35256 + 1.13772i −0.644372 + 0.136966i
\(70\) 1.50000 + 4.61653i 0.179284 + 0.551780i
\(71\) −0.0881995 0.0187474i −0.0104674 0.00222491i 0.202675 0.979246i \(-0.435036\pi\)
−0.213142 + 0.977021i \(0.568370\pi\)
\(72\) 0.467465 + 4.44764i 0.0550913 + 0.524159i
\(73\) 5.72930 + 6.36303i 0.670564 + 0.744737i 0.978404 0.206701i \(-0.0662729\pi\)
−0.307840 + 0.951438i \(0.599606\pi\)
\(74\) 0.133284 + 0.0593421i 0.0154940 + 0.00689838i
\(75\) 1.69381 0.754131i 0.195584 0.0870796i
\(76\) −5.41338 + 6.01217i −0.620957 + 0.689643i
\(77\) −1.85410 1.34708i −0.211295 0.153514i
\(78\) −2.42705 1.76336i −0.274809 0.199661i
\(79\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(80\) −4.43444 + 1.97434i −0.495786 + 0.220738i
\(81\) 0.913545 + 0.406737i 0.101505 + 0.0451930i
\(82\) −2.67652 2.97258i −0.295572 0.328266i
\(83\) −0.427539 4.06776i −0.0469285 0.446495i −0.992605 0.121387i \(-0.961266\pi\)
0.945677 0.325108i \(-0.105401\pi\)
\(84\) 4.74803 + 1.00922i 0.518052 + 0.110115i
\(85\) 0.190983 + 0.587785i 0.0207150 + 0.0637543i
\(86\) 2.79173 0.593401i 0.301040 0.0639881i
\(87\) −4.30902 7.46344i −0.461975 0.800164i
\(88\) −0.854102 + 1.47935i −0.0910476 + 0.157699i
\(89\) 1.97214 6.06961i 0.209046 0.643377i −0.790477 0.612492i \(-0.790167\pi\)
0.999523 0.0308856i \(-0.00983276\pi\)
\(90\) 0.338261 3.21834i 0.0356559 0.339243i
\(91\) 11.7812 8.55951i 1.23500 0.897280i
\(92\) −8.85410 −0.923104
\(93\) 0 0
\(94\) 2.09017 0.215585
\(95\) 10.5902 7.69421i 1.08653 0.789409i
\(96\) 0.587244 5.58726i 0.0599354 0.570247i
\(97\) −1.63525 + 5.03280i −0.166035 + 0.511003i −0.999111 0.0421553i \(-0.986578\pi\)
0.833076 + 0.553158i \(0.186578\pi\)
\(98\) 0.618034 1.07047i 0.0624309 0.108133i
\(99\) 0.763932 + 1.32317i 0.0767781 + 0.132983i
\(100\) 2.93444 0.623735i 0.293444 0.0623735i
\(101\) 1.47214 + 4.53077i 0.146483 + 0.450828i 0.997199 0.0747977i \(-0.0238311\pi\)
−0.850716 + 0.525626i \(0.823831\pi\)
\(102\) −0.142710 0.0303339i −0.0141304 0.00300350i
\(103\) 0.0152505 + 0.145099i 0.00150268 + 0.0142970i 0.995248 0.0973773i \(-0.0310453\pi\)
−0.993745 + 0.111674i \(0.964379\pi\)
\(104\) −7.26281 8.06617i −0.712177 0.790953i
\(105\) −7.17508 3.19455i −0.700216 0.311756i
\(106\) −7.17508 + 3.19455i −0.696905 + 0.310282i
\(107\) 0.729466 0.810154i 0.0705201 0.0783206i −0.706852 0.707361i \(-0.749885\pi\)
0.777372 + 0.629041i \(0.216552\pi\)
\(108\) −6.54508 4.75528i −0.629801 0.457577i
\(109\) 6.80902 + 4.94704i 0.652186 + 0.473841i 0.864015 0.503466i \(-0.167942\pi\)
−0.211829 + 0.977307i \(0.567942\pi\)
\(110\) 0.827091 0.918578i 0.0788600 0.0875829i
\(111\) −0.215659 + 0.0960175i −0.0204694 + 0.00911358i
\(112\) 5.08142 + 2.26239i 0.480149 + 0.213776i
\(113\) −1.24064 1.37787i −0.116709 0.129619i 0.681959 0.731391i \(-0.261128\pi\)
−0.798668 + 0.601772i \(0.794462\pi\)
\(114\) 0.323011 + 3.07324i 0.0302527 + 0.287835i
\(115\) 14.0132 + 2.97859i 1.30674 + 0.277755i
\(116\) −4.30902 13.2618i −0.400082 1.23133i
\(117\) −9.49606 + 2.01845i −0.877911 + 0.186606i
\(118\) 2.92705 + 5.06980i 0.269457 + 0.466713i
\(119\) 0.354102 0.613323i 0.0324605 0.0562232i
\(120\) −1.80902 + 5.56758i −0.165140 + 0.508248i
\(121\) 1.08881 10.3593i 0.0989828 0.941759i
\(122\) 3.47214 2.52265i 0.314352 0.228390i
\(123\) 6.47214 0.583573
\(124\) 0 0
\(125\) 8.23607 0.736656
\(126\) −3.00000 + 2.17963i −0.267261 + 0.194177i
\(127\) 1.06996 10.1800i 0.0949436 0.903328i −0.838572 0.544791i \(-0.816609\pi\)
0.933515 0.358537i \(-0.116724\pi\)
\(128\) 3.51722 10.8249i 0.310881 0.956794i
\(129\) −2.30902 + 3.99933i −0.203298 + 0.352122i
\(130\) 3.92705 + 6.80185i 0.344425 + 0.596562i
\(131\) −0.0881995 + 0.0187474i −0.00770603 + 0.00163797i −0.211763 0.977321i \(-0.567921\pi\)
0.204057 + 0.978959i \(0.434587\pi\)
\(132\) −0.381966 1.17557i −0.0332459 0.102320i
\(133\) −14.6722 3.11868i −1.27224 0.270423i
\(134\) −0.273659 2.60369i −0.0236405 0.224925i
\(135\) 8.75903 + 9.72789i 0.753858 + 0.837244i
\(136\) −0.482228 0.214702i −0.0413507 0.0184105i
\(137\) 5.91259 2.63245i 0.505147 0.224906i −0.138309 0.990389i \(-0.544167\pi\)
0.643456 + 0.765483i \(0.277500\pi\)
\(138\) −2.26298 + 2.51329i −0.192637 + 0.213945i
\(139\) 4.73607 + 3.44095i 0.401708 + 0.291858i 0.770236 0.637759i \(-0.220138\pi\)
−0.368528 + 0.929617i \(0.620138\pi\)
\(140\) −10.2812 7.46969i −0.868916 0.631304i
\(141\) −2.26298 + 2.51329i −0.190577 + 0.211657i
\(142\) −0.0509101 + 0.0226667i −0.00427228 + 0.00190214i
\(143\) −3.38761 1.50826i −0.283286 0.126127i
\(144\) −2.48127 2.75573i −0.206773 0.229644i
\(145\) 2.35840 + 22.4387i 0.195855 + 1.86343i
\(146\) 5.17616 + 1.10023i 0.428382 + 0.0910554i
\(147\) 0.618034 + 1.90211i 0.0509746 + 0.156884i
\(148\) −0.373619 + 0.0794152i −0.0307113 + 0.00652789i
\(149\) 8.51722 + 14.7523i 0.697758 + 1.20855i 0.969242 + 0.246109i \(0.0791522\pi\)
−0.271484 + 0.962443i \(0.587514\pi\)
\(150\) 0.572949 0.992377i 0.0467811 0.0810272i
\(151\) 6.02786 18.5519i 0.490541 1.50973i −0.333252 0.942838i \(-0.608146\pi\)
0.823793 0.566891i \(-0.191854\pi\)
\(152\) −1.16866 + 11.1191i −0.0947911 + 0.901878i
\(153\) −0.381966 + 0.277515i −0.0308801 + 0.0224357i
\(154\) −1.41641 −0.114137
\(155\) 0 0
\(156\) 7.85410 0.628831
\(157\) −7.85410 + 5.70634i −0.626826 + 0.455415i −0.855299 0.518135i \(-0.826627\pi\)
0.228473 + 0.973550i \(0.426627\pi\)
\(158\) 0 0
\(159\) 3.92705 12.0862i 0.311435 0.958500i
\(160\) −7.35410 + 12.7377i −0.581393 + 1.00700i
\(161\) −8.20820 14.2170i −0.646897 1.12046i
\(162\) 0.604528 0.128496i 0.0474962 0.0100956i
\(163\) −3.92705 12.0862i −0.307590 0.946666i −0.978698 0.205306i \(-0.934181\pi\)
0.671108 0.741360i \(-0.265819\pi\)
\(164\) 10.2433 + 2.17728i 0.799867 + 0.170017i
\(165\) 0.209057 + 1.98904i 0.0162751 + 0.154847i
\(166\) −1.69147 1.87857i −0.131284 0.145805i
\(167\) 8.43757 + 3.75665i 0.652919 + 0.290698i 0.706339 0.707874i \(-0.250346\pi\)
−0.0534201 + 0.998572i \(0.517012\pi\)
\(168\) 6.12825 2.72847i 0.472805 0.210506i
\(169\) 7.06756 7.84932i 0.543659 0.603794i
\(170\) 0.309017 + 0.224514i 0.0237005 + 0.0172194i
\(171\) 8.09017 + 5.87785i 0.618671 + 0.449491i
\(172\) −4.99983 + 5.55288i −0.381234 + 0.423403i
\(173\) 0.831171 0.370061i 0.0631928 0.0281352i −0.374897 0.927067i \(-0.622322\pi\)
0.438090 + 0.898931i \(0.355655\pi\)
\(174\) −4.86576 2.16638i −0.368872 0.164233i
\(175\) 3.72191 + 4.13360i 0.281350 + 0.312471i
\(176\) −0.148055 1.40865i −0.0111601 0.106181i
\(177\) −9.26515 1.96937i −0.696411 0.148027i
\(178\) −1.21885 3.75123i −0.0913564 0.281166i
\(179\) 19.3657 4.11631i 1.44746 0.307668i 0.583866 0.811850i \(-0.301539\pi\)
0.863597 + 0.504183i \(0.168206\pi\)
\(180\) 4.23607 + 7.33708i 0.315738 + 0.546874i
\(181\) 8.50000 14.7224i 0.631800 1.09431i −0.355383 0.934721i \(-0.615650\pi\)
0.987184 0.159589i \(-0.0510169\pi\)
\(182\) 2.78115 8.55951i 0.206153 0.634473i
\(183\) −0.725874 + 6.90623i −0.0536582 + 0.510523i
\(184\) −9.89919 + 7.19218i −0.729778 + 0.530215i
\(185\) 0.618034 0.0454388
\(186\) 0 0
\(187\) −0.180340 −0.0131878
\(188\) −4.42705 + 3.21644i −0.322876 + 0.234583i
\(189\) 1.56793 14.9178i 0.114050 1.08511i
\(190\) 2.50000 7.69421i 0.181369 0.558197i
\(191\) 8.04508 13.9345i 0.582122 1.00826i −0.413106 0.910683i \(-0.635556\pi\)
0.995228 0.0975816i \(-0.0311107\pi\)
\(192\) 0.118034 + 0.204441i 0.00851837 + 0.0147542i
\(193\) 2.32991 0.495239i 0.167711 0.0356481i −0.123291 0.992371i \(-0.539345\pi\)
0.291002 + 0.956723i \(0.406011\pi\)
\(194\) 1.01064 + 3.11044i 0.0725599 + 0.223317i
\(195\) −12.4305 2.64218i −0.890167 0.189211i
\(196\) 0.338261 + 3.21834i 0.0241615 + 0.229881i
\(197\) −10.9847 12.1998i −0.782629 0.869198i 0.211502 0.977377i \(-0.432164\pi\)
−0.994131 + 0.108180i \(0.965498\pi\)
\(198\) 0.862635 + 0.384070i 0.0613048 + 0.0272947i
\(199\) 24.3992 10.8632i 1.72961 0.770072i 0.733725 0.679446i \(-0.237780\pi\)
0.995885 0.0906262i \(-0.0288868\pi\)
\(200\) 2.77415 3.08100i 0.196162 0.217860i
\(201\) 3.42705 + 2.48990i 0.241726 + 0.175624i
\(202\) 2.38197 + 1.73060i 0.167595 + 0.121765i
\(203\) 17.2998 19.2133i 1.21421 1.34851i
\(204\) 0.348943 0.155360i 0.0244309 0.0108773i
\(205\) −15.4794 6.89186i −1.08113 0.481348i
\(206\) 0.0603355 + 0.0670093i 0.00420377 + 0.00466876i
\(207\) 1.14399 + 10.8843i 0.0795127 + 0.756512i
\(208\) 8.80333 + 1.87121i 0.610401 + 0.129745i
\(209\) 1.18034 + 3.63271i 0.0816458 + 0.251280i
\(210\) −4.74803 + 1.00922i −0.327645 + 0.0696431i
\(211\) 4.00000 + 6.92820i 0.275371 + 0.476957i 0.970229 0.242190i \(-0.0778659\pi\)
−0.694857 + 0.719148i \(0.744533\pi\)
\(212\) 10.2812 17.8075i 0.706112 1.22302i
\(213\) 0.0278640 0.0857567i 0.00190921 0.00587595i
\(214\) 0.0704273 0.670071i 0.00481431 0.0458051i
\(215\) 9.78115 7.10642i 0.667069 0.484654i
\(216\) −11.1803 −0.760726
\(217\) 0 0
\(218\) 5.20163 0.352299
\(219\) −6.92705 + 5.03280i −0.468087 + 0.340085i
\(220\) −0.338261 + 3.21834i −0.0228056 + 0.216980i
\(221\) 0.354102 1.08981i 0.0238195 0.0733088i
\(222\) −0.0729490 + 0.126351i −0.00489602 + 0.00848015i
\(223\) 0.354102 + 0.613323i 0.0237124 + 0.0410711i 0.877638 0.479324i \(-0.159118\pi\)
−0.853926 + 0.520395i \(0.825785\pi\)
\(224\) 16.4858 3.50416i 1.10150 0.234132i
\(225\) −1.14590 3.52671i −0.0763932 0.235114i
\(226\) −1.12086 0.238246i −0.0745583 0.0158479i
\(227\) 2.16820 + 20.6290i 0.143908 + 1.36920i 0.793341 + 0.608777i \(0.208340\pi\)
−0.649433 + 0.760419i \(0.724994\pi\)
\(228\) −5.41338 6.01217i −0.358510 0.398166i
\(229\) 6.61048 + 2.94317i 0.436833 + 0.194490i 0.613357 0.789806i \(-0.289819\pi\)
−0.176524 + 0.984296i \(0.556485\pi\)
\(230\) 8.08862 3.60129i 0.533348 0.237462i
\(231\) 1.53351 1.70314i 0.100898 0.112058i
\(232\) −15.5902 11.3269i −1.02354 0.743649i
\(233\) −15.2082 11.0494i −0.996323 0.723871i −0.0350260 0.999386i \(-0.511151\pi\)
−0.961297 + 0.275516i \(0.911151\pi\)
\(234\) −4.01478 + 4.45887i −0.262455 + 0.291485i
\(235\) 8.08862 3.60129i 0.527644 0.234922i
\(236\) −14.0012 6.23374i −0.911401 0.405782i
\(237\) 0 0
\(238\) −0.0457515 0.435296i −0.00296563 0.0282161i
\(239\) −13.1232 2.78943i −0.848871 0.180433i −0.237117 0.971481i \(-0.576202\pi\)
−0.611754 + 0.791048i \(0.709536\pi\)
\(240\) −1.50000 4.61653i −0.0968246 0.297995i
\(241\) −8.34151 + 1.77304i −0.537324 + 0.114212i −0.468577 0.883422i \(-0.655233\pi\)
−0.0687465 + 0.997634i \(0.521900\pi\)
\(242\) −3.21885 5.57521i −0.206915 0.358388i
\(243\) −8.00000 + 13.8564i −0.513200 + 0.888889i
\(244\) −3.47214 + 10.6861i −0.222281 + 0.684110i
\(245\) 0.547318 5.20738i 0.0349669 0.332688i
\(246\) 3.23607 2.35114i 0.206324 0.149903i
\(247\) −24.2705 −1.54430
\(248\) 0 0
\(249\) 4.09017 0.259204
\(250\) 4.11803 2.99193i 0.260447 0.189226i
\(251\) 0.0987033 0.939099i 0.00623010 0.0592754i −0.990965 0.134120i \(-0.957179\pi\)
0.997195 + 0.0748443i \(0.0238460\pi\)
\(252\) 3.00000 9.23305i 0.188982 0.581628i
\(253\) −2.09017 + 3.62028i −0.131408 + 0.227605i
\(254\) −3.16312 5.47868i −0.198472 0.343763i
\(255\) −0.604528 + 0.128496i −0.0378570 + 0.00804676i
\(256\) −2.02786 6.24112i −0.126742 0.390070i
\(257\) −1.38546 0.294488i −0.0864224 0.0183696i 0.164498 0.986377i \(-0.447400\pi\)
−0.250920 + 0.968008i \(0.580733\pi\)
\(258\) 0.298335 + 2.83847i 0.0185735 + 0.176715i
\(259\) −0.473881 0.526298i −0.0294455 0.0327026i
\(260\) −18.7846 8.36344i −1.16497 0.518679i
\(261\) −15.7459 + 7.01054i −0.974649 + 0.433942i
\(262\) −0.0372894 + 0.0414140i −0.00230375 + 0.00255857i
\(263\) −8.73607 6.34712i −0.538689 0.391380i 0.284909 0.958555i \(-0.408037\pi\)
−0.823598 + 0.567174i \(0.808037\pi\)
\(264\) −1.38197 1.00406i −0.0850541 0.0617954i
\(265\) −22.2623 + 24.7248i −1.36756 + 1.51883i
\(266\) −8.46903 + 3.77066i −0.519270 + 0.231194i
\(267\) 5.83022 + 2.59578i 0.356803 + 0.158859i
\(268\) 4.58629 + 5.09359i 0.280152 + 0.311141i
\(269\) −0.144455 1.37440i −0.00880756 0.0837984i 0.989235 0.146335i \(-0.0467477\pi\)
−0.998043 + 0.0625365i \(0.980081\pi\)
\(270\) 7.91338 + 1.68204i 0.481593 + 0.102366i
\(271\) −2.95492 9.09429i −0.179498 0.552439i 0.820312 0.571916i \(-0.193800\pi\)
−0.999810 + 0.0194773i \(0.993800\pi\)
\(272\) 0.428129 0.0910017i 0.0259592 0.00551779i
\(273\) 7.28115 + 12.6113i 0.440675 + 0.763272i
\(274\) 2.00000 3.46410i 0.120824 0.209274i
\(275\) 0.437694 1.34708i 0.0263939 0.0812322i
\(276\) 0.925506 8.80560i 0.0557089 0.530035i
\(277\) 10.7812 7.83297i 0.647777 0.470637i −0.214736 0.976672i \(-0.568889\pi\)
0.862513 + 0.506035i \(0.168889\pi\)
\(278\) 3.61803 0.216995
\(279\) 0 0
\(280\) −17.5623 −1.04955
\(281\) −15.3992 + 11.1882i −0.918638 + 0.667430i −0.943185 0.332269i \(-0.892186\pi\)
0.0245463 + 0.999699i \(0.492186\pi\)
\(282\) −0.218482 + 2.07872i −0.0130104 + 0.123786i
\(283\) 2.02786 6.24112i 0.120544 0.370996i −0.872519 0.488580i \(-0.837515\pi\)
0.993063 + 0.117584i \(0.0375149\pi\)
\(284\) 0.0729490 0.126351i 0.00432873 0.00749758i
\(285\) 6.54508 + 11.3364i 0.387697 + 0.671512i
\(286\) −2.24171 + 0.476491i −0.132555 + 0.0281755i
\(287\) 6.00000 + 18.4661i 0.354169 + 1.09002i
\(288\) −10.9905 2.33611i −0.647623 0.137657i
\(289\) 1.77116 + 16.8514i 0.104186 + 0.991262i
\(290\) 9.33054 + 10.3626i 0.547908 + 0.608514i
\(291\) −4.83430 2.15237i −0.283391 0.126174i
\(292\) −12.6564 + 5.63497i −0.740657 + 0.329762i
\(293\) −5.51101 + 6.12059i −0.321956 + 0.357569i −0.882297 0.470694i \(-0.844004\pi\)
0.560340 + 0.828262i \(0.310670\pi\)
\(294\) 1.00000 + 0.726543i 0.0583212 + 0.0423728i
\(295\) 20.0623 + 14.5761i 1.16807 + 0.848654i
\(296\) −0.353210 + 0.392279i −0.0205299 + 0.0228008i
\(297\) −3.48943 + 1.55360i −0.202477 + 0.0901488i
\(298\) 9.61768 + 4.28207i 0.557137 + 0.248054i
\(299\) −17.7737 19.7396i −1.02788 1.14157i
\(300\) 0.313585 + 2.98357i 0.0181049 + 0.172256i
\(301\) −13.5514 2.88043i −0.781087 0.166025i
\(302\) −3.72542 11.4657i −0.214374 0.659776i
\(303\) −4.65983 + 0.990477i −0.267700 + 0.0569014i
\(304\) −4.63525 8.02850i −0.265850 0.460466i
\(305\) 9.09017 15.7446i 0.520502 0.901535i
\(306\) −0.0901699 + 0.277515i −0.00515467 + 0.0158645i
\(307\) −0.636596 + 6.05681i −0.0363325 + 0.345680i 0.961221 + 0.275778i \(0.0889354\pi\)
−0.997554 + 0.0699023i \(0.977731\pi\)
\(308\) 3.00000 2.17963i 0.170941 0.124196i
\(309\) −0.145898 −0.00829985
\(310\) 0 0
\(311\) 16.4721 0.934049 0.467025 0.884244i \(-0.345326\pi\)
0.467025 + 0.884244i \(0.345326\pi\)
\(312\) 8.78115 6.37988i 0.497135 0.361190i
\(313\) 0.129204 1.22930i 0.00730306 0.0694840i −0.990263 0.139207i \(-0.955545\pi\)
0.997566 + 0.0697227i \(0.0222114\pi\)
\(314\) −1.85410 + 5.70634i −0.104633 + 0.322027i
\(315\) −7.85410 + 13.6037i −0.442529 + 0.766482i
\(316\) 0 0
\(317\) −25.3228 + 5.38253i −1.42227 + 0.302313i −0.853890 0.520453i \(-0.825763\pi\)
−0.568381 + 0.822766i \(0.692430\pi\)
\(318\) −2.42705 7.46969i −0.136102 0.418880i
\(319\) −6.43972 1.36881i −0.360555 0.0766384i
\(320\) −0.0646021 0.614648i −0.00361137 0.0343599i
\(321\) 0.729466 + 0.810154i 0.0407148 + 0.0452184i
\(322\) −9.26874 4.12671i −0.516527 0.229972i
\(323\) −1.07829 + 0.480087i −0.0599979 + 0.0267128i
\(324\) −1.08268 + 1.20243i −0.0601487 + 0.0668019i
\(325\) 7.28115 + 5.29007i 0.403886 + 0.293440i
\(326\) −6.35410 4.61653i −0.351921 0.255686i
\(327\) −5.63168 + 6.25461i −0.311432 + 0.345881i
\(328\) 13.2210 5.88635i 0.730005 0.325019i
\(329\) −9.26874 4.12671i −0.511002 0.227513i
\(330\) 0.827091 + 0.918578i 0.0455299 + 0.0505660i
\(331\) 1.17809 + 11.2088i 0.0647536 + 0.616090i 0.977989 + 0.208657i \(0.0669092\pi\)
−0.913235 + 0.407433i \(0.866424\pi\)
\(332\) 6.47341 + 1.37597i 0.355275 + 0.0755160i
\(333\) 0.145898 + 0.449028i 0.00799516 + 0.0246066i
\(334\) 5.58347 1.18680i 0.305514 0.0649389i
\(335\) −5.54508 9.60437i −0.302960 0.524743i
\(336\) −2.78115 + 4.81710i −0.151724 + 0.262794i
\(337\) −5.86475 + 18.0498i −0.319473 + 0.983237i 0.654401 + 0.756148i \(0.272921\pi\)
−0.973874 + 0.227089i \(0.927079\pi\)
\(338\) 0.682348 6.49210i 0.0371148 0.353124i
\(339\) 1.50000 1.08981i 0.0814688 0.0591906i
\(340\) −1.00000 −0.0542326
\(341\) 0 0
\(342\) 6.18034 0.334195
\(343\) 12.1353 8.81678i 0.655242 0.476061i
\(344\) −1.07939 + 10.2697i −0.0581966 + 0.553703i
\(345\) −4.42705 + 13.6251i −0.238344 + 0.733549i
\(346\) 0.281153 0.486971i 0.0151149 0.0261797i
\(347\) 4.06231 + 7.03612i 0.218076 + 0.377719i 0.954220 0.299107i \(-0.0966886\pi\)
−0.736144 + 0.676825i \(0.763355\pi\)
\(348\) 13.6396 2.89918i 0.731157 0.155412i
\(349\) −5.16312 15.8904i −0.276375 0.850596i −0.988852 0.148900i \(-0.952427\pi\)
0.712477 0.701696i \(-0.247573\pi\)
\(350\) 3.36257 + 0.714737i 0.179737 + 0.0382043i
\(351\) −2.53696 24.1376i −0.135413 1.28837i
\(352\) −2.87177 3.18943i −0.153066 0.169997i
\(353\) 29.5824 + 13.1709i 1.57451 + 0.701018i 0.993601 0.112949i \(-0.0360296\pi\)
0.580911 + 0.813967i \(0.302696\pi\)
\(354\) −5.34799 + 2.38108i −0.284242 + 0.126553i
\(355\) −0.157960 + 0.175433i −0.00838366 + 0.00931100i
\(356\) 8.35410 + 6.06961i 0.442767 + 0.321689i
\(357\) 0.572949 + 0.416272i 0.0303237 + 0.0220314i
\(358\) 8.18753 9.09317i 0.432724 0.480589i
\(359\) −23.1367 + 10.3011i −1.22111 + 0.543672i −0.913109 0.407715i \(-0.866326\pi\)
−0.307998 + 0.951387i \(0.599659\pi\)
\(360\) 10.6960 + 4.76216i 0.563727 + 0.250988i
\(361\) 4.01478 + 4.45887i 0.211304 + 0.234677i
\(362\) −1.09824 10.4490i −0.0577220 0.549188i
\(363\) 10.1888 + 2.16569i 0.534772 + 0.113669i
\(364\) 7.28115 + 22.4091i 0.381636 + 1.17456i
\(365\) 21.9266 4.66063i 1.14769 0.243949i
\(366\) 2.14590 + 3.71680i 0.112168 + 0.194280i
\(367\) −18.1353 + 31.4112i −0.946653 + 1.63965i −0.194245 + 0.980953i \(0.562226\pi\)
−0.752408 + 0.658697i \(0.771108\pi\)
\(368\) 3.13525 9.64932i 0.163436 0.503006i
\(369\) 1.35304 12.8734i 0.0704367 0.670160i
\(370\) 0.309017 0.224514i 0.0160650 0.0116719i
\(371\) 38.1246 1.97933
\(372\) 0 0
\(373\) −0.347524 −0.0179941 −0.00899706 0.999960i \(-0.502864\pi\)
−0.00899706 + 0.999960i \(0.502864\pi\)
\(374\) −0.0901699 + 0.0655123i −0.00466258 + 0.00338756i
\(375\) −0.860904 + 8.19095i −0.0444569 + 0.422979i
\(376\) −2.33688 + 7.19218i −0.120515 + 0.370908i
\(377\) 20.9164 36.2283i 1.07725 1.86585i
\(378\) −4.63525 8.02850i −0.238412 0.412941i
\(379\) 18.0140 3.82899i 0.925315 0.196682i 0.279474 0.960153i \(-0.409840\pi\)
0.645842 + 0.763472i \(0.276507\pi\)
\(380\) 6.54508 + 20.1437i 0.335756 + 1.03335i
\(381\) 10.0124 + 2.12820i 0.512950 + 0.109031i
\(382\) −1.03946 9.88980i −0.0531834 0.506006i
\(383\) 11.2776 + 12.5250i 0.576258 + 0.640000i 0.958848 0.283919i \(-0.0916345\pi\)
−0.382590 + 0.923918i \(0.624968\pi\)
\(384\) 10.3979 + 4.62946i 0.530618 + 0.236246i
\(385\) −5.48127 + 2.44042i −0.279352 + 0.124375i
\(386\) 0.985051 1.09401i 0.0501378 0.0556837i
\(387\) 7.47214 + 5.42882i 0.379830 + 0.275963i
\(388\) −6.92705 5.03280i −0.351668 0.255502i
\(389\) 19.4509 21.6024i 0.986199 1.09528i −0.00924722 0.999957i \(-0.502944\pi\)
0.995446 0.0953274i \(-0.0303898\pi\)
\(390\) −7.17508 + 3.19455i −0.363324 + 0.161762i
\(391\) −1.18011 0.525421i −0.0596810 0.0265717i
\(392\) 2.99244 + 3.32344i 0.151141 + 0.167859i
\(393\) −0.00942533 0.0896760i −0.000475445 0.00452355i
\(394\) −9.92419 2.10945i −0.499973 0.106273i
\(395\) 0 0
\(396\) −2.41811 + 0.513986i −0.121515 + 0.0258288i
\(397\) −8.14590 14.1091i −0.408831 0.708116i 0.585928 0.810363i \(-0.300730\pi\)
−0.994759 + 0.102247i \(0.967397\pi\)
\(398\) 8.25329 14.2951i 0.413700 0.716549i
\(399\) 4.63525 14.2658i 0.232053 0.714186i
\(400\) −0.359337 + 3.41886i −0.0179668 + 0.170943i
\(401\) −24.1353 + 17.5353i −1.20526 + 0.875671i −0.994792 0.101931i \(-0.967498\pi\)
−0.210466 + 0.977601i \(0.567498\pi\)
\(402\) 2.61803 0.130576
\(403\) 0 0
\(404\) −7.70820 −0.383497
\(405\) 2.11803 1.53884i 0.105246 0.0764657i
\(406\) 1.67023 15.8912i 0.0828921 0.788666i
\(407\) −0.0557281 + 0.171513i −0.00276234 + 0.00850160i
\(408\) 0.263932 0.457144i 0.0130666 0.0226320i
\(409\) −3.09017 5.35233i −0.152799 0.264656i 0.779456 0.626457i \(-0.215495\pi\)
−0.932255 + 0.361801i \(0.882162\pi\)
\(410\) −10.2433 + 2.17728i −0.505880 + 0.107528i
\(411\) 2.00000 + 6.15537i 0.0986527 + 0.303622i
\(412\) −0.230909 0.0490813i −0.0113761 0.00241806i
\(413\) −2.97032 28.2607i −0.146160 1.39062i
\(414\) 4.52595 + 5.02658i 0.222439 + 0.247043i
\(415\) −9.78243 4.35542i −0.480201 0.213799i
\(416\) 24.9129 11.0919i 1.22145 0.543826i
\(417\) −3.91716 + 4.35045i −0.191824 + 0.213042i
\(418\) 1.90983 + 1.38757i 0.0934128 + 0.0678684i
\(419\) −3.61803 2.62866i −0.176753 0.128418i 0.495891 0.868385i \(-0.334841\pi\)
−0.672644 + 0.739966i \(0.734841\pi\)
\(420\) 8.50345 9.44404i 0.414926 0.460822i
\(421\) 13.4875 6.00503i 0.657342 0.292667i −0.0508304 0.998707i \(-0.516187\pi\)
0.708172 + 0.706040i \(0.249520\pi\)
\(422\) 4.51682 + 2.01102i 0.219875 + 0.0978948i
\(423\) 4.52595 + 5.02658i 0.220059 + 0.244401i
\(424\) −2.97032 28.2607i −0.144252 1.37246i
\(425\) 0.428129 + 0.0910017i 0.0207673 + 0.00441423i
\(426\) −0.0172209 0.0530006i −0.000834357 0.00256789i
\(427\) −20.3776 + 4.33139i −0.986140 + 0.209610i
\(428\) 0.881966 + 1.52761i 0.0426314 + 0.0738398i
\(429\) 1.85410 3.21140i 0.0895169 0.155048i
\(430\) 2.30902 7.10642i 0.111351 0.342702i
\(431\) −3.05600 + 29.0759i −0.147202 + 1.40054i 0.632584 + 0.774492i \(0.281994\pi\)
−0.779786 + 0.626046i \(0.784672\pi\)
\(432\) 7.50000 5.44907i 0.360844 0.262168i
\(433\) −0.583592 −0.0280456 −0.0140228 0.999902i \(-0.504464\pi\)
−0.0140228 + 0.999902i \(0.504464\pi\)
\(434\) 0 0
\(435\) −22.5623 −1.08178
\(436\) −11.0172 + 8.00448i −0.527629 + 0.383345i
\(437\) −2.85997 + 27.2108i −0.136811 + 1.30167i
\(438\) −1.63525 + 5.03280i −0.0781355 + 0.240476i
\(439\) −20.9164 + 36.2283i −0.998286 + 1.72908i −0.448455 + 0.893805i \(0.648026\pi\)
−0.549831 + 0.835276i \(0.685308\pi\)
\(440\) 2.23607 + 3.87298i 0.106600 + 0.184637i
\(441\) 3.91259 0.831647i 0.186314 0.0396022i
\(442\) −0.218847 0.673542i −0.0104095 0.0320371i
\(443\) 40.2259 + 8.55029i 1.91119 + 0.406236i 0.999984 0.00570927i \(-0.00181733\pi\)
0.911208 + 0.411946i \(0.135151\pi\)
\(444\) −0.0399263 0.379874i −0.00189482 0.0180280i
\(445\) −11.1800 12.4166i −0.529981 0.588604i
\(446\) 0.399853 + 0.178026i 0.0189336 + 0.00842979i
\(447\) −15.5617 + 6.92853i −0.736045 + 0.327708i
\(448\) −0.473881 + 0.526298i −0.0223888 + 0.0248652i
\(449\) 19.4721 + 14.1473i 0.918947 + 0.667654i 0.943262 0.332050i \(-0.107740\pi\)
−0.0243148 + 0.999704i \(0.507740\pi\)
\(450\) −1.85410 1.34708i −0.0874032 0.0635021i
\(451\) 3.30836 3.67431i 0.155785 0.173017i
\(452\) 2.74064 1.22021i 0.128909 0.0573938i
\(453\) 17.8201 + 7.93404i 0.837263 + 0.372774i
\(454\) 8.57803 + 9.52686i 0.402587 + 0.447118i
\(455\) −3.98511 37.9158i −0.186825 1.77752i
\(456\) −10.9360 2.32452i −0.512126 0.108856i
\(457\) 4.86475 + 14.9721i 0.227563 + 0.700367i 0.998021 + 0.0628768i \(0.0200275\pi\)
−0.770458 + 0.637491i \(0.779972\pi\)
\(458\) 4.37441 0.929809i 0.204403 0.0434471i
\(459\) −0.590170 1.02220i −0.0275468 0.0477124i
\(460\) −11.5902 + 20.0748i −0.540394 + 0.935991i
\(461\) −3.31966 + 10.2169i −0.154612 + 0.475847i −0.998121 0.0612677i \(-0.980486\pi\)
0.843509 + 0.537114i \(0.180486\pi\)
\(462\) 0.148055 1.40865i 0.00688814 0.0655363i
\(463\) −25.1803 + 18.2946i −1.17023 + 0.850222i −0.991036 0.133592i \(-0.957349\pi\)
−0.179193 + 0.983814i \(0.557349\pi\)
\(464\) 15.9787 0.741793
\(465\) 0 0
\(466\) −11.6180 −0.538195
\(467\) 26.5172 19.2659i 1.22707 0.891519i 0.230404 0.973095i \(-0.425995\pi\)
0.996667 + 0.0815762i \(0.0259954\pi\)
\(468\) 1.64195 15.6222i 0.0758994 0.722134i
\(469\) −3.92705 + 12.0862i −0.181334 + 0.558090i
\(470\) 2.73607 4.73901i 0.126205 0.218594i
\(471\) −4.85410 8.40755i −0.223665 0.387400i
\(472\) −20.7175 + 4.40364i −0.953600 + 0.202694i
\(473\) 1.09017 + 3.35520i 0.0501261 + 0.154272i
\(474\) 0 0
\(475\) −0.969032 9.21973i −0.0444622 0.423030i
\(476\) 0.766755 + 0.851568i 0.0351442 + 0.0390316i
\(477\) −23.2190 10.3378i −1.06313 0.473335i
\(478\) −7.57493 + 3.37258i −0.346469 + 0.154258i
\(479\) −5.98489 + 6.64689i −0.273456 + 0.303704i −0.864193 0.503160i \(-0.832171\pi\)
0.590737 + 0.806864i \(0.298837\pi\)
\(480\) −11.8992 8.64527i −0.543121 0.394601i
\(481\) −0.927051 0.673542i −0.0422699 0.0307109i
\(482\) −3.52666 + 3.91675i −0.160635 + 0.178403i
\(483\) 14.9971 6.67715i 0.682393 0.303821i
\(484\) 15.3970 + 6.85518i 0.699863 + 0.311599i
\(485\) 9.27020 + 10.2956i 0.420938 + 0.467499i
\(486\) 1.03363 + 9.83437i 0.0468866 + 0.446096i
\(487\) 22.4221 + 4.76596i 1.01604 + 0.215966i 0.685691 0.727893i \(-0.259500\pi\)
0.330349 + 0.943859i \(0.392833\pi\)
\(488\) 4.79837 + 14.7679i 0.217212 + 0.668510i
\(489\) 12.4305 2.64218i 0.562127 0.119484i
\(490\) −1.61803 2.80252i −0.0730953 0.126605i
\(491\) −13.7984 + 23.8995i −0.622712 + 1.07857i 0.366267 + 0.930510i \(0.380636\pi\)
−0.988979 + 0.148059i \(0.952698\pi\)
\(492\) −3.23607 + 9.95959i −0.145893 + 0.449013i
\(493\) 0.212657 2.02330i 0.00957759 0.0911247i
\(494\) −12.1353 + 8.81678i −0.545991 + 0.396686i
\(495\) 4.00000 0.179787
\(496\) 0 0
\(497\) 0.270510 0.0121340
\(498\) 2.04508 1.48584i 0.0916424 0.0665821i
\(499\) 0.433364 4.12319i 0.0194001 0.184579i −0.980530 0.196367i \(-0.937086\pi\)
0.999931 + 0.0117878i \(0.00375227\pi\)
\(500\) −4.11803 + 12.6740i −0.184164 + 0.566799i
\(501\) −4.61803 + 7.99867i −0.206319 + 0.357354i
\(502\) −0.291796 0.505406i −0.0130235 0.0225574i
\(503\) −12.8586 + 2.73319i −0.573338 + 0.121867i −0.485451 0.874264i \(-0.661345\pi\)
−0.0878867 + 0.996130i \(0.528011\pi\)
\(504\) −4.14590 12.7598i −0.184673 0.568365i
\(505\) 12.1996 + 2.59310i 0.542875 + 0.115392i
\(506\) 0.270059 + 2.56944i 0.0120056 + 0.114225i
\(507\) 7.06756 + 7.84932i 0.313881 + 0.348601i
\(508\) 15.1304 + 6.73650i 0.671304 + 0.298884i
\(509\) 1.74472 0.776798i 0.0773332 0.0344310i −0.367706 0.929942i \(-0.619857\pi\)
0.445039 + 0.895511i \(0.353190\pi\)
\(510\) −0.255585 + 0.283856i −0.0113175 + 0.0125694i
\(511\) −20.7812 15.0984i −0.919304 0.667914i
\(512\) 15.1353 + 10.9964i 0.668890 + 0.485977i
\(513\) −16.7283 + 18.5786i −0.738571 + 0.820266i
\(514\) −0.799707 + 0.356052i −0.0352736 + 0.0157048i
\(515\) 0.348943 + 0.155360i 0.0153763 + 0.00684596i
\(516\) −4.99983 5.55288i −0.220105 0.244452i
\(517\) 0.270059 + 2.56944i 0.0118772 + 0.113004i
\(518\) −0.428129 0.0910017i −0.0188109 0.00399839i
\(519\) 0.281153 + 0.865300i 0.0123412 + 0.0379824i
\(520\) −27.7954 + 5.90810i −1.21891 + 0.259087i
\(521\) −15.5344 26.9064i −0.680576 1.17879i −0.974805 0.223058i \(-0.928396\pi\)
0.294229 0.955735i \(-0.404937\pi\)
\(522\) −5.32624 + 9.22531i −0.233123 + 0.403781i
\(523\) −10.5451 + 32.4544i −0.461104 + 1.41913i 0.402712 + 0.915327i \(0.368068\pi\)
−0.863816 + 0.503807i \(0.831932\pi\)
\(524\) 0.0152505 0.145099i 0.000666221 0.00633867i
\(525\) −4.50000 + 3.26944i −0.196396 + 0.142690i
\(526\) −6.67376 −0.290990
\(527\) 0 0
\(528\) 1.41641 0.0616412
\(529\) −5.61803 + 4.08174i −0.244262 + 0.177467i
\(530\) −2.14935 + 20.4497i −0.0933616 + 0.888277i
\(531\) −5.85410 + 18.0171i −0.254046 + 0.781874i
\(532\) 12.1353 21.0189i 0.526130 0.911284i
\(533\) 15.7082 + 27.2074i 0.680398 + 1.17848i
\(534\) 3.85808 0.820060i 0.166955 0.0354875i
\(535\) −0.881966 2.71441i −0.0381307 0.117354i
\(536\) 9.26515 + 1.96937i 0.400193 + 0.0850637i
\(537\) 2.06949 + 19.6899i 0.0893052 + 0.849683i
\(538\) −0.571506 0.634721i −0.0246394 0.0273648i
\(539\) 1.39577 + 0.621438i 0.0601202 + 0.0267672i
\(540\) −19.3492 + 8.61482i −0.832657 + 0.370723i
\(541\) 14.7209 16.3492i 0.632900 0.702906i −0.338336 0.941025i \(-0.609864\pi\)
0.971236 + 0.238119i \(0.0765308\pi\)
\(542\) −4.78115 3.47371i −0.205368 0.149209i
\(543\) 13.7533 + 9.99235i 0.590210 + 0.428813i
\(544\) 0.887426 0.985587i 0.0380481 0.0422567i
\(545\) 20.1295 8.96221i 0.862252 0.383899i
\(546\) 8.22191 + 3.66063i 0.351865 + 0.156660i
\(547\) −15.8639 17.6186i −0.678291 0.753318i 0.301473 0.953475i \(-0.402522\pi\)
−0.979764 + 0.200156i \(0.935855\pi\)
\(548\) 1.09464 + 10.4148i 0.0467605 + 0.444897i
\(549\) 13.5850 + 2.88759i 0.579796 + 0.123239i
\(550\) −0.270510 0.832544i −0.0115346 0.0354998i
\(551\) −42.1485 + 8.95895i −1.79559 + 0.381664i
\(552\) −6.11803 10.5967i −0.260401 0.451027i
\(553\) 0 0
\(554\) 2.54508 7.83297i 0.108130 0.332791i
\(555\) −0.0646021 + 0.614648i −0.00274221 + 0.0260904i
\(556\) −7.66312 + 5.56758i −0.324989 + 0.236118i
\(557\) −35.8885 −1.52065 −0.760323 0.649545i \(-0.774959\pi\)
−0.760323 + 0.649545i \(0.774959\pi\)
\(558\) 0 0
\(559\) −22.4164 −0.948113
\(560\) 11.7812 8.55951i 0.497845 0.361705i
\(561\) 0.0188507 0.179352i 0.000795875 0.00757225i
\(562\) −3.63525 + 11.1882i −0.153344 + 0.471944i
\(563\) 4.28115 7.41517i 0.180429 0.312512i −0.761598 0.648050i \(-0.775585\pi\)
0.942027 + 0.335538i \(0.108918\pi\)
\(564\) −2.73607 4.73901i −0.115209 0.199548i
\(565\) −4.74803 + 1.00922i −0.199751 + 0.0424584i
\(566\) −1.25329 3.85723i −0.0526797 0.162131i
\(567\) −2.93444 0.623735i −0.123235 0.0261944i
\(568\) −0.0210757 0.200522i −0.000884315 0.00841370i
\(569\) −10.3902 11.5395i −0.435579 0.483759i 0.484890 0.874575i \(-0.338860\pi\)
−0.920469 + 0.390816i \(0.872193\pi\)
\(570\) 7.39074 + 3.29057i 0.309564 + 0.137827i
\(571\) −6.39482 + 2.84716i −0.267615 + 0.119150i −0.536157 0.844118i \(-0.680125\pi\)
0.268543 + 0.963268i \(0.413458\pi\)
\(572\) 4.01478 4.45887i 0.167867 0.186435i
\(573\) 13.0172 + 9.45756i 0.543802 + 0.395095i
\(574\) 9.70820 + 7.05342i 0.405213 + 0.294404i
\(575\) 6.78893 7.53987i 0.283118 0.314434i
\(576\) 0.431318 0.192035i 0.0179716 0.00800146i
\(577\) 35.6088 + 15.8541i 1.48241 + 0.660014i 0.978968 0.204013i \(-0.0653984\pi\)
0.503447 + 0.864026i \(0.332065\pi\)
\(578\) 7.00723 + 7.78231i 0.291462 + 0.323702i
\(579\) 0.248983 + 2.36892i 0.0103474 + 0.0984488i
\(580\) −35.7088 7.59014i −1.48273 0.315164i
\(581\) 3.79180 + 11.6699i 0.157310 + 0.484151i
\(582\) −3.19904 + 0.679977i −0.132605 + 0.0281860i
\(583\) −4.85410 8.40755i −0.201036 0.348205i
\(584\) −9.57295 + 16.5808i −0.396131 + 0.686120i
\(585\) −7.85410 + 24.1724i −0.324727 + 0.999407i
\(586\) −0.532068 + 5.06229i −0.0219795 + 0.209121i
\(587\) 29.1353 21.1680i 1.20254 0.873697i 0.208008 0.978127i \(-0.433302\pi\)
0.994532 + 0.104430i \(0.0333018\pi\)
\(588\) −3.23607 −0.133453
\(589\) 0 0
\(590\) 15.3262 0.630971
\(591\) 13.2812 9.64932i 0.546314 0.396920i
\(592\) 0.0457515 0.435296i 0.00188037 0.0178906i
\(593\) 1.88854 5.81234i 0.0775532 0.238684i −0.904762 0.425917i \(-0.859952\pi\)
0.982316 + 0.187232i \(0.0599517\pi\)
\(594\) −1.18034 + 2.04441i −0.0484299 + 0.0838831i
\(595\) −0.927051 1.60570i −0.0380054 0.0658273i
\(596\) −26.9600 + 5.73053i −1.10432 + 0.234731i
\(597\) 8.25329 + 25.4010i 0.337785 + 1.03959i
\(598\) −16.0577 3.41316i −0.656647 0.139575i
\(599\) −3.11478 29.6351i −0.127266 1.21086i −0.852638 0.522502i \(-0.824999\pi\)
0.725372 0.688357i \(-0.241668\pi\)
\(600\) 2.77415 + 3.08100i 0.113254 + 0.125781i
\(601\) −20.0980 8.94821i −0.819815 0.365005i −0.0464137 0.998922i \(-0.514779\pi\)
−0.773401 + 0.633917i \(0.781446\pi\)
\(602\) −7.82206 + 3.48260i −0.318803 + 0.141940i
\(603\) 5.66897 6.29602i 0.230858 0.256394i
\(604\) 25.5344 + 18.5519i 1.03898 + 0.754864i
\(605\) −22.0623 16.0292i −0.896960 0.651680i
\(606\) −1.97010 + 2.18802i −0.0800299 + 0.0888823i
\(607\) −23.2190 + 10.3378i −0.942432 + 0.419598i −0.819668 0.572838i \(-0.805842\pi\)
−0.122763 + 0.992436i \(0.539176\pi\)
\(608\) −25.6616 11.4253i −1.04072 0.463357i
\(609\) 17.2998 + 19.2133i 0.701022 + 0.778564i
\(610\) −1.17449 11.1745i −0.0475537 0.452443i
\(611\) −16.0577 3.41316i −0.649624 0.138082i
\(612\) −0.236068 0.726543i −0.00954248 0.0293687i
\(613\) 24.5082 5.20938i 0.989877 0.210405i 0.315607 0.948890i \(-0.397792\pi\)
0.674270 + 0.738485i \(0.264459\pi\)
\(614\) 1.88197 + 3.25966i 0.0759500 + 0.131549i
\(615\) 8.47214 14.6742i 0.341629 0.591720i
\(616\) 1.58359 4.87380i 0.0638047 0.196371i
\(617\) 1.48807 14.1581i 0.0599076 0.569983i −0.922860 0.385136i \(-0.874154\pi\)
0.982767 0.184847i \(-0.0591789\pi\)
\(618\) −0.0729490 + 0.0530006i −0.00293444 + 0.00213200i
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 0 0
\(621\) −27.3607 −1.09795
\(622\) 8.23607 5.98385i 0.330236 0.239931i
\(623\) −2.00129 + 19.0410i −0.0801800 + 0.762862i
\(624\) −2.78115 + 8.55951i −0.111335 + 0.342655i
\(625\) 15.4164 26.7020i 0.616656 1.06808i
\(626\) −0.381966 0.661585i −0.0152664 0.0264422i
\(627\) −3.73619 + 0.794152i −0.149209 + 0.0317154i
\(628\) −4.85410 14.9394i −0.193700 0.596147i
\(629\) −0.0545103 0.0115865i −0.00217347 0.000461985i
\(630\) 1.01478 + 9.65502i 0.0404299 + 0.384665i
\(631\) 5.84117 + 6.48728i 0.232533 + 0.258254i 0.848107 0.529825i \(-0.177742\pi\)
−0.615574 + 0.788079i \(0.711076\pi\)
\(632\) 0 0
\(633\) −7.30836 + 3.25389i −0.290481 + 0.129331i
\(634\) −10.7061 + 11.8903i −0.425193 + 0.472225i
\(635\) −21.6803 15.7517i −0.860358 0.625087i
\(636\) 16.6353 + 12.0862i 0.659631 + 0.479250i
\(637\) −6.49606 + 7.21460i −0.257383 + 0.285853i
\(638\) −3.71711 + 1.65496i −0.147162 + 0.0655207i
\(639\) −0.164749 0.0733508i −0.00651736 0.00290171i
\(640\) −19.9390 22.1445i −0.788158 0.875339i
\(641\) −4.29509 40.8651i −0.169646 1.61407i −0.665999 0.745953i \(-0.731995\pi\)
0.496353 0.868121i \(-0.334672\pi\)
\(642\) 0.659039 + 0.140083i 0.0260102 + 0.00552864i
\(643\) −2.51722 7.74721i −0.0992695 0.305520i 0.889073 0.457765i \(-0.151350\pi\)
−0.988343 + 0.152245i \(0.951350\pi\)
\(644\) 25.9819 5.52261i 1.02383 0.217621i
\(645\) 6.04508 + 10.4704i 0.238025 + 0.412271i
\(646\) −0.364745 + 0.631757i −0.0143507 + 0.0248561i
\(647\) 9.23607 28.4257i 0.363107 1.11753i −0.588050 0.808824i \(-0.700104\pi\)
0.951158 0.308705i \(-0.0998956\pi\)
\(648\) −0.233733 + 2.22382i −0.00918189 + 0.0873598i
\(649\) −5.85410 + 4.25325i −0.229794 + 0.166955i
\(650\) 5.56231 0.218172
\(651\) 0 0
\(652\) 20.5623 0.805282
\(653\) −32.0795 + 23.3071i −1.25537 + 0.912079i −0.998521 0.0543729i \(-0.982684\pi\)
−0.256848 + 0.966452i \(0.582684\pi\)
\(654\) −0.543718 + 5.17313i −0.0212611 + 0.202285i
\(655\) −0.0729490 + 0.224514i −0.00285035 + 0.00877249i
\(656\) −6.00000 + 10.3923i −0.234261 + 0.405751i
\(657\) 8.56231 + 14.8303i 0.334047 + 0.578587i
\(658\) −6.13348 + 1.30371i −0.239108 + 0.0508240i
\(659\) 7.01064 + 21.5765i 0.273096 + 0.840503i 0.989717 + 0.143040i \(0.0456877\pi\)
−0.716621 + 0.697463i \(0.754312\pi\)
\(660\) −3.16535 0.672816i −0.123211 0.0261893i
\(661\) 1.73706 + 16.5270i 0.0675637 + 0.642826i 0.974934 + 0.222494i \(0.0714197\pi\)
−0.907370 + 0.420332i \(0.861914\pi\)
\(662\) 4.66087 + 5.17642i 0.181150 + 0.201187i
\(663\) 1.04683 + 0.466079i 0.0406555 + 0.0181010i
\(664\) 8.35519 3.71997i 0.324244 0.144363i
\(665\) −26.2771 + 29.1837i −1.01898 + 1.13169i
\(666\) 0.236068 + 0.171513i 0.00914745 + 0.00664601i
\(667\) −38.1525 27.7194i −1.47727 1.07330i
\(668\) −9.99967 + 11.1058i −0.386899 + 0.429695i
\(669\) −0.646976 + 0.288052i −0.0250136 + 0.0111368i
\(670\) −6.26153 2.78781i −0.241904 0.107703i
\(671\) 3.54971 + 3.94235i 0.137035 + 0.152193i
\(672\) 1.76173 + 16.7618i 0.0679603 + 0.646599i
\(673\) −4.31990 0.918223i −0.166520 0.0353949i 0.123897 0.992295i \(-0.460461\pi\)
−0.290417 + 0.956900i \(0.593794\pi\)
\(674\) 3.62461 + 11.1554i 0.139615 + 0.429690i
\(675\) 9.06793 1.92745i 0.349025 0.0741875i
\(676\) 8.54508 + 14.8005i 0.328657 + 0.569251i
\(677\) 14.3262 24.8138i 0.550602 0.953671i −0.447629 0.894219i \(-0.647732\pi\)
0.998231 0.0594514i \(-0.0189351\pi\)
\(678\) 0.354102 1.08981i 0.0135992 0.0418540i
\(679\) 1.65943 15.7884i 0.0636831 0.605904i
\(680\) −1.11803 + 0.812299i −0.0428746 + 0.0311503i
\(681\) −20.7426 −0.794860
\(682\) 0 0
\(683\) 10.0557 0.384772 0.192386 0.981319i \(-0.438377\pi\)
0.192386 + 0.981319i \(0.438377\pi\)
\(684\) −13.0902 + 9.51057i −0.500515 + 0.363646i
\(685\) 1.77116 16.8514i 0.0676725 0.643861i
\(686\) 2.86475 8.81678i 0.109376 0.336626i
\(687\) −3.61803 + 6.26662i −0.138037 + 0.239086i
\(688\) −4.28115 7.41517i −0.163217 0.282701i
\(689\) 60.3389 12.8254i 2.29873 0.488610i
\(690\) 2.73607 + 8.42075i 0.104160 + 0.320573i
\(691\) −3.74906 0.796887i −0.142621 0.0303150i 0.136048 0.990702i \(-0.456560\pi\)
−0.278669 + 0.960387i \(0.589893\pi\)
\(692\) 0.153880 + 1.46407i 0.00584964 + 0.0556556i
\(693\) −3.06702 3.40627i −0.116507 0.129394i
\(694\) 4.58717 + 2.04234i 0.174127 + 0.0775262i
\(695\) 14.0012 6.23374i 0.531096 0.236459i
\(696\) 12.8945 14.3208i 0.488764 0.542828i
\(697\) 1.23607 + 0.898056i 0.0468194 + 0.0340163i
\(698\) −8.35410 6.06961i −0.316207 0.229738i
\(699\) 12.5786 13.9699i 0.475765 0.528391i
\(700\) −8.22191 + 3.66063i −0.310759 + 0.138359i
\(701\) −27.4378 12.2161i −1.03631 0.461396i −0.183174 0.983081i \(-0.558637\pi\)
−0.853139 + 0.521684i \(0.825304\pi\)
\(702\) −10.0370 11.1472i −0.378821 0.420723i
\(703\) 0.123379 + 1.17387i 0.00465333 + 0.0442735i
\(704\) 0.176399 + 0.0374948i 0.00664829 + 0.00141314i
\(705\) 2.73607 + 8.42075i 0.103046 + 0.317144i
\(706\) 19.5758 4.16097i 0.736746 0.156600i
\(707\) −7.14590 12.3771i −0.268749 0.465487i
\(708\) 7.66312 13.2729i 0.287998 0.498827i
\(709\) −1.28115 + 3.94298i −0.0481147 + 0.148082i −0.972227 0.234038i \(-0.924806\pi\)
0.924113 + 0.382120i \(0.124806\pi\)
\(710\) −0.0152505 + 0.145099i −0.000572341 + 0.00544546i
\(711\) 0 0
\(712\) 14.2705 0.534810
\(713\) 0 0
\(714\) 0.437694 0.0163803
\(715\) −7.85410 + 5.70634i −0.293727 + 0.213405i
\(716\) −3.34851 + 31.8590i −0.125140 + 1.19063i
\(717\) 4.14590 12.7598i 0.154831 0.476522i
\(718\) −7.82624 + 13.5554i −0.292073 + 0.505885i
\(719\) −20.6910 35.8378i −0.771643 1.33653i −0.936662 0.350235i \(-0.886102\pi\)
0.165018 0.986290i \(-0.447232\pi\)
\(720\) −9.49606 + 2.01845i −0.353897 + 0.0752232i
\(721\) −0.135255 0.416272i −0.00503716 0.0155028i
\(722\) 3.62717 + 0.770979i 0.134989 + 0.0286929i
\(723\) −0.891405 8.48115i −0.0331517 0.315417i
\(724\) 18.4055 + 20.4414i 0.684035 + 0.759698i
\(725\) 14.5973 + 6.49913i 0.542129 + 0.241372i
\(726\) 5.88113 2.61845i 0.218269 0.0971796i
\(727\) −15.9473 + 17.7112i −0.591451 + 0.656873i −0.962354 0.271798i \(-0.912382\pi\)
0.370903 + 0.928672i \(0.379048\pi\)
\(728\) 26.3435 + 19.1396i 0.976354 + 0.709362i
\(729\) −10.5172 7.64121i −0.389527 0.283008i
\(730\) 9.27020 10.2956i 0.343106 0.381057i
\(731\) −0.995920 + 0.443412i −0.0368354 + 0.0164002i
\(732\) −10.2647 4.57012i −0.379393 0.168917i
\(733\) 18.6984 + 20.7666i 0.690640 + 0.767033i 0.981857 0.189624i \(-0.0607268\pi\)
−0.291217 + 0.956657i \(0.594060\pi\)
\(734\) 2.34315 + 22.2936i 0.0864873 + 0.822872i
\(735\) 5.12165 + 1.08864i 0.188915 + 0.0401551i
\(736\) −9.50000 29.2380i −0.350175 1.07773i
\(737\) 3.16535 0.672816i 0.116597 0.0247835i
\(738\) −4.00000 6.92820i −0.147242 0.255031i
\(739\) 10.8541 18.7999i 0.399275 0.691564i −0.594362 0.804198i \(-0.702595\pi\)
0.993637 + 0.112634i \(0.0359287\pi\)
\(740\) −0.309017 + 0.951057i −0.0113597 + 0.0349615i
\(741\) 2.53696 24.1376i 0.0931975 0.886715i
\(742\) 19.0623 13.8496i 0.699799 0.508434i
\(743\) 3.43769 0.126117 0.0630584 0.998010i \(-0.479915\pi\)
0.0630584 + 0.998010i \(0.479915\pi\)
\(744\) 0 0
\(745\) 44.5967 1.63390
\(746\) −0.173762 + 0.126246i −0.00636188 + 0.00462218i
\(747\) 0.855078 8.13553i 0.0312857 0.297663i
\(748\) 0.0901699 0.277515i 0.00329694 0.0101469i
\(749\) −1.63525 + 2.83234i −0.0597509 + 0.103492i
\(750\) 2.54508 + 4.40822i 0.0929334 + 0.160965i
\(751\) 38.9624 8.28171i 1.42176 0.302204i 0.568066 0.822983i \(-0.307692\pi\)
0.853691 + 0.520779i \(0.174359\pi\)
\(752\) −1.93769 5.96361i −0.0706604 0.217470i
\(753\) 0.923637 + 0.196325i 0.0336592 + 0.00715449i
\(754\) −2.70249 25.7125i −0.0984189 0.936393i
\(755\) −34.1718 37.9516i −1.24364 1.38120i
\(756\) 22.1722 + 9.87171i 0.806396 + 0.359030i
\(757\) −39.3963 + 17.5404i −1.43188 + 0.637515i −0.968584 0.248687i \(-0.920001\pi\)
−0.463299 + 0.886202i \(0.653334\pi\)
\(758\) 7.61602 8.45845i 0.276626 0.307225i
\(759\) −3.38197 2.45714i −0.122758 0.0891886i
\(760\) 23.6803 + 17.2048i 0.858976 + 0.624083i
\(761\) −2.34636 + 2.60590i −0.0850554 + 0.0944636i −0.784170 0.620546i \(-0.786911\pi\)
0.699115 + 0.715010i \(0.253578\pi\)
\(762\) 5.77931 2.57311i 0.209362 0.0932140i
\(763\) −23.0663 10.2698i −0.835057 0.371791i
\(764\) 17.4204 + 19.3474i 0.630249 + 0.699963i
\(765\) 0.129204 + 1.22930i 0.00467139 + 0.0444453i
\(766\) 10.1888 + 2.16569i 0.368136 + 0.0782497i
\(767\) −14.2082 43.7284i −0.513029 1.57894i
\(768\) 6.41890 1.36438i 0.231622 0.0492328i
\(769\) 26.8713 + 46.5425i 0.969005 + 1.67837i 0.698447 + 0.715662i \(0.253875\pi\)
0.270557 + 0.962704i \(0.412792\pi\)
\(770\) −1.85410 + 3.21140i −0.0668172 + 0.115731i
\(771\) 0.437694 1.34708i 0.0157632 0.0485140i
\(772\) −0.402863 + 3.83299i −0.0144994 + 0.137952i
\(773\) −15.4443 + 11.2209i −0.555492 + 0.403588i −0.829806 0.558052i \(-0.811549\pi\)
0.274314 + 0.961640i \(0.411549\pi\)
\(774\) 5.70820 0.205177
\(775\) 0 0
\(776\) −11.8328 −0.424773
\(777\) 0.572949 0.416272i 0.0205544 0.0149337i
\(778\) 1.87791 17.8671i 0.0673264 0.640568i
\(779\) 10.0000 30.7768i 0.358287 1.10269i
\(780\) 10.2812 17.8075i 0.368124 0.637610i
\(781\) −0.0344419 0.0596550i −0.00123243 0.00213463i
\(782\) −0.780927 + 0.165991i −0.0279259 + 0.00593584i
\(783\) −13.3156 40.9812i −0.475861 1.46455i
\(784\) −3.62717 0.770979i −0.129542 0.0275350i
\(785\) 2.65674 + 25.2772i 0.0948230 + 0.902181i
\(786\) −0.0372894 0.0414140i −0.00133007 0.00147719i
\(787\) −28.5865 12.7275i −1.01900 0.453687i −0.171895 0.985115i \(-0.554989\pi\)
−0.847103 + 0.531428i \(0.821656\pi\)
\(788\) 24.2659 10.8039i 0.864436 0.384872i
\(789\) 7.22552 8.02476i 0.257235 0.285689i
\(790\) 0 0
\(791\) 4.50000 + 3.26944i 0.160002 + 0.116248i
\(792\) −2.28602 + 2.53889i −0.0812303 + 0.0902154i
\(793\) −30.7940 + 13.7104i −1.09353 + 0.486869i
\(794\) −9.19838 4.09538i −0.326438 0.145340i
\(795\) −22.2623 24.7248i −0.789563 0.876899i
\(796\) 4.51717 + 42.9780i 0.160107 + 1.52332i
\(797\) 8.85784 + 1.88279i 0.313761 + 0.0666919i 0.362101 0.932139i \(-0.382060\pi\)
−0.0483398 + 0.998831i \(0.515393\pi\)
\(798\) −2.86475 8.81678i −0.101411 0.312111i
\(799\) −0.780927 + 0.165991i −0.0276272 + 0.00587235i
\(800\) 5.20820 + 9.02087i 0.184138 + 0.318936i
\(801\) 6.38197 11.0539i 0.225496 0.390570i
\(802\) −5.69756 + 17.5353i −0.201188 + 0.619193i
\(803\) −0.683723 + 6.50519i −0.0241281 + 0.229563i
\(804\) −5.54508 + 4.02874i −0.195560 + 0.142083i
\(805\) −42.9787 −1.51480
\(806\) 0 0
\(807\) 1.38197 0.0486475
\(808\) −8.61803 + 6.26137i −0.303181 + 0.220274i
\(809\) 5.72799 54.4982i 0.201385 1.91605i −0.166249 0.986084i \(-0.553166\pi\)
0.367635 0.929970i \(-0.380168\pi\)
\(810\) 0.500000 1.53884i 0.0175682 0.0540694i
\(811\) −21.3885 + 37.0460i −0.751053 + 1.30086i 0.196259 + 0.980552i \(0.437121\pi\)
−0.947313 + 0.320311i \(0.896213\pi\)
\(812\) 20.9164 + 36.2283i 0.734022 + 1.27136i
\(813\) 9.35335 1.98812i 0.328036 0.0697262i
\(814\) 0.0344419 + 0.106001i 0.00120719 + 0.00371534i
\(815\) −32.5435 6.91733i −1.13995 0.242303i
\(816\) 0.0457515 + 0.435296i 0.00160162 + 0.0152384i
\(817\) 15.4503 + 17.1593i 0.540539 + 0.600329i
\(818\) −3.48943 1.55360i −0.122005 0.0543202i
\(819\) 26.6067 11.8460i 0.929712 0.413934i
\(820\) 18.3452 20.3744i 0.640641 0.711504i
\(821\) −26.2705 19.0866i −0.916847 0.666128i 0.0258901 0.999665i \(-0.491758\pi\)
−0.942737 + 0.333536i \(0.891758\pi\)
\(822\) 3.23607 + 2.35114i 0.112871 + 0.0820055i
\(823\) 4.09817 4.55147i 0.142853 0.158654i −0.667472 0.744635i \(-0.732624\pi\)
0.810325 + 0.585980i \(0.199290\pi\)
\(824\) −0.298033 + 0.132693i −0.0103825 + 0.00462258i
\(825\) 1.29395 + 0.576105i 0.0450497 + 0.0200574i
\(826\) −11.7515 13.0513i −0.408886 0.454114i
\(827\) 0.279484 + 2.65911i 0.00971862 + 0.0924665i 0.998306 0.0581822i \(-0.0185304\pi\)
−0.988587 + 0.150649i \(0.951864\pi\)
\(828\) −17.3212 3.68174i −0.601955 0.127949i
\(829\) 6.70820 + 20.6457i 0.232986 + 0.717056i 0.997382 + 0.0723096i \(0.0230370\pi\)
−0.764397 + 0.644746i \(0.776963\pi\)
\(830\) −6.47341 + 1.37597i −0.224695 + 0.0477605i
\(831\) 6.66312 + 11.5409i 0.231141 + 0.400348i
\(832\) −0.572949 + 0.992377i −0.0198634 + 0.0344045i
\(833\) −0.145898 + 0.449028i −0.00505507 + 0.0155579i
\(834\) −0.378188 + 3.59821i −0.0130956 + 0.124596i
\(835\) 19.5623 14.2128i 0.676982 0.491856i
\(836\) −6.18034 −0.213752
\(837\) 0 0
\(838\) −2.76393 −0.0954784
\(839\) −9.04508 + 6.57164i −0.312271 + 0.226878i −0.732870 0.680368i \(-0.761820\pi\)
0.420599 + 0.907246i \(0.361820\pi\)
\(840\) 1.83576 17.4661i 0.0633398 0.602638i
\(841\) 13.9894 43.0548i 0.482392 1.48465i
\(842\) 4.56231 7.90215i 0.157227 0.272326i
\(843\) −9.51722 16.4843i −0.327791 0.567750i
\(844\) −12.6614 + 2.69127i −0.435824 + 0.0926372i
\(845\) −8.54508 26.2991i −0.293960 0.904715i
\(846\) 4.08899 + 0.869142i 0.140582 + 0.0298817i
\(847\) 3.26643 + 31.0780i 0.112236 + 1.06785i
\(848\) 15.7663 + 17.5102i 0.541416 + 0.601303i
\(849\) 5.99496 + 2.66913i 0.205747 + 0.0916043i
\(850\) 0.247123 0.110026i 0.00847625 0.00377387i
\(851\) −0.864380 + 0.959992i −0.0296306 + 0.0329081i
\(852\) 0.118034 + 0.0857567i 0.00404378 + 0.00293798i
\(853\) −3.23607 2.35114i −0.110801 0.0805015i 0.531005 0.847369i \(-0.321815\pi\)
−0.641806 + 0.766867i \(0.721815\pi\)
\(854\) −8.61532 + 9.56828i −0.294810 + 0.327420i
\(855\) 23.9169 10.6485i 0.817942 0.364171i
\(856\) 2.22694 + 0.991500i 0.0761154 + 0.0338888i
\(857\) −5.47372 6.07918i −0.186979 0.207661i 0.642366 0.766398i \(-0.277953\pi\)
−0.829345 + 0.558737i \(0.811286\pi\)
\(858\) −0.239558 2.27924i −0.00817837 0.0778120i
\(859\) 42.3458 + 9.00087i 1.44482 + 0.307106i 0.862584 0.505915i \(-0.168845\pi\)
0.582235 + 0.813020i \(0.302178\pi\)
\(860\) 6.04508 + 18.6049i 0.206136 + 0.634420i
\(861\) −18.9921 + 4.03690i −0.647249 + 0.137577i
\(862\) 9.03444 + 15.6481i 0.307714 + 0.532977i
\(863\) 1.24671 2.15937i 0.0424385 0.0735057i −0.844026 0.536302i \(-0.819821\pi\)
0.886464 + 0.462797i \(0.153154\pi\)
\(864\) 8.68034 26.7153i 0.295311 0.908874i
\(865\) 0.248983 2.36892i 0.00846568 0.0805456i
\(866\) −0.291796 + 0.212002i −0.00991563 + 0.00720413i
\(867\) −16.9443 −0.575458
\(868\) 0 0
\(869\) 0 0
\(870\) −11.2812 + 8.19624i −0.382467 + 0.277878i
\(871\) −2.14935 + 20.4497i −0.0728278 + 0.692910i
\(872\) −5.81559 + 17.8986i −0.196941 + 0.606122i
\(873\) −5.29180 + 9.16566i −0.179100 + 0.310211i
\(874\) 8.45492 + 14.6443i 0.285992 + 0.495352i
\(875\) −24.1683 + 5.13712i −0.817037 + 0.173667i
\(876\) −4.28115 13.1760i −0.144647 0.445177i
\(877\) −15.9358 3.38725i −0.538113 0.114379i −0.0691651 0.997605i \(-0.522034\pi\)
−0.468948 + 0.883226i \(0.655367\pi\)
\(878\) 2.70249 + 25.7125i 0.0912046 + 0.867754i
\(879\) −5.51101 6.12059i −0.185882 0.206442i
\(880\) −3.38761 1.50826i −0.114196 0.0508435i
\(881\) 14.0327 6.24775i 0.472773 0.210492i −0.156498 0.987678i \(-0.550020\pi\)
0.629271 + 0.777186i \(0.283354\pi\)
\(882\) 1.65418 1.83716i 0.0556992 0.0618602i
\(883\) −0.809017 0.587785i −0.0272256 0.0197805i 0.574089 0.818793i \(-0.305356\pi\)
−0.601315 + 0.799012i \(0.705356\pi\)
\(884\) 1.50000 + 1.08981i 0.0504505 + 0.0366544i
\(885\) −16.5934 + 18.4288i −0.557779 + 0.619477i
\(886\) 23.2190 10.3378i 0.780059 0.347305i
\(887\) 35.7227 + 15.9048i 1.19945 + 0.534029i 0.906544 0.422112i \(-0.138711\pi\)
0.292906 + 0.956141i \(0.405378\pi\)
\(888\) −0.353210 0.392279i −0.0118530 0.0131640i
\(889\) 3.20988 + 30.5400i 0.107656 + 1.02428i
\(890\) −10.1006 2.14695i −0.338572 0.0719658i
\(891\) 0.236068 + 0.726543i 0.00790857 + 0.0243401i
\(892\) −1.12086 + 0.238246i −0.0375291 + 0.00797705i
\(893\) 8.45492 + 14.6443i 0.282933 + 0.490054i
\(894\) −5.26393 + 9.11740i −0.176052 + 0.304931i
\(895\) 16.0172 49.2959i 0.535397 1.64778i
\(896\) −3.56922 + 33.9588i −0.119239 + 1.13449i
\(897\) 21.4894 15.6129i 0.717509 0.521301i
\(898\) 14.8754 0.496398
\(899\) 0 0
\(900\) 6.00000 0.200000
\(901\) 2.42705 1.76336i 0.0808568 0.0587459i
\(902\) 0.319411 3.03899i 0.0106352 0.101187i
\(903\) 4.28115 13.1760i 0.142468 0.438471i
\(904\) 2.07295 3.59045i 0.0689453 0.119417i
\(905\) −22.2533 38.5438i −0.739724 1.28124i
\(906\) 11.7923 2.50653i 0.391772 0.0832738i
\(907\) 16.3541 + 50.3328i 0.543029 + 1.67127i 0.725631 + 0.688085i \(0.241548\pi\)
−0.182601 + 0.983187i \(0.558452\pi\)
\(908\) −32.8289 6.97800i −1.08946 0.231573i
\(909\) 0.995933 + 9.47567i 0.0330330 + 0.314288i
\(910\) −15.7663 17.5102i −0.522646 0.580458i
\(911\) −7.47311 3.32724i −0.247595 0.110237i 0.279187 0.960237i \(-0.409935\pi\)
−0.526782 + 0.850000i \(0.676602\pi\)
\(912\) 8.46903 3.77066i 0.280438 0.124859i
\(913\) 2.09077 2.32204i 0.0691945 0.0768483i
\(914\) 7.87132 + 5.71885i 0.260360 + 0.189163i
\(915\) 14.7082 + 10.6861i 0.486238 + 0.353273i
\(916\) −7.83432 + 8.70089i −0.258853 + 0.287486i
\(917\) 0.247123 0.110026i 0.00816072 0.00363339i
\(918\) −0.666422 0.296710i −0.0219952 0.00979290i
\(919\) 6.60792 + 7.33884i 0.217975 + 0.242086i 0.842209 0.539152i \(-0.181255\pi\)
−0.624233 + 0.781238i \(0.714588\pi\)
\(920\) 3.34851 + 31.8590i 0.110397 + 1.05036i
\(921\) −5.95709 1.26622i −0.196293 0.0417233i
\(922\) 2.05166 + 6.31437i 0.0675679 + 0.207953i
\(923\) 0.428129 0.0910017i 0.0140921 0.00299536i
\(924\) 1.85410 + 3.21140i 0.0609955 + 0.105647i
\(925\) 0.218847 0.379054i 0.00719565 0.0124632i
\(926\) −5.94427 + 18.2946i −0.195341 + 0.601197i
\(927\) −0.0305010 + 0.290198i −0.00100178 + 0.00953134i
\(928\) 39.1697 28.4585i 1.28581 0.934194i
\(929\) −33.5410 −1.10045 −0.550223 0.835018i \(-0.685457\pi\)
−0.550223 + 0.835018i \(0.685457\pi\)
\(930\) 0 0
\(931\) 10.0000 0.327737
\(932\) 24.6074 17.8783i 0.806042 0.585624i
\(933\) −1.72181 + 16.3819i −0.0563694 + 0.536319i
\(934\) 6.25987 19.2659i 0.204829 0.630399i
\(935\) −0.236068 + 0.408882i −0.00772025 + 0.0133719i
\(936\) −10.8541 18.7999i −0.354777 0.614493i
\(937\) −39.6006 + 8.41737i −1.29369 + 0.274983i −0.802807 0.596239i \(-0.796661\pi\)
−0.490888 + 0.871223i \(0.663328\pi\)
\(938\) 2.42705 + 7.46969i 0.0792460 + 0.243894i
\(939\) 1.20906 + 0.256993i 0.0394561 + 0.00838665i
\(940\) 1.49750 + 14.2478i 0.0488431 + 0.464711i
\(941\) −19.1262 21.2417i −0.623495 0.692461i 0.345815 0.938303i \(-0.387602\pi\)
−0.969310 + 0.245841i \(0.920936\pi\)
\(942\) −5.48127 2.44042i −0.178590 0.0795132i
\(943\) 32.3545 14.4052i 1.05361 0.469096i
\(944\) 11.7515 13.0513i 0.382478 0.424785i
\(945\) −31.7705 23.0826i −1.03349 0.750878i
\(946\) 1.76393 + 1.28157i 0.0573504 + 0.0416675i
\(947\) −14.7670 + 16.4004i −0.479862 + 0.532941i −0.933658 0.358165i \(-0.883403\pi\)
0.453797 + 0.891105i \(0.350069\pi\)
\(948\) 0 0
\(949\) −37.9691 16.9049i −1.23253 0.548757i
\(950\) −3.83378 4.25784i −0.124384 0.138143i
\(951\) −2.70609 25.7467i −0.0877510 0.834895i
\(952\) 1.54899 + 0.329247i 0.0502030 + 0.0106710i
\(953\) −13.0451 40.1486i −0.422572 1.30054i −0.905300 0.424772i \(-0.860354\pi\)
0.482729 0.875770i \(-0.339646\pi\)
\(954\) −15.3649 + 3.26592i −0.497458 + 0.105738i
\(955\) −21.0623 36.4810i −0.681560 1.18050i
\(956\) 10.8541 18.7999i 0.351047 0.608031i
\(957\) 2.03444 6.26137i 0.0657642 0.202401i
\(958\) −0.577819 + 5.49758i −0.0186685 + 0.177619i
\(959\) −15.7082 + 11.4127i −0.507244 + 0.368535i
\(960\) 0.618034 0.0199470
\(961\) 0 0
\(962\) −0.708204 −0.0228334
\(963\) 1.76393 1.28157i 0.0568419 0.0412981i
\(964\) 1.44232 13.7228i 0.0464541 0.441981i
\(965\) 1.92705 5.93085i 0.0620340 0.190921i
\(966\) 5.07295 8.78661i 0.163219 0.282704i
\(967\) 21.8262 + 37.8042i 0.701884 + 1.21570i 0.967804 + 0.251704i \(0.0809911\pi\)
−0.265920 + 0.963995i \(0.585676\pi\)
\(968\) 22.7828 4.84264i 0.732267 0.155648i
\(969\) −0.364745 1.12257i −0.0117173 0.0360621i
\(970\) 8.37520 + 1.78020i 0.268911 + 0.0571589i
\(971\) 2.14935 + 20.4497i 0.0689758 + 0.656261i 0.973319 + 0.229455i \(0.0736945\pi\)
−0.904343 + 0.426806i \(0.859639\pi\)
\(972\) −17.3228 19.2389i −0.555630 0.617089i
\(973\) −16.0440 7.14323i −0.514346 0.229002i
\(974\) 12.9424 5.76231i 0.414700 0.184636i
\(975\) −6.02218 + 6.68830i −0.192864 + 0.214197i
\(976\) −10.4164 7.56796i −0.333421 0.242245i
\(977\) 4.90983 + 3.56720i 0.157079 + 0.114125i 0.663549 0.748133i \(-0.269050\pi\)
−0.506469 + 0.862258i \(0.669050\pi\)
\(978\) 5.25542 5.83674i 0.168050 0.186638i
\(979\) 4.45389 1.98300i 0.142347 0.0633769i
\(980\) 7.73968 + 3.44593i 0.247235 + 0.110076i
\(981\) 11.2634 + 12.5092i 0.359611 + 0.399389i
\(982\) 1.78281 + 16.9623i 0.0568917 + 0.541289i
\(983\) 20.5748 + 4.37331i 0.656234 + 0.139487i 0.523982 0.851729i \(-0.324446\pi\)
0.132252 + 0.991216i \(0.457779\pi\)
\(984\) 4.47214 + 13.7638i 0.142566 + 0.438775i
\(985\) −42.0395 + 8.93578i −1.33949 + 0.284718i
\(986\) −0.628677 1.08890i −0.0200212 0.0346777i
\(987\) 5.07295 8.78661i 0.161474 0.279681i
\(988\) 12.1353 37.3485i 0.386074 1.18821i
\(989\) −2.64149 + 25.1321i −0.0839944 + 0.799154i
\(990\) 2.00000 1.45309i 0.0635642 0.0461821i
\(991\) 17.2705 0.548616 0.274308 0.961642i \(-0.411551\pi\)
0.274308 + 0.961642i \(0.411551\pi\)
\(992\) 0 0
\(993\) −11.2705 −0.357659
\(994\) 0.135255 0.0982684i 0.00429003 0.00311689i
\(995\) 7.30894 69.5399i 0.231709 2.20456i
\(996\) −2.04508 + 6.29412i −0.0648010 + 0.199437i
\(997\) 13.6246 23.5985i 0.431496 0.747373i −0.565507 0.824744i \(-0.691319\pi\)
0.997002 + 0.0773712i \(0.0246526\pi\)
\(998\) −1.28115 2.21902i −0.0405542 0.0702419i
\(999\) −1.15455 + 0.245406i −0.0365282 + 0.00776432i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.g.338.1 8
31.2 even 5 inner 961.2.g.g.732.1 8
31.3 odd 30 31.2.d.a.4.1 4
31.4 even 5 961.2.g.c.448.1 8
31.5 even 3 inner 961.2.g.g.235.1 8
31.6 odd 6 961.2.d.f.388.1 4
31.7 even 15 961.2.d.b.628.1 4
31.8 even 5 961.2.c.d.521.1 4
31.9 even 15 961.2.c.d.439.1 4
31.10 even 15 inner 961.2.g.g.816.1 8
31.11 odd 30 961.2.g.b.846.1 8
31.12 odd 30 961.2.d.f.374.1 4
31.13 odd 30 961.2.g.b.547.1 8
31.14 even 15 961.2.a.e.1.1 2
31.15 odd 10 961.2.g.b.844.1 8
31.16 even 5 961.2.g.c.844.1 8
31.17 odd 30 961.2.a.d.1.1 2
31.18 even 15 961.2.g.c.547.1 8
31.19 even 15 961.2.d.e.374.1 4
31.20 even 15 961.2.g.c.846.1 8
31.21 odd 30 961.2.g.f.816.1 8
31.22 odd 30 961.2.c.f.439.1 4
31.23 odd 10 961.2.c.f.521.1 4
31.24 odd 30 31.2.d.a.8.1 yes 4
31.25 even 3 961.2.d.e.388.1 4
31.26 odd 6 961.2.g.f.235.1 8
31.27 odd 10 961.2.g.b.448.1 8
31.28 even 15 961.2.d.b.531.1 4
31.29 odd 10 961.2.g.f.732.1 8
31.30 odd 2 961.2.g.f.338.1 8
93.14 odd 30 8649.2.a.f.1.2 2
93.17 even 30 8649.2.a.g.1.2 2
93.65 even 30 279.2.i.a.190.1 4
93.86 even 30 279.2.i.a.163.1 4
124.3 even 30 496.2.n.b.97.1 4
124.55 even 30 496.2.n.b.225.1 4
155.3 even 60 775.2.bf.a.624.1 8
155.24 odd 30 775.2.k.c.101.1 4
155.34 odd 30 775.2.k.c.376.1 4
155.117 even 60 775.2.bf.a.349.1 8
155.127 even 60 775.2.bf.a.624.2 8
155.148 even 60 775.2.bf.a.349.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.4.1 4 31.3 odd 30
31.2.d.a.8.1 yes 4 31.24 odd 30
279.2.i.a.163.1 4 93.86 even 30
279.2.i.a.190.1 4 93.65 even 30
496.2.n.b.97.1 4 124.3 even 30
496.2.n.b.225.1 4 124.55 even 30
775.2.k.c.101.1 4 155.24 odd 30
775.2.k.c.376.1 4 155.34 odd 30
775.2.bf.a.349.1 8 155.117 even 60
775.2.bf.a.349.2 8 155.148 even 60
775.2.bf.a.624.1 8 155.3 even 60
775.2.bf.a.624.2 8 155.127 even 60
961.2.a.d.1.1 2 31.17 odd 30
961.2.a.e.1.1 2 31.14 even 15
961.2.c.d.439.1 4 31.9 even 15
961.2.c.d.521.1 4 31.8 even 5
961.2.c.f.439.1 4 31.22 odd 30
961.2.c.f.521.1 4 31.23 odd 10
961.2.d.b.531.1 4 31.28 even 15
961.2.d.b.628.1 4 31.7 even 15
961.2.d.e.374.1 4 31.19 even 15
961.2.d.e.388.1 4 31.25 even 3
961.2.d.f.374.1 4 31.12 odd 30
961.2.d.f.388.1 4 31.6 odd 6
961.2.g.b.448.1 8 31.27 odd 10
961.2.g.b.547.1 8 31.13 odd 30
961.2.g.b.844.1 8 31.15 odd 10
961.2.g.b.846.1 8 31.11 odd 30
961.2.g.c.448.1 8 31.4 even 5
961.2.g.c.547.1 8 31.18 even 15
961.2.g.c.844.1 8 31.16 even 5
961.2.g.c.846.1 8 31.20 even 15
961.2.g.f.235.1 8 31.26 odd 6
961.2.g.f.338.1 8 31.30 odd 2
961.2.g.f.732.1 8 31.29 odd 10
961.2.g.f.816.1 8 31.21 odd 30
961.2.g.g.235.1 8 31.5 even 3 inner
961.2.g.g.338.1 8 1.1 even 1 trivial
961.2.g.g.732.1 8 31.2 even 5 inner
961.2.g.g.816.1 8 31.10 even 15 inner
8649.2.a.f.1.2 2 93.14 odd 30
8649.2.a.g.1.2 2 93.17 even 30