Properties

Label 961.2.g.f.732.1
Level $961$
Weight $2$
Character 961.732
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(235,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([26]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.235");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{15})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 732.1
Root \(0.669131 - 0.743145i\) of defining polynomial
Character \(\chi\) \(=\) 961.732
Dual form 961.2.g.f.235.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.363271i) q^{2} +(-0.913545 - 0.406737i) q^{3} +(-0.500000 - 1.53884i) q^{4} +(1.30902 - 2.26728i) q^{5} +(-0.309017 - 0.535233i) q^{6} +(2.00739 - 2.22943i) q^{7} +(0.690983 - 2.12663i) q^{8} +(-1.33826 - 1.48629i) q^{9} +(1.47815 - 0.658114i) q^{10} +(0.747238 + 0.158830i) q^{11} +(-0.169131 + 1.60917i) q^{12} +(-0.507392 - 4.82751i) q^{13} +(1.81359 - 0.385489i) q^{14} +(-2.11803 + 1.53884i) q^{15} +(-1.50000 + 1.08981i) q^{16} +(-0.230909 + 0.0490813i) q^{17} +(-0.129204 - 1.22930i) q^{18} +(-0.522642 + 4.97261i) q^{19} +(-4.14350 - 0.880728i) q^{20} +(-2.74064 + 1.22021i) q^{21} +(0.315921 + 0.350865i) q^{22} +(-1.69098 + 5.20431i) q^{23} +(-1.49622 + 1.66172i) q^{24} +(-0.927051 - 1.60570i) q^{25} +(1.50000 - 2.59808i) q^{26} +(1.54508 + 4.75528i) q^{27} +(-4.43444 - 1.97434i) q^{28} +(6.97214 + 5.06555i) q^{29} -1.61803 q^{30} -5.61803 q^{32} +(-0.618034 - 0.449028i) q^{33} +(-0.133284 - 0.0593421i) q^{34} +(-2.42705 - 7.46969i) q^{35} +(-1.61803 + 2.80252i) q^{36} +(-0.118034 - 0.204441i) q^{37} +(-2.06773 + 2.29644i) q^{38} +(-1.50000 + 4.61653i) q^{39} +(-3.91716 - 4.35045i) q^{40} +(5.91259 - 2.63245i) q^{41} +(-1.81359 - 0.385489i) q^{42} +(0.482716 - 4.59274i) q^{43} +(-0.129204 - 1.22930i) q^{44} +(-5.12165 + 1.08864i) q^{45} +(-2.73607 + 1.98787i) q^{46} +(2.73607 - 1.98787i) q^{47} +(1.81359 - 0.385489i) q^{48} +(-0.209057 - 1.98904i) q^{49} +(0.119779 - 1.13962i) q^{50} +(0.230909 + 0.0490813i) q^{51} +(-7.17508 + 3.19455i) q^{52} +(-8.50345 - 9.44404i) q^{53} +(-0.954915 + 2.93893i) q^{54} +(1.33826 - 1.48629i) q^{55} +(-3.35410 - 5.80948i) q^{56} +(2.50000 - 4.33013i) q^{57} +(1.64590 + 5.06555i) q^{58} +(8.65323 + 3.85266i) q^{59} +(3.42705 + 2.48990i) q^{60} -6.94427 q^{61} -6.00000 q^{63} +(0.190983 + 0.138757i) q^{64} +(-11.6095 - 5.16889i) q^{65} +(-0.145898 - 0.449028i) q^{66} +(2.11803 - 3.66854i) q^{67} +(0.190983 + 0.330792i) q^{68} +(3.66157 - 4.06659i) q^{69} +(1.50000 - 4.61653i) q^{70} +(0.0603355 + 0.0670093i) q^{71} +(-4.08550 + 1.81898i) q^{72} +(8.37520 + 1.78020i) q^{73} +(0.0152505 - 0.145099i) q^{74} +(0.193806 + 1.84395i) q^{75} +(7.91338 - 1.68204i) q^{76} +(1.85410 - 1.34708i) q^{77} +(-2.42705 + 1.76336i) q^{78} +(0.507392 + 4.82751i) q^{80} +(-0.104528 + 0.994522i) q^{81} +(3.91259 + 0.831647i) q^{82} +(-3.73656 + 1.66362i) q^{83} +(3.24803 + 3.60730i) q^{84} +(-0.190983 + 0.587785i) q^{85} +(1.90977 - 2.12101i) q^{86} +(-4.30902 - 7.46344i) q^{87} +(0.854102 - 1.47935i) q^{88} +(-1.97214 - 6.06961i) q^{89} +(-2.95630 - 1.31623i) q^{90} +(-11.7812 - 8.55951i) q^{91} +8.85410 q^{92} +2.09017 q^{94} +(10.5902 + 7.69421i) q^{95} +(5.13233 + 2.28506i) q^{96} +(-1.63525 - 5.03280i) q^{97} +(0.618034 - 1.07047i) q^{98} +(-0.763932 - 1.32317i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - q^{3} - 4 q^{4} + 6 q^{5} + 2 q^{6} + 3 q^{7} + 10 q^{8} - 2 q^{9} + 3 q^{10} - 8 q^{11} + 3 q^{12} + 9 q^{13} + 9 q^{14} - 8 q^{15} - 12 q^{16} - 7 q^{17} + 4 q^{18} + 5 q^{19} - 3 q^{20}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.363271i 0.353553 + 0.256872i 0.750358 0.661031i \(-0.229881\pi\)
−0.396805 + 0.917903i \(0.629881\pi\)
\(3\) −0.913545 0.406737i −0.527436 0.234830i 0.125703 0.992068i \(-0.459881\pi\)
−0.653139 + 0.757238i \(0.726548\pi\)
\(4\) −0.500000 1.53884i −0.250000 0.769421i
\(5\) 1.30902 2.26728i 0.585410 1.01396i −0.409414 0.912349i \(-0.634267\pi\)
0.994824 0.101611i \(-0.0323999\pi\)
\(6\) −0.309017 0.535233i −0.126156 0.218508i
\(7\) 2.00739 2.22943i 0.758723 0.842647i −0.232807 0.972523i \(-0.574791\pi\)
0.991530 + 0.129876i \(0.0414579\pi\)
\(8\) 0.690983 2.12663i 0.244299 0.751876i
\(9\) −1.33826 1.48629i −0.446087 0.495430i
\(10\) 1.47815 0.658114i 0.467431 0.208114i
\(11\) 0.747238 + 0.158830i 0.225301 + 0.0478892i 0.319179 0.947695i \(-0.396593\pi\)
−0.0938779 + 0.995584i \(0.529926\pi\)
\(12\) −0.169131 + 1.60917i −0.0488238 + 0.464527i
\(13\) −0.507392 4.82751i −0.140725 1.33891i −0.805824 0.592155i \(-0.798277\pi\)
0.665099 0.746755i \(-0.268389\pi\)
\(14\) 1.81359 0.385489i 0.484701 0.103026i
\(15\) −2.11803 + 1.53884i −0.546874 + 0.397327i
\(16\) −1.50000 + 1.08981i −0.375000 + 0.272453i
\(17\) −0.230909 + 0.0490813i −0.0560037 + 0.0119040i −0.235828 0.971795i \(-0.575780\pi\)
0.179825 + 0.983699i \(0.442447\pi\)
\(18\) −0.129204 1.22930i −0.0304537 0.289748i
\(19\) −0.522642 + 4.97261i −0.119902 + 1.14079i 0.754739 + 0.656025i \(0.227763\pi\)
−0.874642 + 0.484770i \(0.838903\pi\)
\(20\) −4.14350 0.880728i −0.926515 0.196937i
\(21\) −2.74064 + 1.22021i −0.598056 + 0.266272i
\(22\) 0.315921 + 0.350865i 0.0673545 + 0.0748048i
\(23\) −1.69098 + 5.20431i −0.352594 + 1.08517i 0.604797 + 0.796380i \(0.293254\pi\)
−0.957391 + 0.288794i \(0.906746\pi\)
\(24\) −1.49622 + 1.66172i −0.305415 + 0.339198i
\(25\) −0.927051 1.60570i −0.185410 0.321140i
\(26\) 1.50000 2.59808i 0.294174 0.509525i
\(27\) 1.54508 + 4.75528i 0.297352 + 0.915155i
\(28\) −4.43444 1.97434i −0.838031 0.373115i
\(29\) 6.97214 + 5.06555i 1.29469 + 0.940650i 0.999889 0.0149080i \(-0.00474555\pi\)
0.294804 + 0.955558i \(0.404746\pi\)
\(30\) −1.61803 −0.295411
\(31\) 0 0
\(32\) −5.61803 −0.993137
\(33\) −0.618034 0.449028i −0.107586 0.0781657i
\(34\) −0.133284 0.0593421i −0.0228581 0.0101771i
\(35\) −2.42705 7.46969i −0.410246 1.26261i
\(36\) −1.61803 + 2.80252i −0.269672 + 0.467086i
\(37\) −0.118034 0.204441i −0.0194047 0.0336099i 0.856160 0.516711i \(-0.172844\pi\)
−0.875565 + 0.483101i \(0.839510\pi\)
\(38\) −2.06773 + 2.29644i −0.335430 + 0.372532i
\(39\) −1.50000 + 4.61653i −0.240192 + 0.739236i
\(40\) −3.91716 4.35045i −0.619357 0.687866i
\(41\) 5.91259 2.63245i 0.923391 0.411120i 0.110726 0.993851i \(-0.464682\pi\)
0.812665 + 0.582731i \(0.198016\pi\)
\(42\) −1.81359 0.385489i −0.279842 0.0594823i
\(43\) 0.482716 4.59274i 0.0736135 0.700386i −0.894020 0.448027i \(-0.852127\pi\)
0.967634 0.252359i \(-0.0812064\pi\)
\(44\) −0.129204 1.22930i −0.0194783 0.185323i
\(45\) −5.12165 + 1.08864i −0.763490 + 0.162285i
\(46\) −2.73607 + 1.98787i −0.403411 + 0.293095i
\(47\) 2.73607 1.98787i 0.399097 0.289961i −0.370076 0.929001i \(-0.620668\pi\)
0.769173 + 0.639041i \(0.220668\pi\)
\(48\) 1.81359 0.385489i 0.261769 0.0556406i
\(49\) −0.209057 1.98904i −0.0298653 0.284149i
\(50\) 0.119779 1.13962i 0.0169393 0.161167i
\(51\) 0.230909 + 0.0490813i 0.0323338 + 0.00687276i
\(52\) −7.17508 + 3.19455i −0.995004 + 0.443005i
\(53\) −8.50345 9.44404i −1.16804 1.29724i −0.946728 0.322035i \(-0.895633\pi\)
−0.221311 0.975203i \(-0.571033\pi\)
\(54\) −0.954915 + 2.93893i −0.129947 + 0.399937i
\(55\) 1.33826 1.48629i 0.180451 0.200411i
\(56\) −3.35410 5.80948i −0.448211 0.776324i
\(57\) 2.50000 4.33013i 0.331133 0.573539i
\(58\) 1.64590 + 5.06555i 0.216117 + 0.665140i
\(59\) 8.65323 + 3.85266i 1.12655 + 0.501574i 0.883497 0.468438i \(-0.155183\pi\)
0.243058 + 0.970012i \(0.421850\pi\)
\(60\) 3.42705 + 2.48990i 0.442430 + 0.321444i
\(61\) −6.94427 −0.889123 −0.444561 0.895748i \(-0.646640\pi\)
−0.444561 + 0.895748i \(0.646640\pi\)
\(62\) 0 0
\(63\) −6.00000 −0.755929
\(64\) 0.190983 + 0.138757i 0.0238729 + 0.0173447i
\(65\) −11.6095 5.16889i −1.43998 0.641122i
\(66\) −0.145898 0.449028i −0.0179588 0.0552715i
\(67\) 2.11803 3.66854i 0.258759 0.448184i −0.707151 0.707063i \(-0.750020\pi\)
0.965910 + 0.258879i \(0.0833531\pi\)
\(68\) 0.190983 + 0.330792i 0.0231601 + 0.0401145i
\(69\) 3.66157 4.06659i 0.440802 0.489560i
\(70\) 1.50000 4.61653i 0.179284 0.551780i
\(71\) 0.0603355 + 0.0670093i 0.00716050 + 0.00795254i 0.746714 0.665145i \(-0.231630\pi\)
−0.739554 + 0.673097i \(0.764964\pi\)
\(72\) −4.08550 + 1.81898i −0.481481 + 0.214369i
\(73\) 8.37520 + 1.78020i 0.980243 + 0.208357i 0.670050 0.742316i \(-0.266273\pi\)
0.310193 + 0.950673i \(0.399606\pi\)
\(74\) 0.0152505 0.145099i 0.00177283 0.0168674i
\(75\) 0.193806 + 1.84395i 0.0223788 + 0.212920i
\(76\) 7.91338 1.68204i 0.907727 0.192943i
\(77\) 1.85410 1.34708i 0.211295 0.153514i
\(78\) −2.42705 + 1.76336i −0.274809 + 0.199661i
\(79\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(80\) 0.507392 + 4.82751i 0.0567281 + 0.539732i
\(81\) −0.104528 + 0.994522i −0.0116143 + 0.110502i
\(82\) 3.91259 + 0.831647i 0.432073 + 0.0918400i
\(83\) −3.73656 + 1.66362i −0.410140 + 0.182606i −0.601427 0.798928i \(-0.705401\pi\)
0.191286 + 0.981534i \(0.438734\pi\)
\(84\) 3.24803 + 3.60730i 0.354389 + 0.393589i
\(85\) −0.190983 + 0.587785i −0.0207150 + 0.0637543i
\(86\) 1.90977 2.12101i 0.205935 0.228715i
\(87\) −4.30902 7.46344i −0.461975 0.800164i
\(88\) 0.854102 1.47935i 0.0910476 0.157699i
\(89\) −1.97214 6.06961i −0.209046 0.643377i −0.999523 0.0308856i \(-0.990167\pi\)
0.790477 0.612492i \(-0.209833\pi\)
\(90\) −2.95630 1.31623i −0.311621 0.138743i
\(91\) −11.7812 8.55951i −1.23500 0.897280i
\(92\) 8.85410 0.923104
\(93\) 0 0
\(94\) 2.09017 0.215585
\(95\) 10.5902 + 7.69421i 1.08653 + 0.789409i
\(96\) 5.13233 + 2.28506i 0.523816 + 0.233218i
\(97\) −1.63525 5.03280i −0.166035 0.511003i 0.833076 0.553158i \(-0.186578\pi\)
−0.999111 + 0.0421553i \(0.986578\pi\)
\(98\) 0.618034 1.07047i 0.0624309 0.108133i
\(99\) −0.763932 1.32317i −0.0767781 0.132983i
\(100\) −2.00739 + 2.22943i −0.200739 + 0.222943i
\(101\) 1.47214 4.53077i 0.146483 0.450828i −0.850716 0.525626i \(-0.823831\pi\)
0.997199 + 0.0747977i \(0.0238311\pi\)
\(102\) 0.0976248 + 0.108423i 0.00966630 + 0.0107355i
\(103\) −0.133284 + 0.0593421i −0.0131329 + 0.00584715i −0.413293 0.910598i \(-0.635621\pi\)
0.400160 + 0.916445i \(0.368955\pi\)
\(104\) −10.6169 2.25669i −1.04107 0.221287i
\(105\) −0.820977 + 7.81108i −0.0801192 + 0.762283i
\(106\) −0.820977 7.81108i −0.0797404 0.758679i
\(107\) −1.06635 + 0.226659i −0.103088 + 0.0219120i −0.259167 0.965833i \(-0.583448\pi\)
0.156079 + 0.987745i \(0.450115\pi\)
\(108\) 6.54508 4.75528i 0.629801 0.457577i
\(109\) 6.80902 4.94704i 0.652186 0.473841i −0.211829 0.977307i \(-0.567942\pi\)
0.864015 + 0.503466i \(0.167942\pi\)
\(110\) 1.20906 0.256993i 0.115279 0.0245033i
\(111\) 0.0246758 + 0.234775i 0.00234213 + 0.0222838i
\(112\) −0.581419 + 5.53184i −0.0549390 + 0.522709i
\(113\) 1.81359 + 0.385489i 0.170608 + 0.0362638i 0.292423 0.956289i \(-0.405538\pi\)
−0.121816 + 0.992553i \(0.538872\pi\)
\(114\) 2.82301 1.25689i 0.264399 0.117718i
\(115\) 9.58612 + 10.6465i 0.893911 + 0.992788i
\(116\) 4.30902 13.2618i 0.400082 1.23133i
\(117\) −6.49606 + 7.21460i −0.600561 + 0.666990i
\(118\) 2.92705 + 5.06980i 0.269457 + 0.466713i
\(119\) −0.354102 + 0.613323i −0.0324605 + 0.0562232i
\(120\) 1.80902 + 5.56758i 0.165140 + 0.508248i
\(121\) −9.51586 4.23673i −0.865078 0.385158i
\(122\) −3.47214 2.52265i −0.314352 0.228390i
\(123\) −6.47214 −0.583573
\(124\) 0 0
\(125\) 8.23607 0.736656
\(126\) −3.00000 2.17963i −0.267261 0.194177i
\(127\) 9.35111 + 4.16338i 0.829777 + 0.369441i 0.777260 0.629179i \(-0.216609\pi\)
0.0525171 + 0.998620i \(0.483276\pi\)
\(128\) 3.51722 + 10.8249i 0.310881 + 0.956794i
\(129\) −2.30902 + 3.99933i −0.203298 + 0.352122i
\(130\) −3.92705 6.80185i −0.344425 0.596562i
\(131\) 0.0603355 0.0670093i 0.00527153 0.00585463i −0.740503 0.672053i \(-0.765413\pi\)
0.745775 + 0.666198i \(0.232079\pi\)
\(132\) −0.381966 + 1.17557i −0.0332459 + 0.102320i
\(133\) 10.0370 + 11.1472i 0.870315 + 0.966582i
\(134\) 2.39169 1.06485i 0.206611 0.0919891i
\(135\) 12.8041 + 2.72160i 1.10200 + 0.234238i
\(136\) −0.0551768 + 0.524972i −0.00473137 + 0.0450160i
\(137\) 0.676522 + 6.43668i 0.0577992 + 0.549923i 0.984656 + 0.174507i \(0.0558333\pi\)
−0.926857 + 0.375415i \(0.877500\pi\)
\(138\) 3.30806 0.703150i 0.281601 0.0598561i
\(139\) −4.73607 + 3.44095i −0.401708 + 0.291858i −0.770236 0.637759i \(-0.779862\pi\)
0.368528 + 0.929617i \(0.379862\pi\)
\(140\) −10.2812 + 7.46969i −0.868916 + 0.631304i
\(141\) −3.30806 + 0.703150i −0.278589 + 0.0592159i
\(142\) 0.00582517 + 0.0554228i 0.000488838 + 0.00465098i
\(143\) 0.387613 3.68789i 0.0324138 0.308397i
\(144\) 3.62717 + 0.770979i 0.302264 + 0.0642482i
\(145\) 20.6117 9.17692i 1.71171 0.762101i
\(146\) 3.54090 + 3.93257i 0.293047 + 0.325462i
\(147\) −0.618034 + 1.90211i −0.0509746 + 0.156884i
\(148\) −0.255585 + 0.283856i −0.0210090 + 0.0233328i
\(149\) 8.51722 + 14.7523i 0.697758 + 1.20855i 0.969242 + 0.246109i \(0.0791522\pi\)
−0.271484 + 0.962443i \(0.587514\pi\)
\(150\) −0.572949 + 0.992377i −0.0467811 + 0.0810272i
\(151\) −6.02786 18.5519i −0.490541 1.50973i −0.823793 0.566891i \(-0.808146\pi\)
0.333252 0.942838i \(-0.391854\pi\)
\(152\) 10.2137 + 4.54745i 0.828444 + 0.368847i
\(153\) 0.381966 + 0.277515i 0.0308801 + 0.0224357i
\(154\) 1.41641 0.114137
\(155\) 0 0
\(156\) 7.85410 0.628831
\(157\) −7.85410 5.70634i −0.626826 0.455415i 0.228473 0.973550i \(-0.426627\pi\)
−0.855299 + 0.518135i \(0.826627\pi\)
\(158\) 0 0
\(159\) 3.92705 + 12.0862i 0.311435 + 0.958500i
\(160\) −7.35410 + 12.7377i −0.581393 + 1.00700i
\(161\) 8.20820 + 14.2170i 0.646897 + 1.12046i
\(162\) −0.413545 + 0.459289i −0.0324912 + 0.0360851i
\(163\) −3.92705 + 12.0862i −0.307590 + 0.946666i 0.671108 + 0.741360i \(0.265819\pi\)
−0.978698 + 0.205306i \(0.934181\pi\)
\(164\) −7.00723 7.78231i −0.547172 0.607697i
\(165\) −1.82709 + 0.813473i −0.142239 + 0.0633288i
\(166\) −2.47262 0.525572i −0.191913 0.0407923i
\(167\) 0.965432 9.18547i 0.0747074 0.710793i −0.891499 0.453023i \(-0.850346\pi\)
0.966206 0.257770i \(-0.0829878\pi\)
\(168\) 0.701198 + 6.67146i 0.0540986 + 0.514714i
\(169\) −10.3315 + 2.19603i −0.794730 + 0.168925i
\(170\) −0.309017 + 0.224514i −0.0237005 + 0.0172194i
\(171\) 8.09017 5.87785i 0.618671 0.449491i
\(172\) −7.30885 + 1.55354i −0.557295 + 0.118457i
\(173\) −0.0951031 0.904846i −0.00723056 0.0687942i 0.990312 0.138863i \(-0.0443448\pi\)
−0.997542 + 0.0700688i \(0.977678\pi\)
\(174\) 0.556743 5.29706i 0.0422066 0.401569i
\(175\) −5.44076 1.15647i −0.411283 0.0874208i
\(176\) −1.29395 + 0.576105i −0.0975354 + 0.0434255i
\(177\) −6.33810 7.03917i −0.476400 0.529096i
\(178\) 1.21885 3.75123i 0.0913564 0.281166i
\(179\) 13.2477 14.7131i 0.990179 1.09971i −0.00483637 0.999988i \(-0.501539\pi\)
0.995016 0.0997174i \(-0.0317939\pi\)
\(180\) 4.23607 + 7.33708i 0.315738 + 0.546874i
\(181\) −8.50000 + 14.7224i −0.631800 + 1.09431i 0.355383 + 0.934721i \(0.384350\pi\)
−0.987184 + 0.159589i \(0.948983\pi\)
\(182\) −2.78115 8.55951i −0.206153 0.634473i
\(183\) 6.34391 + 2.82449i 0.468955 + 0.208792i
\(184\) 9.89919 + 7.19218i 0.729778 + 0.530215i
\(185\) −0.618034 −0.0454388
\(186\) 0 0
\(187\) −0.180340 −0.0131878
\(188\) −4.42705 3.21644i −0.322876 0.234583i
\(189\) 13.7032 + 6.10105i 0.996760 + 0.443786i
\(190\) 2.50000 + 7.69421i 0.181369 + 0.558197i
\(191\) 8.04508 13.9345i 0.582122 1.00826i −0.413106 0.910683i \(-0.635556\pi\)
0.995228 0.0975816i \(-0.0311107\pi\)
\(192\) −0.118034 0.204441i −0.00851837 0.0147542i
\(193\) −1.59385 + 1.77015i −0.114728 + 0.127418i −0.797773 0.602958i \(-0.793989\pi\)
0.683045 + 0.730376i \(0.260655\pi\)
\(194\) 1.01064 3.11044i 0.0725599 0.223317i
\(195\) 8.50345 + 9.44404i 0.608945 + 0.676301i
\(196\) −2.95630 + 1.31623i −0.211164 + 0.0940162i
\(197\) −16.0577 3.41316i −1.14406 0.243178i −0.403379 0.915033i \(-0.632164\pi\)
−0.740683 + 0.671855i \(0.765498\pi\)
\(198\) 0.0987033 0.939099i 0.00701454 0.0667389i
\(199\) 2.79177 + 26.5619i 0.197903 + 1.88292i 0.419458 + 0.907775i \(0.362220\pi\)
−0.221555 + 0.975148i \(0.571113\pi\)
\(200\) −4.05530 + 0.861981i −0.286753 + 0.0609512i
\(201\) −3.42705 + 2.48990i −0.241726 + 0.175624i
\(202\) 2.38197 1.73060i 0.167595 0.121765i
\(203\) 25.2891 5.37537i 1.77495 0.377277i
\(204\) −0.0399263 0.379874i −0.00279540 0.0265965i
\(205\) 1.77116 16.8514i 0.123703 1.17696i
\(206\) −0.0881995 0.0187474i −0.00614515 0.00130619i
\(207\) 9.99809 4.45144i 0.694915 0.309396i
\(208\) 6.02218 + 6.68830i 0.417563 + 0.463750i
\(209\) −1.18034 + 3.63271i −0.0816458 + 0.251280i
\(210\) −3.24803 + 3.60730i −0.224135 + 0.248927i
\(211\) 4.00000 + 6.92820i 0.275371 + 0.476957i 0.970229 0.242190i \(-0.0778659\pi\)
−0.694857 + 0.719148i \(0.744533\pi\)
\(212\) −10.2812 + 17.8075i −0.706112 + 1.22302i
\(213\) −0.0278640 0.0857567i −0.00190921 0.00587595i
\(214\) −0.615512 0.274044i −0.0420756 0.0187332i
\(215\) −9.78115 7.10642i −0.667069 0.484654i
\(216\) 11.1803 0.760726
\(217\) 0 0
\(218\) 5.20163 0.352299
\(219\) −6.92705 5.03280i −0.468087 0.340085i
\(220\) −2.95630 1.31623i −0.199313 0.0887400i
\(221\) 0.354102 + 1.08981i 0.0238195 + 0.0733088i
\(222\) −0.0729490 + 0.126351i −0.00489602 + 0.00848015i
\(223\) −0.354102 0.613323i −0.0237124 0.0410711i 0.853926 0.520395i \(-0.174215\pi\)
−0.877638 + 0.479324i \(0.840882\pi\)
\(224\) −11.2776 + 12.5250i −0.753516 + 0.836864i
\(225\) −1.14590 + 3.52671i −0.0763932 + 0.235114i
\(226\) 0.766755 + 0.851568i 0.0510038 + 0.0566455i
\(227\) −18.9493 + 8.43679i −1.25771 + 0.559970i −0.923887 0.382665i \(-0.875006\pi\)
−0.333825 + 0.942635i \(0.608340\pi\)
\(228\) −7.91338 1.68204i −0.524076 0.111396i
\(229\) 0.756375 7.19643i 0.0499827 0.475553i −0.940688 0.339274i \(-0.889819\pi\)
0.990670 0.136280i \(-0.0435146\pi\)
\(230\) 0.925506 + 8.80560i 0.0610260 + 0.580624i
\(231\) −2.24171 + 0.476491i −0.147494 + 0.0313508i
\(232\) 15.5902 11.3269i 1.02354 0.743649i
\(233\) −15.2082 + 11.0494i −0.996323 + 0.723871i −0.961297 0.275516i \(-0.911151\pi\)
−0.0350260 + 0.999386i \(0.511151\pi\)
\(234\) −5.86889 + 1.24747i −0.383661 + 0.0815497i
\(235\) −0.925506 8.80560i −0.0603733 0.574414i
\(236\) 1.60203 15.2423i 0.104283 0.992188i
\(237\) 0 0
\(238\) −0.399853 + 0.178026i −0.0259187 + 0.0115397i
\(239\) −8.97733 9.97033i −0.580695 0.644927i 0.379191 0.925319i \(-0.376202\pi\)
−0.959886 + 0.280391i \(0.909536\pi\)
\(240\) 1.50000 4.61653i 0.0968246 0.297995i
\(241\) −5.70625 + 6.33744i −0.367572 + 0.408230i −0.898350 0.439281i \(-0.855233\pi\)
0.530778 + 0.847511i \(0.321900\pi\)
\(242\) −3.21885 5.57521i −0.206915 0.358388i
\(243\) 8.00000 13.8564i 0.513200 0.888889i
\(244\) 3.47214 + 10.6861i 0.222281 + 0.684110i
\(245\) −4.78339 2.12970i −0.305599 0.136062i
\(246\) −3.23607 2.35114i −0.206324 0.149903i
\(247\) 24.2705 1.54430
\(248\) 0 0
\(249\) 4.09017 0.259204
\(250\) 4.11803 + 2.99193i 0.260447 + 0.189226i
\(251\) 0.862635 + 0.384070i 0.0544491 + 0.0242423i 0.433781 0.901019i \(-0.357179\pi\)
−0.379331 + 0.925261i \(0.623846\pi\)
\(252\) 3.00000 + 9.23305i 0.188982 + 0.581628i
\(253\) −2.09017 + 3.62028i −0.131408 + 0.227605i
\(254\) 3.16312 + 5.47868i 0.198472 + 0.343763i
\(255\) 0.413545 0.459289i 0.0258972 0.0287618i
\(256\) −2.02786 + 6.24112i −0.126742 + 0.390070i
\(257\) 0.947762 + 1.05260i 0.0591198 + 0.0656591i 0.771979 0.635648i \(-0.219267\pi\)
−0.712859 + 0.701307i \(0.752600\pi\)
\(258\) −2.60735 + 1.16087i −0.162327 + 0.0722725i
\(259\) −0.692728 0.147244i −0.0430440 0.00914929i
\(260\) −2.14935 + 20.4497i −0.133297 + 1.26823i
\(261\) −1.80166 17.1416i −0.111520 1.06104i
\(262\) 0.0545103 0.0115865i 0.00336766 0.000715818i
\(263\) 8.73607 6.34712i 0.538689 0.391380i −0.284909 0.958555i \(-0.591963\pi\)
0.823598 + 0.567174i \(0.191963\pi\)
\(264\) −1.38197 + 1.00406i −0.0850541 + 0.0617954i
\(265\) −32.5435 + 6.91733i −1.99913 + 0.424928i
\(266\) 0.969032 + 9.21973i 0.0594152 + 0.565298i
\(267\) −0.667097 + 6.34700i −0.0408257 + 0.388430i
\(268\) −6.70432 1.42505i −0.409532 0.0870487i
\(269\) −1.26249 + 0.562096i −0.0769753 + 0.0342716i −0.444863 0.895599i \(-0.646748\pi\)
0.367888 + 0.929870i \(0.380081\pi\)
\(270\) 5.41338 + 6.01217i 0.329448 + 0.365889i
\(271\) 2.95492 9.09429i 0.179498 0.552439i −0.820312 0.571916i \(-0.806200\pi\)
0.999810 + 0.0194773i \(0.00620021\pi\)
\(272\) 0.292875 0.325270i 0.0177581 0.0197224i
\(273\) 7.28115 + 12.6113i 0.440675 + 0.763272i
\(274\) −2.00000 + 3.46410i −0.120824 + 0.209274i
\(275\) −0.437694 1.34708i −0.0263939 0.0812322i
\(276\) −8.08862 3.60129i −0.486878 0.216772i
\(277\) −10.7812 7.83297i −0.647777 0.470637i 0.214736 0.976672i \(-0.431111\pi\)
−0.862513 + 0.506035i \(0.831111\pi\)
\(278\) −3.61803 −0.216995
\(279\) 0 0
\(280\) −17.5623 −1.04955
\(281\) −15.3992 11.1882i −0.918638 0.667430i 0.0245463 0.999699i \(-0.492186\pi\)
−0.943185 + 0.332269i \(0.892186\pi\)
\(282\) −1.90947 0.850149i −0.113707 0.0506256i
\(283\) 2.02786 + 6.24112i 0.120544 + 0.370996i 0.993063 0.117584i \(-0.0375149\pi\)
−0.872519 + 0.488580i \(0.837515\pi\)
\(284\) 0.0729490 0.126351i 0.00432873 0.00749758i
\(285\) −6.54508 11.3364i −0.387697 0.671512i
\(286\) 1.53351 1.70314i 0.0906784 0.100709i
\(287\) 6.00000 18.4661i 0.354169 1.09002i
\(288\) 7.51840 + 8.35003i 0.443026 + 0.492030i
\(289\) −15.4794 + 6.89186i −0.910551 + 0.405403i
\(290\) 13.6396 + 2.89918i 0.800942 + 0.170246i
\(291\) −0.553143 + 5.26281i −0.0324258 + 0.308511i
\(292\) −1.44815 13.7782i −0.0847465 0.806309i
\(293\) 8.05609 1.71237i 0.470642 0.100038i 0.0335156 0.999438i \(-0.489330\pi\)
0.437126 + 0.899400i \(0.355996\pi\)
\(294\) −1.00000 + 0.726543i −0.0583212 + 0.0423728i
\(295\) 20.0623 14.5761i 1.16807 0.848654i
\(296\) −0.516329 + 0.109749i −0.0300110 + 0.00637904i
\(297\) 0.399263 + 3.79874i 0.0231676 + 0.220425i
\(298\) −1.10046 + 10.4702i −0.0637480 + 0.606522i
\(299\) 25.9819 + 5.52261i 1.50257 + 0.319381i
\(300\) 2.74064 1.22021i 0.158231 0.0704489i
\(301\) −9.27020 10.2956i −0.534326 0.593429i
\(302\) 3.72542 11.4657i 0.214374 0.659776i
\(303\) −3.18769 + 3.54029i −0.183128 + 0.203384i
\(304\) −4.63525 8.02850i −0.265850 0.460466i
\(305\) −9.09017 + 15.7446i −0.520502 + 0.901535i
\(306\) 0.0901699 + 0.277515i 0.00515467 + 0.0158645i
\(307\) 5.56365 + 2.47710i 0.317534 + 0.141375i 0.559314 0.828956i \(-0.311065\pi\)
−0.241780 + 0.970331i \(0.577731\pi\)
\(308\) −3.00000 2.17963i −0.170941 0.124196i
\(309\) 0.145898 0.00829985
\(310\) 0 0
\(311\) 16.4721 0.934049 0.467025 0.884244i \(-0.345326\pi\)
0.467025 + 0.884244i \(0.345326\pi\)
\(312\) 8.78115 + 6.37988i 0.497135 + 0.361190i
\(313\) 1.12920 + 0.502754i 0.0638264 + 0.0284173i 0.438402 0.898779i \(-0.355545\pi\)
−0.374575 + 0.927197i \(0.622211\pi\)
\(314\) −1.85410 5.70634i −0.104633 0.322027i
\(315\) −7.85410 + 13.6037i −0.442529 + 0.766482i
\(316\) 0 0
\(317\) 17.3228 19.2389i 0.972946 1.08057i −0.0237800 0.999717i \(-0.507570\pi\)
0.996726 0.0808492i \(-0.0257632\pi\)
\(318\) −2.42705 + 7.46969i −0.136102 + 0.418880i
\(319\) 4.40528 + 4.89256i 0.246648 + 0.273931i
\(320\) 0.564602 0.251377i 0.0315622 0.0140524i
\(321\) 1.06635 + 0.226659i 0.0595177 + 0.0126509i
\(322\) −1.06054 + 10.0903i −0.0591013 + 0.562311i
\(323\) −0.123379 1.17387i −0.00686500 0.0653161i
\(324\) 1.58268 0.336408i 0.0879264 0.0186893i
\(325\) −7.28115 + 5.29007i −0.403886 + 0.293440i
\(326\) −6.35410 + 4.61653i −0.351921 + 0.255686i
\(327\) −8.23249 + 1.74987i −0.455258 + 0.0967680i
\(328\) −1.51275 14.3929i −0.0835277 0.794713i
\(329\) 1.06054 10.0903i 0.0584692 0.556297i
\(330\) −1.20906 0.256993i −0.0665564 0.0141470i
\(331\) 10.2961 4.58413i 0.565926 0.251967i −0.103771 0.994601i \(-0.533091\pi\)
0.669697 + 0.742635i \(0.266424\pi\)
\(332\) 4.42833 + 4.91816i 0.243036 + 0.269919i
\(333\) −0.145898 + 0.449028i −0.00799516 + 0.0246066i
\(334\) 3.81953 4.24202i 0.208996 0.232113i
\(335\) −5.54508 9.60437i −0.302960 0.524743i
\(336\) 2.78115 4.81710i 0.151724 0.262794i
\(337\) 5.86475 + 18.0498i 0.319473 + 0.983237i 0.973874 + 0.227089i \(0.0729209\pi\)
−0.654401 + 0.756148i \(0.727079\pi\)
\(338\) −5.96350 2.65512i −0.324372 0.144420i
\(339\) −1.50000 1.08981i −0.0814688 0.0591906i
\(340\) 1.00000 0.0542326
\(341\) 0 0
\(342\) 6.18034 0.334195
\(343\) 12.1353 + 8.81678i 0.655242 + 0.476061i
\(344\) −9.43349 4.20006i −0.508620 0.226452i
\(345\) −4.42705 13.6251i −0.238344 0.733549i
\(346\) 0.281153 0.486971i 0.0151149 0.0261797i
\(347\) −4.06231 7.03612i −0.218076 0.377719i 0.736144 0.676825i \(-0.236645\pi\)
−0.954220 + 0.299107i \(0.903311\pi\)
\(348\) −9.33054 + 10.3626i −0.500169 + 0.555494i
\(349\) −5.16312 + 15.8904i −0.276375 + 0.850596i 0.712477 + 0.701696i \(0.247573\pi\)
−0.988852 + 0.148900i \(0.952427\pi\)
\(350\) −2.30027 2.55470i −0.122954 0.136555i
\(351\) 22.1722 9.87171i 1.18347 0.526913i
\(352\) −4.19801 0.892315i −0.223755 0.0475605i
\(353\) 3.38484 32.2046i 0.180157 1.71408i −0.414460 0.910067i \(-0.636030\pi\)
0.594617 0.804009i \(-0.297304\pi\)
\(354\) −0.611920 5.82203i −0.0325232 0.309438i
\(355\) 0.230909 0.0490813i 0.0122554 0.00260496i
\(356\) −8.35410 + 6.06961i −0.442767 + 0.321689i
\(357\) 0.572949 0.416272i 0.0303237 0.0220314i
\(358\) 11.9687 2.54402i 0.632564 0.134456i
\(359\) 2.64731 + 25.1875i 0.139720 + 1.32935i 0.809646 + 0.586918i \(0.199659\pi\)
−0.669927 + 0.742427i \(0.733674\pi\)
\(360\) −1.22384 + 11.6441i −0.0645021 + 0.613696i
\(361\) −5.86889 1.24747i −0.308889 0.0656563i
\(362\) −9.59824 + 4.27341i −0.504472 + 0.224605i
\(363\) 6.96994 + 7.74090i 0.365827 + 0.406292i
\(364\) −7.28115 + 22.4091i −0.381636 + 1.17456i
\(365\) 14.9995 16.6586i 0.785110 0.871953i
\(366\) 2.14590 + 3.71680i 0.112168 + 0.194280i
\(367\) 18.1353 31.4112i 0.946653 1.63965i 0.194245 0.980953i \(-0.437774\pi\)
0.752408 0.658697i \(-0.228892\pi\)
\(368\) −3.13525 9.64932i −0.163436 0.503006i
\(369\) −11.8252 5.26491i −0.615594 0.274080i
\(370\) −0.309017 0.224514i −0.0160650 0.0116719i
\(371\) −38.1246 −1.97933
\(372\) 0 0
\(373\) −0.347524 −0.0179941 −0.00899706 0.999960i \(-0.502864\pi\)
−0.00899706 + 0.999960i \(0.502864\pi\)
\(374\) −0.0901699 0.0655123i −0.00466258 0.00338756i
\(375\) −7.52402 3.34991i −0.388539 0.172989i
\(376\) −2.33688 7.19218i −0.120515 0.370908i
\(377\) 20.9164 36.2283i 1.07725 1.86585i
\(378\) 4.63525 + 8.02850i 0.238412 + 0.412941i
\(379\) −12.3230 + 13.6861i −0.632989 + 0.703006i −0.971254 0.238045i \(-0.923493\pi\)
0.338265 + 0.941051i \(0.390160\pi\)
\(380\) 6.54508 20.1437i 0.335756 1.03335i
\(381\) −6.84927 7.60688i −0.350899 0.389712i
\(382\) 9.08454 4.04470i 0.464806 0.206945i
\(383\) 16.4858 + 3.50416i 0.842385 + 0.179054i 0.608841 0.793292i \(-0.291635\pi\)
0.233544 + 0.972346i \(0.424968\pi\)
\(384\) 1.18974 11.3196i 0.0607136 0.577652i
\(385\) −0.627171 5.96713i −0.0319636 0.304113i
\(386\) −1.43997 + 0.306074i −0.0732924 + 0.0155788i
\(387\) −7.47214 + 5.42882i −0.379830 + 0.275963i
\(388\) −6.92705 + 5.03280i −0.351668 + 0.255502i
\(389\) 28.4337 6.04376i 1.44164 0.306431i 0.580279 0.814418i \(-0.302944\pi\)
0.861365 + 0.507987i \(0.169610\pi\)
\(390\) 0.820977 + 7.81108i 0.0415718 + 0.395529i
\(391\) 0.135029 1.28472i 0.00682873 0.0649711i
\(392\) −4.37441 0.929809i −0.220941 0.0469625i
\(393\) −0.0823743 + 0.0366754i −0.00415524 + 0.00185003i
\(394\) −6.78893 7.53987i −0.342021 0.379853i
\(395\) 0 0
\(396\) −1.65418 + 1.83716i −0.0831258 + 0.0923205i
\(397\) −8.14590 14.1091i −0.408831 0.708116i 0.585928 0.810363i \(-0.300730\pi\)
−0.994759 + 0.102247i \(0.967397\pi\)
\(398\) −8.25329 + 14.2951i −0.413700 + 0.716549i
\(399\) −4.63525 14.2658i −0.232053 0.714186i
\(400\) 3.14049 + 1.39824i 0.157024 + 0.0699118i
\(401\) 24.1353 + 17.5353i 1.20526 + 0.875671i 0.994792 0.101931i \(-0.0325020\pi\)
0.210466 + 0.977601i \(0.432502\pi\)
\(402\) −2.61803 −0.130576
\(403\) 0 0
\(404\) −7.70820 −0.383497
\(405\) 2.11803 + 1.53884i 0.105246 + 0.0764657i
\(406\) 14.5973 + 6.49913i 0.724451 + 0.322546i
\(407\) −0.0557281 0.171513i −0.00276234 0.00850160i
\(408\) 0.263932 0.457144i 0.0130666 0.0226320i
\(409\) 3.09017 + 5.35233i 0.152799 + 0.264656i 0.932255 0.361801i \(-0.117838\pi\)
−0.779456 + 0.626457i \(0.784505\pi\)
\(410\) 7.00723 7.78231i 0.346062 0.384341i
\(411\) 2.00000 6.15537i 0.0986527 0.303622i
\(412\) 0.157960 + 0.175433i 0.00778215 + 0.00864295i
\(413\) 25.9597 11.5580i 1.27739 0.568732i
\(414\) 6.61612 + 1.40630i 0.325165 + 0.0691159i
\(415\) −1.11931 + 10.6495i −0.0549449 + 0.522766i
\(416\) 2.85054 + 27.1211i 0.139759 + 1.32972i
\(417\) 5.72618 1.21714i 0.280412 0.0596034i
\(418\) −1.90983 + 1.38757i −0.0934128 + 0.0678684i
\(419\) −3.61803 + 2.62866i −0.176753 + 0.128418i −0.672644 0.739966i \(-0.734841\pi\)
0.495891 + 0.868385i \(0.334841\pi\)
\(420\) 12.4305 2.64218i 0.606546 0.128925i
\(421\) −1.54325 14.6831i −0.0752135 0.715608i −0.965535 0.260275i \(-0.916187\pi\)
0.890321 0.455333i \(-0.150480\pi\)
\(422\) −0.516817 + 4.91719i −0.0251583 + 0.239365i
\(423\) −6.61612 1.40630i −0.321687 0.0683767i
\(424\) −25.9597 + 11.5580i −1.26071 + 0.561306i
\(425\) 0.292875 + 0.325270i 0.0142065 + 0.0157779i
\(426\) 0.0172209 0.0530006i 0.000834357 0.00256789i
\(427\) −13.9399 + 15.4818i −0.674598 + 0.749217i
\(428\) 0.881966 + 1.52761i 0.0426314 + 0.0738398i
\(429\) −1.85410 + 3.21140i −0.0895169 + 0.155048i
\(430\) −2.30902 7.10642i −0.111351 0.342702i
\(431\) 26.7085 + 11.8914i 1.28650 + 0.572788i 0.932065 0.362292i \(-0.118006\pi\)
0.354437 + 0.935080i \(0.384672\pi\)
\(432\) −7.50000 5.44907i −0.360844 0.262168i
\(433\) 0.583592 0.0280456 0.0140228 0.999902i \(-0.495536\pi\)
0.0140228 + 0.999902i \(0.495536\pi\)
\(434\) 0 0
\(435\) −22.5623 −1.08178
\(436\) −11.0172 8.00448i −0.527629 0.383345i
\(437\) −24.9952 11.1286i −1.19568 0.532353i
\(438\) −1.63525 5.03280i −0.0781355 0.240476i
\(439\) −20.9164 + 36.2283i −0.998286 + 1.72908i −0.448455 + 0.893805i \(0.648026\pi\)
−0.549831 + 0.835276i \(0.685308\pi\)
\(440\) −2.23607 3.87298i −0.106600 0.184637i
\(441\) −2.67652 + 2.97258i −0.127453 + 0.141551i
\(442\) −0.218847 + 0.673542i −0.0104095 + 0.0320371i
\(443\) −27.5177 30.5615i −1.30741 1.45202i −0.812360 0.583157i \(-0.801817\pi\)
−0.495047 0.868866i \(-0.664849\pi\)
\(444\) 0.348943 0.155360i 0.0165601 0.00737304i
\(445\) −16.3431 3.47383i −0.774737 0.164675i
\(446\) 0.0457515 0.435296i 0.00216640 0.0206119i
\(447\) −1.78058 16.9411i −0.0842187 0.801288i
\(448\) 0.692728 0.147244i 0.0327283 0.00695662i
\(449\) −19.4721 + 14.1473i −0.918947 + 0.667654i −0.943262 0.332050i \(-0.892260\pi\)
0.0243148 + 0.999704i \(0.492260\pi\)
\(450\) −1.85410 + 1.34708i −0.0874032 + 0.0635021i
\(451\) 4.83623 1.02797i 0.227729 0.0484053i
\(452\) −0.313585 2.98357i −0.0147498 0.140335i
\(453\) −2.03899 + 19.3997i −0.0958002 + 0.911478i
\(454\) −12.5395 2.66536i −0.588509 0.125091i
\(455\) −34.8286 + 15.5067i −1.63279 + 0.726964i
\(456\) −7.48111 8.30861i −0.350335 0.389086i
\(457\) −4.86475 + 14.9721i −0.227563 + 0.700367i 0.770458 + 0.637491i \(0.220028\pi\)
−0.998021 + 0.0628768i \(0.979972\pi\)
\(458\) 2.99244 3.32344i 0.139828 0.155294i
\(459\) −0.590170 1.02220i −0.0275468 0.0477124i
\(460\) 11.5902 20.0748i 0.540394 0.935991i
\(461\) 3.31966 + 10.2169i 0.154612 + 0.475847i 0.998121 0.0612677i \(-0.0195143\pi\)
−0.843509 + 0.537114i \(0.819514\pi\)
\(462\) −1.29395 0.576105i −0.0602001 0.0268028i
\(463\) 25.1803 + 18.2946i 1.17023 + 0.850222i 0.991036 0.133592i \(-0.0426513\pi\)
0.179193 + 0.983814i \(0.442651\pi\)
\(464\) −15.9787 −0.741793
\(465\) 0 0
\(466\) −11.6180 −0.538195
\(467\) 26.5172 + 19.2659i 1.22707 + 0.891519i 0.996667 0.0815762i \(-0.0259954\pi\)
0.230404 + 0.973095i \(0.425995\pi\)
\(468\) 14.3502 + 6.38910i 0.663336 + 0.295336i
\(469\) −3.92705 12.0862i −0.181334 0.558090i
\(470\) 2.73607 4.73901i 0.126205 0.218594i
\(471\) 4.85410 + 8.40755i 0.223665 + 0.387400i
\(472\) 14.1724 15.7401i 0.652338 0.724495i
\(473\) 1.09017 3.35520i 0.0501261 0.154272i
\(474\) 0 0
\(475\) 8.46903 3.77066i 0.388586 0.173010i
\(476\) 1.12086 + 0.238246i 0.0513744 + 0.0109200i
\(477\) −2.65674 + 25.2772i −0.121644 + 1.15736i
\(478\) −0.866729 8.24637i −0.0396432 0.377180i
\(479\) 8.74882 1.85962i 0.399744 0.0849681i −0.00365302 0.999993i \(-0.501163\pi\)
0.403397 + 0.915025i \(0.367829\pi\)
\(480\) 11.8992 8.64527i 0.543121 0.394601i
\(481\) −0.927051 + 0.673542i −0.0422699 + 0.0307109i
\(482\) −5.15534 + 1.09580i −0.234819 + 0.0499124i
\(483\) −1.71598 16.3265i −0.0780799 0.742880i
\(484\) −1.76173 + 16.7618i −0.0800788 + 0.761899i
\(485\) −13.5514 2.88043i −0.615335 0.130794i
\(486\) 9.03363 4.02203i 0.409774 0.182443i
\(487\) 15.3385 + 17.0351i 0.695052 + 0.771934i 0.982580 0.185838i \(-0.0595001\pi\)
−0.287528 + 0.957772i \(0.592833\pi\)
\(488\) −4.79837 + 14.7679i −0.217212 + 0.668510i
\(489\) 8.50345 9.44404i 0.384539 0.427074i
\(490\) −1.61803 2.80252i −0.0730953 0.126605i
\(491\) 13.7984 23.8995i 0.622712 1.07857i −0.366267 0.930510i \(-0.619364\pi\)
0.988979 0.148059i \(-0.0473025\pi\)
\(492\) 3.23607 + 9.95959i 0.145893 + 0.449013i
\(493\) −1.85856 0.827482i −0.0837051 0.0372679i
\(494\) 12.1353 + 8.81678i 0.545991 + 0.396686i
\(495\) −4.00000 −0.179787
\(496\) 0 0
\(497\) 0.270510 0.0121340
\(498\) 2.04508 + 1.48584i 0.0916424 + 0.0665821i
\(499\) 3.78747 + 1.68629i 0.169550 + 0.0754886i 0.489757 0.871859i \(-0.337086\pi\)
−0.320206 + 0.947348i \(0.603752\pi\)
\(500\) −4.11803 12.6740i −0.184164 0.566799i
\(501\) −4.61803 + 7.99867i −0.206319 + 0.357354i
\(502\) 0.291796 + 0.505406i 0.0130235 + 0.0225574i
\(503\) 8.79632 9.76931i 0.392209 0.435592i −0.514409 0.857545i \(-0.671989\pi\)
0.906618 + 0.421953i \(0.138655\pi\)
\(504\) −4.14590 + 12.7598i −0.184673 + 0.568365i
\(505\) −8.34549 9.26860i −0.371369 0.412447i
\(506\) −2.36023 + 1.05084i −0.104925 + 0.0467156i
\(507\) 10.3315 + 2.19603i 0.458838 + 0.0975290i
\(508\) 1.73123 16.4716i 0.0768110 0.730808i
\(509\) 0.199632 + 1.89937i 0.00884852 + 0.0841880i 0.998055 0.0623408i \(-0.0198566\pi\)
−0.989206 + 0.146529i \(0.953190\pi\)
\(510\) 0.373619 0.0794152i 0.0165441 0.00351656i
\(511\) 20.7812 15.0984i 0.919304 0.667914i
\(512\) 15.1353 10.9964i 0.668890 0.485977i
\(513\) −24.4537 + 5.19779i −1.07966 + 0.229488i
\(514\) 0.0915030 + 0.870593i 0.00403602 + 0.0384002i
\(515\) −0.0399263 + 0.379874i −0.00175936 + 0.0167392i
\(516\) 7.30885 + 1.55354i 0.321754 + 0.0683910i
\(517\) 2.36023 1.05084i 0.103803 0.0462160i
\(518\) −0.292875 0.325270i −0.0128682 0.0142915i
\(519\) −0.281153 + 0.865300i −0.0123412 + 0.0379824i
\(520\) −19.0143 + 21.1175i −0.833832 + 0.926064i
\(521\) −15.5344 26.9064i −0.680576 1.17879i −0.974805 0.223058i \(-0.928396\pi\)
0.294229 0.955735i \(-0.404937\pi\)
\(522\) 5.32624 9.22531i 0.233123 0.403781i
\(523\) 10.5451 + 32.4544i 0.461104 + 1.41913i 0.863816 + 0.503807i \(0.168068\pi\)
−0.402712 + 0.915327i \(0.631932\pi\)
\(524\) −0.133284 0.0593421i −0.00582256 0.00259237i
\(525\) 4.50000 + 3.26944i 0.196396 + 0.142690i
\(526\) 6.67376 0.290990
\(527\) 0 0
\(528\) 1.41641 0.0616412
\(529\) −5.61803 4.08174i −0.244262 0.177467i
\(530\) −18.7846 8.36344i −0.815951 0.363285i
\(531\) −5.85410 18.0171i −0.254046 0.781874i
\(532\) 12.1353 21.0189i 0.526130 0.911284i
\(533\) −15.7082 27.2074i −0.680398 1.17848i
\(534\) −2.63923 + 2.93117i −0.114211 + 0.126844i
\(535\) −0.881966 + 2.71441i −0.0381307 + 0.117354i
\(536\) −6.33810 7.03917i −0.273764 0.304046i
\(537\) −18.0867 + 8.05272i −0.780499 + 0.347501i
\(538\) −0.835438 0.177578i −0.0360183 0.00765592i
\(539\) 0.159705 1.51949i 0.00687899 0.0654493i
\(540\) −2.21395 21.0643i −0.0952732 0.906464i
\(541\) −21.5192 + 4.57406i −0.925185 + 0.196654i −0.645784 0.763520i \(-0.723469\pi\)
−0.279401 + 0.960175i \(0.590136\pi\)
\(542\) 4.78115 3.47371i 0.205368 0.149209i
\(543\) 13.7533 9.99235i 0.590210 0.428813i
\(544\) 1.29726 0.275740i 0.0556194 0.0118223i
\(545\) −2.30323 21.9137i −0.0986594 0.938681i
\(546\) −0.940756 + 8.95070i −0.0402606 + 0.383054i
\(547\) 23.1901 + 4.92921i 0.991538 + 0.210758i 0.674997 0.737821i \(-0.264145\pi\)
0.316541 + 0.948579i \(0.397478\pi\)
\(548\) 9.56677 4.25940i 0.408672 0.181953i
\(549\) 9.29325 + 10.3212i 0.396626 + 0.440498i
\(550\) 0.270510 0.832544i 0.0115346 0.0354998i
\(551\) −28.8330 + 32.0222i −1.22833 + 1.36419i
\(552\) −6.11803 10.5967i −0.260401 0.451027i
\(553\) 0 0
\(554\) −2.54508 7.83297i −0.108130 0.332791i
\(555\) 0.564602 + 0.251377i 0.0239660 + 0.0106704i
\(556\) 7.66312 + 5.56758i 0.324989 + 0.236118i
\(557\) 35.8885 1.52065 0.760323 0.649545i \(-0.225041\pi\)
0.760323 + 0.649545i \(0.225041\pi\)
\(558\) 0 0
\(559\) −22.4164 −0.948113
\(560\) 11.7812 + 8.55951i 0.497845 + 0.361705i
\(561\) 0.164749 + 0.0733508i 0.00695569 + 0.00309687i
\(562\) −3.63525 11.1882i −0.153344 0.471944i
\(563\) 4.28115 7.41517i 0.180429 0.312512i −0.761598 0.648050i \(-0.775585\pi\)
0.942027 + 0.335538i \(0.108918\pi\)
\(564\) 2.73607 + 4.73901i 0.115209 + 0.199548i
\(565\) 3.24803 3.60730i 0.136646 0.151760i
\(566\) −1.25329 + 3.85723i −0.0526797 + 0.162131i
\(567\) 2.00739 + 2.22943i 0.0843025 + 0.0936274i
\(568\) 0.184195 0.0820087i 0.00772863 0.00344101i
\(569\) −15.1885 3.22842i −0.636737 0.135343i −0.121778 0.992557i \(-0.538860\pi\)
−0.514959 + 0.857215i \(0.672193\pi\)
\(570\) 0.845653 8.04585i 0.0354205 0.337004i
\(571\) −0.731699 6.96165i −0.0306207 0.291336i −0.999106 0.0422669i \(-0.986542\pi\)
0.968486 0.249069i \(-0.0801247\pi\)
\(572\) −5.86889 + 1.24747i −0.245390 + 0.0521593i
\(573\) −13.0172 + 9.45756i −0.543802 + 0.395095i
\(574\) 9.70820 7.05342i 0.405213 0.294404i
\(575\) 9.92419 2.10945i 0.413867 0.0879702i
\(576\) −0.0493516 0.469550i −0.00205632 0.0195646i
\(577\) −4.07439 + 38.7652i −0.169619 + 1.61382i 0.496545 + 0.868011i \(0.334602\pi\)
−0.666164 + 0.745805i \(0.732065\pi\)
\(578\) −10.2433 2.17728i −0.426065 0.0905629i
\(579\) 2.17603 0.968833i 0.0904329 0.0402633i
\(580\) −24.4277 27.1297i −1.01430 1.12650i
\(581\) −3.79180 + 11.6699i −0.157310 + 0.484151i
\(582\) −2.18840 + 2.43046i −0.0907120 + 0.100746i
\(583\) −4.85410 8.40755i −0.201036 0.348205i
\(584\) 9.57295 16.5808i 0.396131 0.686120i
\(585\) 7.85410 + 24.1724i 0.324727 + 0.999407i
\(586\) 4.65010 + 2.07036i 0.192094 + 0.0855257i
\(587\) −29.1353 21.1680i −1.20254 0.873697i −0.208008 0.978127i \(-0.566698\pi\)
−0.994532 + 0.104430i \(0.966698\pi\)
\(588\) 3.23607 0.133453
\(589\) 0 0
\(590\) 15.3262 0.630971
\(591\) 13.2812 + 9.64932i 0.546314 + 0.396920i
\(592\) 0.399853 + 0.178026i 0.0164339 + 0.00731683i
\(593\) 1.88854 + 5.81234i 0.0775532 + 0.238684i 0.982316 0.187232i \(-0.0599517\pi\)
−0.904762 + 0.425917i \(0.859952\pi\)
\(594\) −1.18034 + 2.04441i −0.0484299 + 0.0838831i
\(595\) 0.927051 + 1.60570i 0.0380054 + 0.0658273i
\(596\) 18.4428 20.4828i 0.755446 0.839008i
\(597\) 8.25329 25.4010i 0.337785 1.03959i
\(598\) 10.9847 + 12.1998i 0.449199 + 0.498886i
\(599\) 27.2222 12.1201i 1.11227 0.495213i 0.233449 0.972369i \(-0.424999\pi\)
0.878819 + 0.477156i \(0.158332\pi\)
\(600\) 4.05530 + 0.861981i 0.165557 + 0.0351902i
\(601\) −2.29963 + 21.8795i −0.0938037 + 0.892483i 0.841885 + 0.539657i \(0.181446\pi\)
−0.935689 + 0.352826i \(0.885221\pi\)
\(602\) −0.895005 8.51540i −0.0364777 0.347062i
\(603\) −8.28700 + 1.76146i −0.337473 + 0.0717320i
\(604\) −25.5344 + 18.5519i −1.03898 + 0.754864i
\(605\) −22.0623 + 16.0292i −0.896960 + 0.651680i
\(606\) −2.87993 + 0.612149i −0.116989 + 0.0248668i
\(607\) 2.65674 + 25.2772i 0.107834 + 1.02597i 0.905927 + 0.423435i \(0.139176\pi\)
−0.798093 + 0.602534i \(0.794158\pi\)
\(608\) 2.93622 27.9363i 0.119080 1.13297i
\(609\) −25.2891 5.37537i −1.02477 0.217821i
\(610\) −10.2647 + 4.57012i −0.415604 + 0.185039i
\(611\) −10.9847 12.1998i −0.444394 0.493550i
\(612\) 0.236068 0.726543i 0.00954248 0.0293687i
\(613\) 16.7656 18.6200i 0.677154 0.752056i −0.302412 0.953177i \(-0.597792\pi\)
0.979566 + 0.201121i \(0.0644585\pi\)
\(614\) 1.88197 + 3.25966i 0.0759500 + 0.131549i
\(615\) −8.47214 + 14.6742i −0.341629 + 0.591720i
\(616\) −1.58359 4.87380i −0.0638047 0.196371i
\(617\) −13.0053 5.79033i −0.523573 0.233110i 0.127892 0.991788i \(-0.459179\pi\)
−0.651466 + 0.758678i \(0.725846\pi\)
\(618\) 0.0729490 + 0.0530006i 0.00293444 + 0.00213200i
\(619\) −40.0000 −1.60774 −0.803868 0.594808i \(-0.797228\pi\)
−0.803868 + 0.594808i \(0.797228\pi\)
\(620\) 0 0
\(621\) −27.3607 −1.09795
\(622\) 8.23607 + 5.98385i 0.330236 + 0.239931i
\(623\) −17.4906 7.78734i −0.700748 0.311993i
\(624\) −2.78115 8.55951i −0.111335 0.342655i
\(625\) 15.4164 26.7020i 0.616656 1.06808i
\(626\) 0.381966 + 0.661585i 0.0152664 + 0.0264422i
\(627\) 2.55585 2.83856i 0.102071 0.113361i
\(628\) −4.85410 + 14.9394i −0.193700 + 0.596147i
\(629\) 0.0372894 + 0.0414140i 0.00148682 + 0.00165129i
\(630\) −8.86889 + 3.94868i −0.353345 + 0.157319i
\(631\) 8.53873 + 1.81496i 0.339921 + 0.0722525i 0.374710 0.927142i \(-0.377742\pi\)
−0.0347883 + 0.999395i \(0.511076\pi\)
\(632\) 0 0
\(633\) −0.836228 7.95618i −0.0332371 0.316230i
\(634\) 15.6504 3.32659i 0.621555 0.132116i
\(635\) 21.6803 15.7517i 0.860358 0.625087i
\(636\) 16.6353 12.0862i 0.659631 0.479250i
\(637\) −9.49606 + 2.01845i −0.376247 + 0.0799739i
\(638\) 0.425314 + 4.04659i 0.0168383 + 0.160206i
\(639\) 0.0188507 0.179352i 0.000745720 0.00709505i
\(640\) 29.1472 + 6.19543i 1.15214 + 0.244896i
\(641\) −37.5377 + 16.7129i −1.48265 + 0.660119i −0.979013 0.203796i \(-0.934672\pi\)
−0.503638 + 0.863915i \(0.668005\pi\)
\(642\) 0.450835 + 0.500703i 0.0177930 + 0.0197612i
\(643\) 2.51722 7.74721i 0.0992695 0.305520i −0.889073 0.457765i \(-0.848650\pi\)
0.988343 + 0.152245i \(0.0486502\pi\)
\(644\) 17.7737 19.7396i 0.700380 0.777851i
\(645\) 6.04508 + 10.4704i 0.238025 + 0.412271i
\(646\) 0.364745 0.631757i 0.0143507 0.0248561i
\(647\) −9.23607 28.4257i −0.363107 1.11753i −0.951158 0.308705i \(-0.900104\pi\)
0.588050 0.808824i \(-0.299896\pi\)
\(648\) 2.04275 + 0.909491i 0.0802468 + 0.0357282i
\(649\) 5.85410 + 4.25325i 0.229794 + 0.166955i
\(650\) −5.56231 −0.218172
\(651\) 0 0
\(652\) 20.5623 0.805282
\(653\) −32.0795 23.3071i −1.25537 0.912079i −0.256848 0.966452i \(-0.582684\pi\)
−0.998521 + 0.0543729i \(0.982684\pi\)
\(654\) −4.75192 2.11569i −0.185815 0.0827301i
\(655\) −0.0729490 0.224514i −0.00285035 0.00877249i
\(656\) −6.00000 + 10.3923i −0.234261 + 0.405751i
\(657\) −8.56231 14.8303i −0.334047 0.578587i
\(658\) 4.19579 4.65990i 0.163569 0.181662i
\(659\) 7.01064 21.5765i 0.273096 0.840503i −0.716621 0.697463i \(-0.754312\pi\)
0.989717 0.143040i \(-0.0456877\pi\)
\(660\) 2.16535 + 2.40487i 0.0842862 + 0.0936093i
\(661\) −15.1813 + 6.75916i −0.590485 + 0.262901i −0.680152 0.733071i \(-0.738086\pi\)
0.0896670 + 0.995972i \(0.471420\pi\)
\(662\) 6.81334 + 1.44822i 0.264808 + 0.0562867i
\(663\) 0.119779 1.13962i 0.00465183 0.0442592i
\(664\) 0.956007 + 9.09580i 0.0371003 + 0.352985i
\(665\) 38.4124 8.16480i 1.48957 0.316617i
\(666\) −0.236068 + 0.171513i −0.00914745 + 0.00664601i
\(667\) −38.1525 + 27.7194i −1.47727 + 1.07330i
\(668\) −14.6177 + 3.10709i −0.565576 + 0.120217i
\(669\) 0.0740275 + 0.704324i 0.00286207 + 0.0272308i
\(670\) 0.716449 6.81655i 0.0276788 0.263346i
\(671\) −5.18903 1.10296i −0.200320 0.0425794i
\(672\) 15.3970 6.85518i 0.593952 0.264444i
\(673\) −2.95515 3.28203i −0.113913 0.126513i 0.683491 0.729959i \(-0.260461\pi\)
−0.797404 + 0.603446i \(0.793794\pi\)
\(674\) −3.62461 + 11.1554i −0.139615 + 0.429690i
\(675\) 6.20318 6.88933i 0.238761 0.265170i
\(676\) 8.54508 + 14.8005i 0.328657 + 0.569251i
\(677\) −14.3262 + 24.8138i −0.550602 + 0.953671i 0.447629 + 0.894219i \(0.352268\pi\)
−0.998231 + 0.0594514i \(0.981065\pi\)
\(678\) −0.354102 1.08981i −0.0135992 0.0418540i
\(679\) −14.5029 6.45710i −0.556570 0.247801i
\(680\) 1.11803 + 0.812299i 0.0428746 + 0.0311503i
\(681\) 20.7426 0.794860
\(682\) 0 0
\(683\) 10.0557 0.384772 0.192386 0.981319i \(-0.438377\pi\)
0.192386 + 0.981319i \(0.438377\pi\)
\(684\) −13.0902 9.51057i −0.500515 0.363646i
\(685\) 15.4794 + 6.89186i 0.591436 + 0.263324i
\(686\) 2.86475 + 8.81678i 0.109376 + 0.336626i
\(687\) −3.61803 + 6.26662i −0.138037 + 0.239086i
\(688\) 4.28115 + 7.41517i 0.163217 + 0.282701i
\(689\) −41.2766 + 45.8423i −1.57251 + 1.74645i
\(690\) 2.73607 8.42075i 0.104160 0.320573i
\(691\) 2.56465 + 2.84834i 0.0975640 + 0.108356i 0.789949 0.613172i \(-0.210107\pi\)
−0.692385 + 0.721528i \(0.743440\pi\)
\(692\) −1.34486 + 0.598772i −0.0511240 + 0.0227619i
\(693\) −4.48343 0.952982i −0.170311 0.0362008i
\(694\) 0.524867 4.99378i 0.0199237 0.189561i
\(695\) 1.60203 + 15.2423i 0.0607684 + 0.578173i
\(696\) −18.8494 + 4.00656i −0.714485 + 0.151868i
\(697\) −1.23607 + 0.898056i −0.0468194 + 0.0340163i
\(698\) −8.35410 + 6.06961i −0.316207 + 0.229738i
\(699\) 18.3876 3.90840i 0.695482 0.147829i
\(700\) 0.940756 + 8.95070i 0.0355572 + 0.338305i
\(701\) 3.13945 29.8699i 0.118576 1.12817i −0.759786 0.650174i \(-0.774696\pi\)
0.878361 0.477997i \(-0.158637\pi\)
\(702\) 14.6722 + 3.11868i 0.553767 + 0.117707i
\(703\) 1.07829 0.480087i 0.0406686 0.0181068i
\(704\) 0.120671 + 0.134019i 0.00454796 + 0.00505102i
\(705\) −2.73607 + 8.42075i −0.103046 + 0.317144i
\(706\) 13.3914 14.8727i 0.503993 0.559740i
\(707\) −7.14590 12.3771i −0.268749 0.465487i
\(708\) −7.66312 + 13.2729i −0.287998 + 0.498827i
\(709\) 1.28115 + 3.94298i 0.0481147 + 0.148082i 0.972227 0.234038i \(-0.0751941\pi\)
−0.924113 + 0.382120i \(0.875194\pi\)
\(710\) 0.133284 + 0.0593421i 0.00500208 + 0.00222707i
\(711\) 0 0
\(712\) −14.2705 −0.534810
\(713\) 0 0
\(714\) 0.437694 0.0163803
\(715\) −7.85410 5.70634i −0.293727 0.213405i
\(716\) −29.2649 13.0296i −1.09368 0.486938i
\(717\) 4.14590 + 12.7598i 0.154831 + 0.476522i
\(718\) −7.82624 + 13.5554i −0.292073 + 0.505885i
\(719\) 20.6910 + 35.8378i 0.771643 + 1.33653i 0.936662 + 0.350235i \(0.113898\pi\)
−0.165018 + 0.986290i \(0.552768\pi\)
\(720\) 6.49606 7.21460i 0.242094 0.268872i
\(721\) −0.135255 + 0.416272i −0.00503716 + 0.0155028i
\(722\) −2.48127 2.75573i −0.0923434 0.102558i
\(723\) 7.79059 3.46859i 0.289735 0.128998i
\(724\) 26.9055 + 5.71894i 0.999935 + 0.212543i
\(725\) 1.67023 15.8912i 0.0620308 0.590184i
\(726\) 0.672922 + 6.40243i 0.0249745 + 0.237616i
\(727\) 23.3120 4.95512i 0.864595 0.183775i 0.245793 0.969322i \(-0.420952\pi\)
0.618802 + 0.785547i \(0.287618\pi\)
\(728\) −26.3435 + 19.1396i −0.976354 + 0.709362i
\(729\) −10.5172 + 7.64121i −0.389527 + 0.283008i
\(730\) 13.5514 2.88043i 0.501558 0.106609i
\(731\) 0.113954 + 1.08420i 0.00421473 + 0.0401005i
\(732\) 1.17449 11.1745i 0.0434104 0.413022i
\(733\) −27.3336 5.80994i −1.00959 0.214595i −0.326710 0.945125i \(-0.605940\pi\)
−0.682881 + 0.730530i \(0.739273\pi\)
\(734\) 20.4784 9.11757i 0.755872 0.336536i
\(735\) 3.50361 + 3.89116i 0.129233 + 0.143527i
\(736\) 9.50000 29.2380i 0.350175 1.07773i
\(737\) 2.16535 2.40487i 0.0797618 0.0885844i
\(738\) −4.00000 6.92820i −0.147242 0.255031i
\(739\) −10.8541 + 18.7999i −0.399275 + 0.691564i −0.993637 0.112634i \(-0.964071\pi\)
0.594362 + 0.804198i \(0.297405\pi\)
\(740\) 0.309017 + 0.951057i 0.0113597 + 0.0349615i
\(741\) −22.1722 9.87171i −0.814517 0.362646i
\(742\) −19.0623 13.8496i −0.699799 0.508434i
\(743\) −3.43769 −0.126117 −0.0630584 0.998010i \(-0.520085\pi\)
−0.0630584 + 0.998010i \(0.520085\pi\)
\(744\) 0 0
\(745\) 44.5967 1.63390
\(746\) −0.173762 0.126246i −0.00636188 0.00462218i
\(747\) 7.47311 + 3.32724i 0.273427 + 0.121737i
\(748\) 0.0901699 + 0.277515i 0.00329694 + 0.0101469i
\(749\) −1.63525 + 2.83234i −0.0597509 + 0.103492i
\(750\) −2.54508 4.40822i −0.0929334 0.160965i
\(751\) −26.6534 + 29.6016i −0.972595 + 1.08018i 0.0241624 + 0.999708i \(0.492308\pi\)
−0.996757 + 0.0804679i \(0.974359\pi\)
\(752\) −1.93769 + 5.96361i −0.0706604 + 0.217470i
\(753\) −0.631841 0.701731i −0.0230256 0.0255725i
\(754\) 23.6189 10.5158i 0.860150 0.382963i
\(755\) −49.9529 10.6178i −1.81797 0.386422i
\(756\) 2.53696 24.1376i 0.0922683 0.877874i
\(757\) −4.50775 42.8884i −0.163837 1.55880i −0.699661 0.714475i \(-0.746666\pi\)
0.535824 0.844330i \(-0.320001\pi\)
\(758\) −11.1332 + 2.36644i −0.404378 + 0.0859531i
\(759\) 3.38197 2.45714i 0.122758 0.0891886i
\(760\) 23.6803 17.2048i 0.858976 0.624083i
\(761\) −3.42995 + 0.729059i −0.124336 + 0.0264284i −0.269659 0.962956i \(-0.586911\pi\)
0.145324 + 0.989384i \(0.453578\pi\)
\(762\) −0.661272 6.29158i −0.0239554 0.227920i
\(763\) 2.63926 25.1109i 0.0955477 0.909076i
\(764\) −25.4655 5.41286i −0.921310 0.195831i
\(765\) 1.12920 0.502754i 0.0408265 0.0181771i
\(766\) 6.96994 + 7.74090i 0.251834 + 0.279690i
\(767\) 14.2082 43.7284i 0.513029 1.57894i
\(768\) 4.39104 4.87674i 0.158448 0.175974i
\(769\) 26.8713 + 46.5425i 0.969005 + 1.67837i 0.698447 + 0.715662i \(0.253875\pi\)
0.270557 + 0.962704i \(0.412792\pi\)
\(770\) 1.85410 3.21140i 0.0668172 0.115731i
\(771\) −0.437694 1.34708i −0.0157632 0.0485140i
\(772\) 3.52090 + 1.56760i 0.126720 + 0.0564193i
\(773\) 15.4443 + 11.2209i 0.555492 + 0.403588i 0.829806 0.558052i \(-0.188451\pi\)
−0.274314 + 0.961640i \(0.588451\pi\)
\(774\) −5.70820 −0.205177
\(775\) 0 0
\(776\) −11.8328 −0.424773
\(777\) 0.572949 + 0.416272i 0.0205544 + 0.0149337i
\(778\) 16.4124 + 7.30725i 0.588411 + 0.261978i
\(779\) 10.0000 + 30.7768i 0.358287 + 1.10269i
\(780\) 10.2812 17.8075i 0.368124 0.637610i
\(781\) 0.0344419 + 0.0596550i 0.00123243 + 0.00213463i
\(782\) 0.534216 0.593307i 0.0191035 0.0212166i
\(783\) −13.3156 + 40.9812i −0.475861 + 1.46455i
\(784\) 2.48127 + 2.75573i 0.0886169 + 0.0984190i
\(785\) −23.2190 + 10.3378i −0.828723 + 0.368971i
\(786\) −0.0545103 0.0115865i −0.00194432 0.000413278i
\(787\) −3.27088 + 31.1204i −0.116594 + 1.10932i 0.767188 + 0.641423i \(0.221656\pi\)
−0.883782 + 0.467899i \(0.845011\pi\)
\(788\) 2.77652 + 26.4168i 0.0989093 + 0.941059i
\(789\) −10.5624 + 2.24511i −0.376032 + 0.0799280i
\(790\) 0 0
\(791\) 4.50000 3.26944i 0.160002 0.116248i
\(792\) −3.34175 + 0.710311i −0.118744 + 0.0252398i
\(793\) 3.52347 + 33.5235i 0.125122 + 1.19046i
\(794\) 1.05248 10.0137i 0.0373513 0.355374i
\(795\) 32.5435 + 6.91733i 1.15420 + 0.245332i
\(796\) 39.4787 17.5770i 1.39928 0.623001i
\(797\) 6.05946 + 6.72972i 0.214637 + 0.238379i 0.840843 0.541279i \(-0.182060\pi\)
−0.626206 + 0.779658i \(0.715393\pi\)
\(798\) 2.86475 8.81678i 0.101411 0.312111i
\(799\) −0.534216 + 0.593307i −0.0188992 + 0.0209897i
\(800\) 5.20820 + 9.02087i 0.184138 + 0.318936i
\(801\) −6.38197 + 11.0539i −0.225496 + 0.390570i
\(802\) 5.69756 + 17.5353i 0.201188 + 0.619193i
\(803\) 5.97552 + 2.66047i 0.210871 + 0.0938860i
\(804\) 5.54508 + 4.02874i 0.195560 + 0.142083i
\(805\) 42.9787 1.51480
\(806\) 0 0
\(807\) 1.38197 0.0486475
\(808\) −8.61803 6.26137i −0.303181 0.220274i
\(809\) 50.0608 + 22.2885i 1.76004 + 0.783622i 0.989195 + 0.146604i \(0.0468344\pi\)
0.770849 + 0.637018i \(0.219832\pi\)
\(810\) 0.500000 + 1.53884i 0.0175682 + 0.0540694i
\(811\) −21.3885 + 37.0460i −0.751053 + 1.30086i 0.196259 + 0.980552i \(0.437121\pi\)
−0.947313 + 0.320311i \(0.896213\pi\)
\(812\) −20.9164 36.2283i −0.734022 1.27136i
\(813\) −6.39843 + 7.10618i −0.224403 + 0.249225i
\(814\) 0.0344419 0.106001i 0.00120719 0.00371534i
\(815\) 22.2623 + 24.7248i 0.779815 + 0.866072i
\(816\) −0.399853 + 0.178026i −0.0139977 + 0.00623216i
\(817\) 22.5856 + 4.80072i 0.790170 + 0.167956i
\(818\) −0.399263 + 3.79874i −0.0139599 + 0.132820i
\(819\) 3.04435 + 28.9651i 0.106378 + 1.01212i
\(820\) −26.8173 + 5.70019i −0.936501 + 0.199059i
\(821\) 26.2705 19.0866i 0.916847 0.666128i −0.0258901 0.999665i \(-0.508242\pi\)
0.942737 + 0.333536i \(0.108242\pi\)
\(822\) 3.23607 2.35114i 0.112871 0.0820055i
\(823\) 5.99077 1.27338i 0.208825 0.0443872i −0.102311 0.994752i \(-0.532624\pi\)
0.311136 + 0.950365i \(0.399290\pi\)
\(824\) 0.0341011 + 0.324451i 0.00118797 + 0.0113028i
\(825\) −0.148055 + 1.40865i −0.00515461 + 0.0490429i
\(826\) 17.1785 + 3.65141i 0.597717 + 0.127049i
\(827\) 2.44260 1.08752i 0.0849376 0.0378167i −0.363828 0.931466i \(-0.618530\pi\)
0.448766 + 0.893649i \(0.351864\pi\)
\(828\) −11.8491 13.1598i −0.411785 0.457333i
\(829\) −6.70820 + 20.6457i −0.232986 + 0.717056i 0.764397 + 0.644746i \(0.223037\pi\)
−0.997382 + 0.0723096i \(0.976963\pi\)
\(830\) −4.42833 + 4.91816i −0.153710 + 0.170712i
\(831\) 6.66312 + 11.5409i 0.231141 + 0.400348i
\(832\) 0.572949 0.992377i 0.0198634 0.0344045i
\(833\) 0.145898 + 0.449028i 0.00505507 + 0.0155579i
\(834\) 3.30524 + 1.47159i 0.114451 + 0.0509569i
\(835\) −19.5623 14.2128i −0.676982 0.491856i
\(836\) 6.18034 0.213752
\(837\) 0 0
\(838\) −2.76393 −0.0954784
\(839\) −9.04508 6.57164i −0.312271 0.226878i 0.420599 0.907246i \(-0.361820\pi\)
−0.732870 + 0.680368i \(0.761820\pi\)
\(840\) 16.0440 + 7.14323i 0.553569 + 0.246465i
\(841\) 13.9894 + 43.0548i 0.482392 + 1.48465i
\(842\) 4.56231 7.90215i 0.157227 0.272326i
\(843\) 9.51722 + 16.4843i 0.327791 + 0.567750i
\(844\) 8.66141 9.61947i 0.298138 0.331116i
\(845\) −8.54508 + 26.2991i −0.293960 + 0.904715i
\(846\) −2.79719 3.10660i −0.0961695 0.106807i
\(847\) −28.5476 + 12.7102i −0.980907 + 0.436728i
\(848\) 23.0474 + 4.89888i 0.791451 + 0.168228i
\(849\) 0.685948 6.52636i 0.0235417 0.223984i
\(850\) 0.0282760 + 0.269028i 0.000969858 + 0.00922758i
\(851\) 1.26357 0.268580i 0.0433145 0.00920679i
\(852\) −0.118034 + 0.0857567i −0.00404378 + 0.00293798i
\(853\) −3.23607 + 2.35114i −0.110801 + 0.0805015i −0.641806 0.766867i \(-0.721815\pi\)
0.531005 + 0.847369i \(0.321815\pi\)
\(854\) −12.5940 + 2.67694i −0.430959 + 0.0916031i
\(855\) −2.73659 26.0369i −0.0935894 0.890444i
\(856\) −0.254808 + 2.42434i −0.00870917 + 0.0828622i
\(857\) 8.00158 + 1.70079i 0.273329 + 0.0580978i 0.342537 0.939504i \(-0.388714\pi\)
−0.0692080 + 0.997602i \(0.522047\pi\)
\(858\) −2.09366 + 0.932157i −0.0714764 + 0.0318233i
\(859\) 28.9679 + 32.1721i 0.988371 + 1.09770i 0.995214 + 0.0977204i \(0.0311551\pi\)
−0.00684308 + 0.999977i \(0.502178\pi\)
\(860\) −6.04508 + 18.6049i −0.206136 + 0.634420i
\(861\) −12.9921 + 14.4292i −0.442770 + 0.491746i
\(862\) 9.03444 + 15.6481i 0.307714 + 0.532977i
\(863\) −1.24671 + 2.15937i −0.0424385 + 0.0735057i −0.886464 0.462797i \(-0.846846\pi\)
0.844026 + 0.536302i \(0.180179\pi\)
\(864\) −8.68034 26.7153i −0.295311 0.908874i
\(865\) −2.17603 0.968833i −0.0739874 0.0329413i
\(866\) 0.291796 + 0.212002i 0.00991563 + 0.00720413i
\(867\) 16.9443 0.575458
\(868\) 0 0
\(869\) 0 0
\(870\) −11.2812 8.19624i −0.382467 0.277878i
\(871\) −18.7846 8.36344i −0.636492 0.283384i
\(872\) −5.81559 17.8986i −0.196941 0.606122i
\(873\) −5.29180 + 9.16566i −0.179100 + 0.310211i
\(874\) −8.45492 14.6443i −0.285992 0.495352i
\(875\) 16.5330 18.3618i 0.558918 0.620741i
\(876\) −4.28115 + 13.1760i −0.144647 + 0.445177i
\(877\) 10.9013 + 12.1072i 0.368112 + 0.408830i 0.898534 0.438904i \(-0.144633\pi\)
−0.530422 + 0.847734i \(0.677966\pi\)
\(878\) −23.6189 + 10.5158i −0.797099 + 0.354891i
\(879\) −8.05609 1.71237i −0.271725 0.0577570i
\(880\) −0.387613 + 3.68789i −0.0130664 + 0.124319i
\(881\) 1.60563 + 15.2765i 0.0540950 + 0.514679i 0.987698 + 0.156371i \(0.0499796\pi\)
−0.933603 + 0.358308i \(0.883354\pi\)
\(882\) −2.41811 + 0.513986i −0.0814221 + 0.0173068i
\(883\) 0.809017 0.587785i 0.0272256 0.0197805i −0.574089 0.818793i \(-0.694644\pi\)
0.601315 + 0.799012i \(0.294644\pi\)
\(884\) 1.50000 1.08981i 0.0504505 0.0366544i
\(885\) −24.2565 + 5.15587i −0.815372 + 0.173313i
\(886\) −2.65674 25.2772i −0.0892549 0.849203i
\(887\) −4.08741 + 38.8891i −0.137242 + 1.30577i 0.681590 + 0.731735i \(0.261289\pi\)
−0.818831 + 0.574034i \(0.805378\pi\)
\(888\) 0.516329 + 0.109749i 0.0173269 + 0.00368294i
\(889\) 28.0533 12.4902i 0.940879 0.418906i
\(890\) −6.90960 7.67389i −0.231610 0.257229i
\(891\) −0.236068 + 0.726543i −0.00790857 + 0.0243401i
\(892\) −0.766755 + 0.851568i −0.0256729 + 0.0285126i
\(893\) 8.45492 + 14.6443i 0.282933 + 0.490054i
\(894\) 5.26393 9.11740i 0.176052 0.304931i
\(895\) −16.0172 49.2959i −0.535397 1.64778i
\(896\) 31.1938 + 13.8884i 1.04211 + 0.463978i
\(897\) −21.4894 15.6129i −0.717509 0.521301i
\(898\) −14.8754 −0.496398
\(899\) 0 0
\(900\) 6.00000 0.200000
\(901\) 2.42705 + 1.76336i 0.0808568 + 0.0587459i
\(902\) 2.79155 + 1.24288i 0.0929483 + 0.0413833i
\(903\) 4.28115 + 13.1760i 0.142468 + 0.438471i
\(904\) 2.07295 3.59045i 0.0689453 0.119417i
\(905\) 22.2533 + 38.5438i 0.739724 + 1.28124i
\(906\) −8.06686 + 8.95915i −0.268003 + 0.297648i
\(907\) 16.3541 50.3328i 0.543029 1.67127i −0.182601 0.983187i \(-0.558452\pi\)
0.725631 0.688085i \(-0.241548\pi\)
\(908\) 22.4576 + 24.9417i 0.745281 + 0.827718i
\(909\) −8.70414 + 3.87533i −0.288698 + 0.128537i
\(910\) −23.0474 4.89888i −0.764014 0.162396i
\(911\) −0.855078 + 8.13553i −0.0283300 + 0.269542i 0.971183 + 0.238335i \(0.0766017\pi\)
−0.999513 + 0.0312068i \(0.990065\pi\)
\(912\) 0.969032 + 9.21973i 0.0320879 + 0.305296i
\(913\) −3.05633 + 0.649643i −0.101150 + 0.0215001i
\(914\) −7.87132 + 5.71885i −0.260360 + 0.189163i
\(915\) 14.7082 10.6861i 0.486238 0.353273i
\(916\) −11.4524 + 2.43427i −0.378396 + 0.0804306i
\(917\) −0.0282760 0.269028i −0.000933755 0.00888409i
\(918\) 0.0762525 0.725494i 0.00251671 0.0239449i
\(919\) −9.65959 2.05321i −0.318640 0.0677291i 0.0458150 0.998950i \(-0.485412\pi\)
−0.364455 + 0.931221i \(0.618745\pi\)
\(920\) 29.2649 13.0296i 0.964836 0.429573i
\(921\) −4.07512 4.52588i −0.134280 0.149133i
\(922\) −2.05166 + 6.31437i −0.0675679 + 0.207953i
\(923\) 0.292875 0.325270i 0.00964008 0.0107064i
\(924\) 1.85410 + 3.21140i 0.0609955 + 0.105647i
\(925\) −0.218847 + 0.379054i −0.00719565 + 0.0124632i
\(926\) 5.94427 + 18.2946i 0.195341 + 0.601197i
\(927\) 0.266569 + 0.118684i 0.00875527 + 0.00389810i
\(928\) −39.1697 28.4585i −1.28581 0.934194i
\(929\) 33.5410 1.10045 0.550223 0.835018i \(-0.314543\pi\)
0.550223 + 0.835018i \(0.314543\pi\)
\(930\) 0 0
\(931\) 10.0000 0.327737
\(932\) 24.6074 + 17.8783i 0.806042 + 0.585624i
\(933\) −15.0480 6.69982i −0.492651 0.219342i
\(934\) 6.25987 + 19.2659i 0.204829 + 0.630399i
\(935\) −0.236068 + 0.408882i −0.00772025 + 0.0133719i
\(936\) 10.8541 + 18.7999i 0.354777 + 0.614493i
\(937\) 27.0899 30.0864i 0.884990 0.982881i −0.114955 0.993371i \(-0.536672\pi\)
0.999945 + 0.0104897i \(0.00333904\pi\)
\(938\) 2.42705 7.46969i 0.0792460 0.243894i
\(939\) −0.827091 0.918578i −0.0269911 0.0299766i
\(940\) −13.0877 + 5.82701i −0.426873 + 0.190056i
\(941\) −27.9590 5.94286i −0.911436 0.193732i −0.271750 0.962368i \(-0.587602\pi\)
−0.639686 + 0.768636i \(0.720936\pi\)
\(942\) −0.627171 + 5.96713i −0.0204343 + 0.194420i
\(943\) 3.70202 + 35.2224i 0.120554 + 1.14700i
\(944\) −17.1785 + 3.65141i −0.559113 + 0.118843i
\(945\) 31.7705 23.0826i 1.03349 0.750878i
\(946\) 1.76393 1.28157i 0.0573504 0.0416675i
\(947\) −21.5866 + 4.58838i −0.701471 + 0.149102i −0.544822 0.838552i \(-0.683403\pi\)
−0.156649 + 0.987654i \(0.550069\pi\)
\(948\) 0 0
\(949\) 4.34444 41.3346i 0.141027 1.34178i
\(950\) 5.60429 + 1.19123i 0.181827 + 0.0386485i
\(951\) −23.6504 + 10.5298i −0.766916 + 0.341453i
\(952\) 1.05963 + 1.17684i 0.0343428 + 0.0381415i
\(953\) 13.0451 40.1486i 0.422572 1.30054i −0.482729 0.875770i \(-0.660354\pi\)
0.905300 0.424772i \(-0.139646\pi\)
\(954\) −10.5108 + 11.6735i −0.340301 + 0.377943i
\(955\) −21.0623 36.4810i −0.681560 1.18050i
\(956\) −10.8541 + 18.7999i −0.351047 + 0.608031i
\(957\) −2.03444 6.26137i −0.0657642 0.202401i
\(958\) 5.04996 + 2.24838i 0.163157 + 0.0726420i
\(959\) 15.7082 + 11.4127i 0.507244 + 0.368535i
\(960\) −0.618034 −0.0199470
\(961\) 0 0
\(962\) −0.708204 −0.0228334
\(963\) 1.76393 + 1.28157i 0.0568419 + 0.0412981i
\(964\) 12.6054 + 5.61230i 0.405994 + 0.180760i
\(965\) 1.92705 + 5.93085i 0.0620340 + 0.190921i
\(966\) 5.07295 8.78661i 0.163219 0.282704i
\(967\) −21.8262 37.8042i −0.701884 1.21570i −0.967804 0.251704i \(-0.919009\pi\)
0.265920 0.963995i \(-0.414324\pi\)
\(968\) −15.5853 + 17.3092i −0.500929 + 0.556338i
\(969\) −0.364745 + 1.12257i −0.0117173 + 0.0360621i
\(970\) −5.72930 6.36303i −0.183957 0.204305i
\(971\) −18.7846 + 8.36344i −0.602827 + 0.268396i −0.685374 0.728191i \(-0.740361\pi\)
0.0825472 + 0.996587i \(0.473694\pi\)
\(972\) −25.3228 5.38253i −0.812230 0.172645i
\(973\) −1.83576 + 17.4661i −0.0588518 + 0.559937i
\(974\) 1.48087 + 14.0896i 0.0474503 + 0.451459i
\(975\) 8.80333 1.87121i 0.281932 0.0599265i
\(976\) 10.4164 7.56796i 0.333421 0.242245i
\(977\) 4.90983 3.56720i 0.157079 0.114125i −0.506469 0.862258i \(-0.669050\pi\)
0.663549 + 0.748133i \(0.269050\pi\)
\(978\) 7.68247 1.63296i 0.245658 0.0522163i
\(979\) −0.509617 4.84868i −0.0162874 0.154964i
\(980\) −0.885579 + 8.42572i −0.0282888 + 0.269150i
\(981\) −16.4650 3.49974i −0.525686 0.111738i
\(982\) 15.5812 6.93719i 0.497216 0.221375i
\(983\) 14.0748 + 15.6316i 0.448916 + 0.498572i 0.924544 0.381075i \(-0.124446\pi\)
−0.475628 + 0.879646i \(0.657779\pi\)
\(984\) −4.47214 + 13.7638i −0.142566 + 0.438775i
\(985\) −28.7584 + 31.9394i −0.916318 + 1.01767i
\(986\) −0.628677 1.08890i −0.0200212 0.0346777i
\(987\) −5.07295 + 8.78661i −0.161474 + 0.279681i
\(988\) −12.1353 37.3485i −0.386074 1.18821i
\(989\) 23.0858 + 10.2784i 0.734084 + 0.326835i
\(990\) −2.00000 1.45309i −0.0635642 0.0461821i
\(991\) −17.2705 −0.548616 −0.274308 0.961642i \(-0.588449\pi\)
−0.274308 + 0.961642i \(0.588449\pi\)
\(992\) 0 0
\(993\) −11.2705 −0.357659
\(994\) 0.135255 + 0.0982684i 0.00429003 + 0.00311689i
\(995\) 63.8778 + 28.4402i 2.02506 + 0.901616i
\(996\) −2.04508 6.29412i −0.0648010 0.199437i
\(997\) 13.6246 23.5985i 0.431496 0.747373i −0.565507 0.824744i \(-0.691319\pi\)
0.997002 + 0.0773712i \(0.0246526\pi\)
\(998\) 1.28115 + 2.21902i 0.0405542 + 0.0702419i
\(999\) 0.789802 0.877163i 0.0249882 0.0277522i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.f.732.1 8
31.2 even 5 961.2.g.b.448.1 8
31.3 odd 30 961.2.d.e.388.1 4
31.4 even 5 961.2.c.f.521.1 4
31.5 even 3 inner 961.2.g.f.816.1 8
31.6 odd 6 961.2.d.e.374.1 4
31.7 even 15 961.2.a.d.1.1 2
31.8 even 5 961.2.g.b.844.1 8
31.9 even 15 961.2.g.b.547.1 8
31.10 even 15 961.2.g.b.846.1 8
31.11 odd 30 961.2.c.d.439.1 4
31.12 odd 30 961.2.d.b.628.1 4
31.13 odd 30 961.2.g.g.235.1 8
31.14 even 15 31.2.d.a.4.1 4
31.15 odd 10 961.2.g.g.338.1 8
31.16 even 5 inner 961.2.g.f.338.1 8
31.17 odd 30 961.2.d.b.531.1 4
31.18 even 15 inner 961.2.g.f.235.1 8
31.19 even 15 31.2.d.a.8.1 yes 4
31.20 even 15 961.2.c.f.439.1 4
31.21 odd 30 961.2.g.c.846.1 8
31.22 odd 30 961.2.g.c.547.1 8
31.23 odd 10 961.2.g.c.844.1 8
31.24 odd 30 961.2.a.e.1.1 2
31.25 even 3 961.2.d.f.374.1 4
31.26 odd 6 961.2.g.g.816.1 8
31.27 odd 10 961.2.c.d.521.1 4
31.28 even 15 961.2.d.f.388.1 4
31.29 odd 10 961.2.g.c.448.1 8
31.30 odd 2 961.2.g.g.732.1 8
93.14 odd 30 279.2.i.a.190.1 4
93.38 odd 30 8649.2.a.g.1.2 2
93.50 odd 30 279.2.i.a.163.1 4
93.86 even 30 8649.2.a.f.1.2 2
124.19 odd 30 496.2.n.b.225.1 4
124.107 odd 30 496.2.n.b.97.1 4
155.14 even 30 775.2.k.c.376.1 4
155.19 even 30 775.2.k.c.101.1 4
155.107 odd 60 775.2.bf.a.624.2 8
155.112 odd 60 775.2.bf.a.349.1 8
155.138 odd 60 775.2.bf.a.624.1 8
155.143 odd 60 775.2.bf.a.349.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.4.1 4 31.14 even 15
31.2.d.a.8.1 yes 4 31.19 even 15
279.2.i.a.163.1 4 93.50 odd 30
279.2.i.a.190.1 4 93.14 odd 30
496.2.n.b.97.1 4 124.107 odd 30
496.2.n.b.225.1 4 124.19 odd 30
775.2.k.c.101.1 4 155.19 even 30
775.2.k.c.376.1 4 155.14 even 30
775.2.bf.a.349.1 8 155.112 odd 60
775.2.bf.a.349.2 8 155.143 odd 60
775.2.bf.a.624.1 8 155.138 odd 60
775.2.bf.a.624.2 8 155.107 odd 60
961.2.a.d.1.1 2 31.7 even 15
961.2.a.e.1.1 2 31.24 odd 30
961.2.c.d.439.1 4 31.11 odd 30
961.2.c.d.521.1 4 31.27 odd 10
961.2.c.f.439.1 4 31.20 even 15
961.2.c.f.521.1 4 31.4 even 5
961.2.d.b.531.1 4 31.17 odd 30
961.2.d.b.628.1 4 31.12 odd 30
961.2.d.e.374.1 4 31.6 odd 6
961.2.d.e.388.1 4 31.3 odd 30
961.2.d.f.374.1 4 31.25 even 3
961.2.d.f.388.1 4 31.28 even 15
961.2.g.b.448.1 8 31.2 even 5
961.2.g.b.547.1 8 31.9 even 15
961.2.g.b.844.1 8 31.8 even 5
961.2.g.b.846.1 8 31.10 even 15
961.2.g.c.448.1 8 31.29 odd 10
961.2.g.c.547.1 8 31.22 odd 30
961.2.g.c.844.1 8 31.23 odd 10
961.2.g.c.846.1 8 31.21 odd 30
961.2.g.f.235.1 8 31.18 even 15 inner
961.2.g.f.338.1 8 31.16 even 5 inner
961.2.g.f.732.1 8 1.1 even 1 trivial
961.2.g.f.816.1 8 31.5 even 3 inner
961.2.g.g.235.1 8 31.13 odd 30
961.2.g.g.338.1 8 31.15 odd 10
961.2.g.g.732.1 8 31.30 odd 2
961.2.g.g.816.1 8 31.26 odd 6
8649.2.a.f.1.2 2 93.86 even 30
8649.2.a.g.1.2 2 93.38 odd 30