Properties

Label 775.2.bf.a.624.1
Level $775$
Weight $2$
Character 775.624
Analytic conductor $6.188$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [775,2,Mod(349,775)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(775, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("775.349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.bf (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 624.1
Root \(-0.587785 - 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 775.624
Dual form 775.2.bf.a.349.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.587785 + 0.190983i) q^{2} +(-0.951057 - 0.309017i) q^{3} +(-1.30902 + 0.951057i) q^{4} +0.618034 q^{6} +(1.76336 + 2.42705i) q^{7} +(1.31433 - 1.80902i) q^{8} +(-1.61803 - 1.17557i) q^{9} +(0.618034 - 0.449028i) q^{11} +(1.53884 - 0.500000i) q^{12} +(4.61653 + 1.50000i) q^{13} +(-1.50000 - 1.08981i) q^{14} +(0.572949 - 1.76336i) q^{16} +(-0.138757 + 0.190983i) q^{17} +(1.17557 + 0.381966i) q^{18} +(-1.54508 - 4.75528i) q^{19} +(-0.927051 - 2.85317i) q^{21} +(-0.277515 + 0.381966i) q^{22} +(-3.21644 + 4.42705i) q^{23} +(-1.80902 + 1.31433i) q^{24} -3.00000 q^{26} +(2.93893 + 4.04508i) q^{27} +(-4.61653 - 1.50000i) q^{28} +(2.66312 + 8.19624i) q^{29} +(-5.54508 + 0.502029i) q^{31} +5.61803i q^{32} +(-0.726543 + 0.236068i) q^{33} +(0.0450850 - 0.138757i) q^{34} +3.23607 q^{36} -0.236068i q^{37} +(1.81636 + 2.50000i) q^{38} +(-3.92705 - 2.85317i) q^{39} +(2.00000 + 6.15537i) q^{41} +(1.08981 + 1.50000i) q^{42} +(4.39201 - 1.42705i) q^{43} +(-0.381966 + 1.17557i) q^{44} +(1.04508 - 3.21644i) q^{46} +(3.21644 + 1.04508i) q^{47} +(-1.08981 + 1.50000i) q^{48} +(-0.618034 + 1.90211i) q^{49} +(0.190983 - 0.138757i) q^{51} +(-7.46969 + 2.42705i) q^{52} +(-7.46969 + 10.2812i) q^{53} +(-2.50000 - 1.81636i) q^{54} +6.70820 q^{56} +5.00000i q^{57} +(-3.13068 - 4.30902i) q^{58} +(-2.92705 + 9.00854i) q^{59} -6.94427 q^{61} +(3.16344 - 1.35410i) q^{62} -6.00000i q^{63} +(0.0729490 + 0.224514i) q^{64} +(0.381966 - 0.277515i) q^{66} +4.23607i q^{67} -0.381966i q^{68} +(4.42705 - 3.21644i) q^{69} +(-0.0729490 - 0.0530006i) q^{71} +(-4.25325 + 1.38197i) q^{72} +(5.03280 + 6.92705i) q^{73} +(0.0450850 + 0.138757i) q^{74} +(6.54508 + 4.75528i) q^{76} +(2.17963 + 0.708204i) q^{77} +(2.85317 + 0.927051i) q^{78} +(0.309017 + 0.951057i) q^{81} +(-2.35114 - 3.23607i) q^{82} +(3.88998 - 1.26393i) q^{83} +(3.92705 + 2.85317i) q^{84} +(-2.30902 + 1.67760i) q^{86} -8.61803i q^{87} -1.70820i q^{88} +(-5.16312 + 3.75123i) q^{89} +(4.50000 + 13.8496i) q^{91} -8.85410i q^{92} +(5.42882 + 1.23607i) q^{93} -2.09017 q^{94} +(1.73607 - 5.34307i) q^{96} +(-3.11044 - 4.28115i) q^{97} -1.23607i q^{98} -1.52786 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{4} - 4 q^{6} - 4 q^{9} - 4 q^{11} - 12 q^{14} + 18 q^{16} + 10 q^{19} + 6 q^{21} - 10 q^{24} - 24 q^{26} - 10 q^{29} - 22 q^{31} - 22 q^{34} + 8 q^{36} - 18 q^{39} + 16 q^{41} - 12 q^{44} - 14 q^{46}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.587785 + 0.190983i −0.415627 + 0.135045i −0.509363 0.860552i \(-0.670119\pi\)
0.0937362 + 0.995597i \(0.470119\pi\)
\(3\) −0.951057 0.309017i −0.549093 0.178411i 0.0213149 0.999773i \(-0.493215\pi\)
−0.570408 + 0.821362i \(0.693215\pi\)
\(4\) −1.30902 + 0.951057i −0.654508 + 0.475528i
\(5\) 0 0
\(6\) 0.618034 0.252311
\(7\) 1.76336 + 2.42705i 0.666486 + 0.917339i 0.999674 0.0255212i \(-0.00812453\pi\)
−0.333188 + 0.942860i \(0.608125\pi\)
\(8\) 1.31433 1.80902i 0.464685 0.639584i
\(9\) −1.61803 1.17557i −0.539345 0.391857i
\(10\) 0 0
\(11\) 0.618034 0.449028i 0.186344 0.135387i −0.490702 0.871327i \(-0.663260\pi\)
0.677046 + 0.735940i \(0.263260\pi\)
\(12\) 1.53884 0.500000i 0.444225 0.144338i
\(13\) 4.61653 + 1.50000i 1.28039 + 0.416025i 0.868719 0.495306i \(-0.164944\pi\)
0.411675 + 0.911331i \(0.364944\pi\)
\(14\) −1.50000 1.08981i −0.400892 0.291265i
\(15\) 0 0
\(16\) 0.572949 1.76336i 0.143237 0.440839i
\(17\) −0.138757 + 0.190983i −0.0336536 + 0.0463202i −0.825512 0.564384i \(-0.809114\pi\)
0.791859 + 0.610704i \(0.209114\pi\)
\(18\) 1.17557 + 0.381966i 0.277085 + 0.0900303i
\(19\) −1.54508 4.75528i −0.354467 1.09094i −0.956318 0.292328i \(-0.905570\pi\)
0.601851 0.798608i \(-0.294430\pi\)
\(20\) 0 0
\(21\) −0.927051 2.85317i −0.202299 0.622613i
\(22\) −0.277515 + 0.381966i −0.0591663 + 0.0814354i
\(23\) −3.21644 + 4.42705i −0.670674 + 0.923104i −0.999775 0.0211907i \(-0.993254\pi\)
0.329101 + 0.944295i \(0.393254\pi\)
\(24\) −1.80902 + 1.31433i −0.369264 + 0.268286i
\(25\) 0 0
\(26\) −3.00000 −0.588348
\(27\) 2.93893 + 4.04508i 0.565597 + 0.778477i
\(28\) −4.61653 1.50000i −0.872441 0.283473i
\(29\) 2.66312 + 8.19624i 0.494529 + 1.52200i 0.817690 + 0.575659i \(0.195254\pi\)
−0.323161 + 0.946344i \(0.604746\pi\)
\(30\) 0 0
\(31\) −5.54508 + 0.502029i −0.995927 + 0.0901670i
\(32\) 5.61803i 0.993137i
\(33\) −0.726543 + 0.236068i −0.126475 + 0.0410942i
\(34\) 0.0450850 0.138757i 0.00773201 0.0237967i
\(35\) 0 0
\(36\) 3.23607 0.539345
\(37\) 0.236068i 0.0388093i −0.999812 0.0194047i \(-0.993823\pi\)
0.999812 0.0194047i \(-0.00617709\pi\)
\(38\) 1.81636 + 2.50000i 0.294652 + 0.405554i
\(39\) −3.92705 2.85317i −0.628831 0.456873i
\(40\) 0 0
\(41\) 2.00000 + 6.15537i 0.312348 + 0.961307i 0.976833 + 0.214005i \(0.0686510\pi\)
−0.664485 + 0.747302i \(0.731349\pi\)
\(42\) 1.08981 + 1.50000i 0.168162 + 0.231455i
\(43\) 4.39201 1.42705i 0.669775 0.217623i 0.0456620 0.998957i \(-0.485460\pi\)
0.624113 + 0.781334i \(0.285460\pi\)
\(44\) −0.381966 + 1.17557i −0.0575835 + 0.177224i
\(45\) 0 0
\(46\) 1.04508 3.21644i 0.154089 0.474238i
\(47\) 3.21644 + 1.04508i 0.469166 + 0.152441i 0.534052 0.845451i \(-0.320668\pi\)
−0.0648863 + 0.997893i \(0.520668\pi\)
\(48\) −1.08981 + 1.50000i −0.157301 + 0.216506i
\(49\) −0.618034 + 1.90211i −0.0882906 + 0.271730i
\(50\) 0 0
\(51\) 0.190983 0.138757i 0.0267430 0.0194299i
\(52\) −7.46969 + 2.42705i −1.03586 + 0.336571i
\(53\) −7.46969 + 10.2812i −1.02604 + 1.41222i −0.118162 + 0.992994i \(0.537700\pi\)
−0.907880 + 0.419231i \(0.862300\pi\)
\(54\) −2.50000 1.81636i −0.340207 0.247175i
\(55\) 0 0
\(56\) 6.70820 0.896421
\(57\) 5.00000i 0.662266i
\(58\) −3.13068 4.30902i −0.411079 0.565802i
\(59\) −2.92705 + 9.00854i −0.381070 + 1.17281i 0.558222 + 0.829692i \(0.311484\pi\)
−0.939292 + 0.343120i \(0.888516\pi\)
\(60\) 0 0
\(61\) −6.94427 −0.889123 −0.444561 0.895748i \(-0.646640\pi\)
−0.444561 + 0.895748i \(0.646640\pi\)
\(62\) 3.16344 1.35410i 0.401757 0.171971i
\(63\) 6.00000i 0.755929i
\(64\) 0.0729490 + 0.224514i 0.00911863 + 0.0280642i
\(65\) 0 0
\(66\) 0.381966 0.277515i 0.0470168 0.0341597i
\(67\) 4.23607i 0.517518i 0.965942 + 0.258759i \(0.0833136\pi\)
−0.965942 + 0.258759i \(0.916686\pi\)
\(68\) 0.381966i 0.0463202i
\(69\) 4.42705 3.21644i 0.532954 0.387214i
\(70\) 0 0
\(71\) −0.0729490 0.0530006i −0.00865746 0.00629001i 0.583448 0.812150i \(-0.301703\pi\)
−0.592106 + 0.805860i \(0.701703\pi\)
\(72\) −4.25325 + 1.38197i −0.501251 + 0.162866i
\(73\) 5.03280 + 6.92705i 0.589044 + 0.810750i 0.994650 0.103298i \(-0.0329395\pi\)
−0.405606 + 0.914048i \(0.632940\pi\)
\(74\) 0.0450850 + 0.138757i 0.00524102 + 0.0161302i
\(75\) 0 0
\(76\) 6.54508 + 4.75528i 0.750773 + 0.545468i
\(77\) 2.17963 + 0.708204i 0.248392 + 0.0807073i
\(78\) 2.85317 + 0.927051i 0.323058 + 0.104968i
\(79\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(80\) 0 0
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) −2.35114 3.23607i −0.259640 0.357364i
\(83\) 3.88998 1.26393i 0.426981 0.138735i −0.0876401 0.996152i \(-0.527933\pi\)
0.514621 + 0.857418i \(0.327933\pi\)
\(84\) 3.92705 + 2.85317i 0.428476 + 0.311306i
\(85\) 0 0
\(86\) −2.30902 + 1.67760i −0.248988 + 0.180900i
\(87\) 8.61803i 0.923950i
\(88\) 1.70820i 0.182095i
\(89\) −5.16312 + 3.75123i −0.547290 + 0.397629i −0.826785 0.562518i \(-0.809833\pi\)
0.279496 + 0.960147i \(0.409833\pi\)
\(90\) 0 0
\(91\) 4.50000 + 13.8496i 0.471728 + 1.45183i
\(92\) 8.85410i 0.923104i
\(93\) 5.42882 + 1.23607i 0.562943 + 0.128174i
\(94\) −2.09017 −0.215585
\(95\) 0 0
\(96\) 1.73607 5.34307i 0.177187 0.545325i
\(97\) −3.11044 4.28115i −0.315817 0.434685i 0.621367 0.783520i \(-0.286578\pi\)
−0.937184 + 0.348834i \(0.886578\pi\)
\(98\) 1.23607i 0.124862i
\(99\) −1.52786 −0.153556
\(100\) 0 0
\(101\) −3.85410 2.80017i −0.383497 0.278627i 0.379288 0.925279i \(-0.376169\pi\)
−0.762786 + 0.646651i \(0.776169\pi\)
\(102\) −0.0857567 + 0.118034i −0.00849118 + 0.0116871i
\(103\) 0.138757 0.0450850i 0.0136722 0.00444235i −0.302173 0.953253i \(-0.597712\pi\)
0.315845 + 0.948811i \(0.397712\pi\)
\(104\) 8.78115 6.37988i 0.861063 0.625599i
\(105\) 0 0
\(106\) 2.42705 7.46969i 0.235736 0.725521i
\(107\) −0.640786 + 0.881966i −0.0619471 + 0.0852629i −0.838867 0.544337i \(-0.816781\pi\)
0.776919 + 0.629600i \(0.216781\pi\)
\(108\) −7.69421 2.50000i −0.740376 0.240563i
\(109\) 2.60081 8.00448i 0.249113 0.766690i −0.745820 0.666147i \(-0.767942\pi\)
0.994933 0.100543i \(-0.0320579\pi\)
\(110\) 0 0
\(111\) −0.0729490 + 0.224514i −0.00692401 + 0.0213099i
\(112\) 5.29007 1.71885i 0.499864 0.162416i
\(113\) 1.08981 + 1.50000i 0.102521 + 0.141108i 0.857195 0.514992i \(-0.172205\pi\)
−0.754674 + 0.656100i \(0.772205\pi\)
\(114\) −0.954915 2.93893i −0.0894360 0.275256i
\(115\) 0 0
\(116\) −11.2812 8.19624i −1.04743 0.761002i
\(117\) −5.70634 7.85410i −0.527551 0.726112i
\(118\) 5.85410i 0.538914i
\(119\) −0.708204 −0.0649209
\(120\) 0 0
\(121\) −3.21885 + 9.90659i −0.292622 + 0.900599i
\(122\) 4.08174 1.32624i 0.369543 0.120072i
\(123\) 6.47214i 0.583573i
\(124\) 6.78115 5.93085i 0.608966 0.532606i
\(125\) 0 0
\(126\) 1.14590 + 3.52671i 0.102085 + 0.314184i
\(127\) −9.73508 3.16312i −0.863849 0.280681i −0.156614 0.987660i \(-0.550058\pi\)
−0.707235 + 0.706979i \(0.750058\pi\)
\(128\) −6.69015 9.20820i −0.591331 0.813898i
\(129\) −4.61803 −0.406595
\(130\) 0 0
\(131\) −0.0729490 + 0.0530006i −0.00637359 + 0.00463068i −0.590967 0.806695i \(-0.701254\pi\)
0.584594 + 0.811326i \(0.301254\pi\)
\(132\) 0.726543 1.00000i 0.0632374 0.0870388i
\(133\) 8.81678 12.1353i 0.764512 1.05226i
\(134\) −0.809017 2.48990i −0.0698884 0.215094i
\(135\) 0 0
\(136\) 0.163119 + 0.502029i 0.0139873 + 0.0430486i
\(137\) 6.15537 + 2.00000i 0.525888 + 0.170872i 0.559916 0.828549i \(-0.310833\pi\)
−0.0340275 + 0.999421i \(0.510833\pi\)
\(138\) −1.98787 + 2.73607i −0.169219 + 0.232910i
\(139\) −1.80902 + 5.56758i −0.153439 + 0.472236i −0.997999 0.0632239i \(-0.979862\pi\)
0.844561 + 0.535460i \(0.179862\pi\)
\(140\) 0 0
\(141\) −2.73607 1.98787i −0.230418 0.167409i
\(142\) 0.0530006 + 0.0172209i 0.00444771 + 0.00144515i
\(143\) 3.52671 1.14590i 0.294918 0.0958248i
\(144\) −3.00000 + 2.17963i −0.250000 + 0.181636i
\(145\) 0 0
\(146\) −4.28115 3.11044i −0.354311 0.257422i
\(147\) 1.17557 1.61803i 0.0969594 0.133453i
\(148\) 0.224514 + 0.309017i 0.0184549 + 0.0254010i
\(149\) 17.0344 1.39552 0.697758 0.716334i \(-0.254181\pi\)
0.697758 + 0.716334i \(0.254181\pi\)
\(150\) 0 0
\(151\) 15.7812 11.4657i 1.28425 0.933064i 0.284579 0.958652i \(-0.408146\pi\)
0.999673 + 0.0255888i \(0.00814604\pi\)
\(152\) −10.6331 3.45492i −0.862461 0.280231i
\(153\) 0.449028 0.145898i 0.0363018 0.0117952i
\(154\) −1.41641 −0.114137
\(155\) 0 0
\(156\) 7.85410 0.628831
\(157\) 9.23305 3.00000i 0.736878 0.239426i 0.0835524 0.996503i \(-0.473373\pi\)
0.653325 + 0.757077i \(0.273373\pi\)
\(158\) 0 0
\(159\) 10.2812 7.46969i 0.815348 0.592385i
\(160\) 0 0
\(161\) −16.4164 −1.29379
\(162\) −0.363271 0.500000i −0.0285413 0.0392837i
\(163\) −7.46969 + 10.2812i −0.585072 + 0.805282i −0.994240 0.107177i \(-0.965819\pi\)
0.409168 + 0.912459i \(0.365819\pi\)
\(164\) −8.47214 6.15537i −0.661563 0.480653i
\(165\) 0 0
\(166\) −2.04508 + 1.48584i −0.158729 + 0.115324i
\(167\) −8.78402 + 2.85410i −0.679728 + 0.220857i −0.628476 0.777829i \(-0.716321\pi\)
−0.0512518 + 0.998686i \(0.516321\pi\)
\(168\) −6.37988 2.07295i −0.492219 0.159931i
\(169\) 8.54508 + 6.20837i 0.657314 + 0.477567i
\(170\) 0 0
\(171\) −3.09017 + 9.51057i −0.236311 + 0.727291i
\(172\) −4.39201 + 6.04508i −0.334888 + 0.460933i
\(173\) 0.865300 + 0.281153i 0.0657875 + 0.0213757i 0.341726 0.939800i \(-0.388989\pi\)
−0.275938 + 0.961175i \(0.588989\pi\)
\(174\) 1.64590 + 5.06555i 0.124775 + 0.384019i
\(175\) 0 0
\(176\) −0.437694 1.34708i −0.0329924 0.101540i
\(177\) 5.56758 7.66312i 0.418485 0.575995i
\(178\) 2.31838 3.19098i 0.173770 0.239174i
\(179\) 16.0172 11.6372i 1.19718 0.869805i 0.203179 0.979142i \(-0.434873\pi\)
0.994005 + 0.109337i \(0.0348728\pi\)
\(180\) 0 0
\(181\) 17.0000 1.26360 0.631800 0.775131i \(-0.282316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(182\) −5.29007 7.28115i −0.392126 0.539715i
\(183\) 6.60440 + 2.14590i 0.488211 + 0.158629i
\(184\) 3.78115 + 11.6372i 0.278750 + 0.857905i
\(185\) 0 0
\(186\) −3.42705 + 0.310271i −0.251284 + 0.0227502i
\(187\) 0.180340i 0.0131878i
\(188\) −5.20431 + 1.69098i −0.379563 + 0.123328i
\(189\) −4.63525 + 14.2658i −0.337165 + 1.03769i
\(190\) 0 0
\(191\) −16.0902 −1.16424 −0.582122 0.813102i \(-0.697777\pi\)
−0.582122 + 0.813102i \(0.697777\pi\)
\(192\) 0.236068i 0.0170367i
\(193\) 1.40008 + 1.92705i 0.100780 + 0.138712i 0.856429 0.516265i \(-0.172678\pi\)
−0.755648 + 0.654977i \(0.772678\pi\)
\(194\) 2.64590 + 1.92236i 0.189964 + 0.138017i
\(195\) 0 0
\(196\) −1.00000 3.07768i −0.0714286 0.219835i
\(197\) 9.64932 + 13.2812i 0.687486 + 0.946243i 0.999993 0.00367232i \(-0.00116894\pi\)
−0.312507 + 0.949915i \(0.601169\pi\)
\(198\) 0.898056 0.291796i 0.0638221 0.0207370i
\(199\) 8.25329 25.4010i 0.585060 1.80063i −0.0139686 0.999902i \(-0.504446\pi\)
0.599029 0.800728i \(-0.295554\pi\)
\(200\) 0 0
\(201\) 1.30902 4.02874i 0.0923309 0.284165i
\(202\) 2.80017 + 0.909830i 0.197019 + 0.0640154i
\(203\) −15.1967 + 20.9164i −1.06660 + 1.46804i
\(204\) −0.118034 + 0.363271i −0.00826403 + 0.0254341i
\(205\) 0 0
\(206\) −0.0729490 + 0.0530006i −0.00508260 + 0.00369272i
\(207\) 10.4086 3.38197i 0.723449 0.235063i
\(208\) 5.29007 7.28115i 0.366800 0.504857i
\(209\) −3.09017 2.24514i −0.213752 0.155300i
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 20.5623i 1.41222i
\(213\) 0.0530006 + 0.0729490i 0.00363154 + 0.00499838i
\(214\) 0.208204 0.640786i 0.0142325 0.0438032i
\(215\) 0 0
\(216\) 11.1803 0.760726
\(217\) −10.9964 12.5729i −0.746485 0.853507i
\(218\) 5.20163i 0.352299i
\(219\) −2.64590 8.14324i −0.178793 0.550269i
\(220\) 0 0
\(221\) −0.927051 + 0.673542i −0.0623602 + 0.0453073i
\(222\) 0.145898i 0.00979203i
\(223\) 0.708204i 0.0474248i 0.999719 + 0.0237124i \(0.00754861\pi\)
−0.999719 + 0.0237124i \(0.992451\pi\)
\(224\) −13.6353 + 9.90659i −0.911044 + 0.661912i
\(225\) 0 0
\(226\) −0.927051 0.673542i −0.0616665 0.0448033i
\(227\) −19.7274 + 6.40983i −1.30936 + 0.425435i −0.878827 0.477141i \(-0.841673\pi\)
−0.430529 + 0.902577i \(0.641673\pi\)
\(228\) −4.75528 6.54508i −0.314926 0.433459i
\(229\) 2.23607 + 6.88191i 0.147764 + 0.454769i 0.997356 0.0726703i \(-0.0231521\pi\)
−0.849592 + 0.527440i \(0.823152\pi\)
\(230\) 0 0
\(231\) −1.85410 1.34708i −0.121991 0.0886316i
\(232\) 18.3273 + 5.95492i 1.20325 + 0.390959i
\(233\) 17.8783 + 5.80902i 1.17125 + 0.380561i 0.829108 0.559088i \(-0.188849\pi\)
0.342139 + 0.939649i \(0.388849\pi\)
\(234\) 4.85410 + 3.52671i 0.317323 + 0.230548i
\(235\) 0 0
\(236\) −4.73607 14.5761i −0.308292 0.948824i
\(237\) 0 0
\(238\) 0.416272 0.135255i 0.0269829 0.00876727i
\(239\) −10.8541 7.88597i −0.702093 0.510101i 0.178520 0.983936i \(-0.442869\pi\)
−0.880613 + 0.473836i \(0.842869\pi\)
\(240\) 0 0
\(241\) 6.89919 5.01255i 0.444416 0.322887i −0.342971 0.939346i \(-0.611433\pi\)
0.787387 + 0.616459i \(0.211433\pi\)
\(242\) 6.43769i 0.413831i
\(243\) 16.0000i 1.02640i
\(244\) 9.09017 6.60440i 0.581938 0.422803i
\(245\) 0 0
\(246\) 1.23607 + 3.80423i 0.0788088 + 0.242549i
\(247\) 24.2705i 1.54430i
\(248\) −6.37988 + 10.6910i −0.405123 + 0.678878i
\(249\) −4.09017 −0.259204
\(250\) 0 0
\(251\) 0.291796 0.898056i 0.0184180 0.0566848i −0.941425 0.337222i \(-0.890513\pi\)
0.959843 + 0.280537i \(0.0905127\pi\)
\(252\) 5.70634 + 7.85410i 0.359466 + 0.494762i
\(253\) 4.18034i 0.262816i
\(254\) 6.32624 0.396943
\(255\) 0 0
\(256\) 5.30902 + 3.85723i 0.331814 + 0.241077i
\(257\) −0.832544 + 1.14590i −0.0519326 + 0.0714792i −0.834194 0.551472i \(-0.814066\pi\)
0.782261 + 0.622951i \(0.214066\pi\)
\(258\) 2.71441 0.881966i 0.168992 0.0549088i
\(259\) 0.572949 0.416272i 0.0356013 0.0258659i
\(260\) 0 0
\(261\) 5.32624 16.3925i 0.329686 1.01467i
\(262\) 0.0327561 0.0450850i 0.00202368 0.00278536i
\(263\) −10.2699 3.33688i −0.633267 0.205761i −0.0252452 0.999681i \(-0.508037\pi\)
−0.608022 + 0.793920i \(0.708037\pi\)
\(264\) −0.527864 + 1.62460i −0.0324878 + 0.0999871i
\(265\) 0 0
\(266\) −2.86475 + 8.81678i −0.175649 + 0.540591i
\(267\) 6.06961 1.97214i 0.371454 0.120693i
\(268\) −4.02874 5.54508i −0.246094 0.338720i
\(269\) 0.427051 + 1.31433i 0.0260378 + 0.0801360i 0.963231 0.268675i \(-0.0865856\pi\)
−0.937193 + 0.348811i \(0.886586\pi\)
\(270\) 0 0
\(271\) −7.73607 5.62058i −0.469933 0.341426i 0.327482 0.944857i \(-0.393800\pi\)
−0.797415 + 0.603431i \(0.793800\pi\)
\(272\) 0.257270 + 0.354102i 0.0155993 + 0.0214706i
\(273\) 14.5623i 0.881351i
\(274\) −4.00000 −0.241649
\(275\) 0 0
\(276\) −2.73607 + 8.42075i −0.164692 + 0.506870i
\(277\) 12.6740 4.11803i 0.761507 0.247429i 0.0975818 0.995228i \(-0.468889\pi\)
0.663925 + 0.747799i \(0.268889\pi\)
\(278\) 3.61803i 0.216995i
\(279\) 9.56231 + 5.70634i 0.572480 + 0.341630i
\(280\) 0 0
\(281\) 5.88197 + 18.1028i 0.350889 + 1.07992i 0.958355 + 0.285579i \(0.0921859\pi\)
−0.607466 + 0.794345i \(0.707814\pi\)
\(282\) 1.98787 + 0.645898i 0.118376 + 0.0384627i
\(283\) −3.85723 5.30902i −0.229288 0.315588i 0.678835 0.734291i \(-0.262485\pi\)
−0.908124 + 0.418702i \(0.862485\pi\)
\(284\) 0.145898 0.00865746
\(285\) 0 0
\(286\) −1.85410 + 1.34708i −0.109635 + 0.0796547i
\(287\) −11.4127 + 15.7082i −0.673669 + 0.927226i
\(288\) 6.60440 9.09017i 0.389168 0.535643i
\(289\) 5.23607 + 16.1150i 0.308004 + 0.947939i
\(290\) 0 0
\(291\) 1.63525 + 5.03280i 0.0958603 + 0.295028i
\(292\) −13.1760 4.28115i −0.771069 0.250536i
\(293\) −4.84104 + 6.66312i −0.282817 + 0.389264i −0.926664 0.375890i \(-0.877337\pi\)
0.643848 + 0.765154i \(0.277337\pi\)
\(294\) −0.381966 + 1.17557i −0.0222767 + 0.0685607i
\(295\) 0 0
\(296\) −0.427051 0.310271i −0.0248218 0.0180341i
\(297\) 3.63271 + 1.18034i 0.210791 + 0.0684903i
\(298\) −10.0126 + 3.25329i −0.580014 + 0.188458i
\(299\) −21.4894 + 15.6129i −1.24276 + 0.902919i
\(300\) 0 0
\(301\) 11.2082 + 8.14324i 0.646030 + 0.469368i
\(302\) −7.08618 + 9.75329i −0.407764 + 0.561239i
\(303\) 2.80017 + 3.85410i 0.160866 + 0.221412i
\(304\) −9.27051 −0.531700
\(305\) 0 0
\(306\) −0.236068 + 0.171513i −0.0134951 + 0.00980477i
\(307\) −5.79210 1.88197i −0.330572 0.107409i 0.139028 0.990288i \(-0.455602\pi\)
−0.469601 + 0.882879i \(0.655602\pi\)
\(308\) −3.52671 + 1.14590i −0.200953 + 0.0652936i
\(309\) −0.145898 −0.00829985
\(310\) 0 0
\(311\) 16.4721 0.934049 0.467025 0.884244i \(-0.345326\pi\)
0.467025 + 0.884244i \(0.345326\pi\)
\(312\) −10.3229 + 3.35410i −0.584417 + 0.189889i
\(313\) 1.17557 + 0.381966i 0.0664472 + 0.0215900i 0.342052 0.939681i \(-0.388878\pi\)
−0.275605 + 0.961271i \(0.588878\pi\)
\(314\) −4.85410 + 3.52671i −0.273933 + 0.199024i
\(315\) 0 0
\(316\) 0 0
\(317\) 15.2169 + 20.9443i 0.854666 + 1.17635i 0.982815 + 0.184593i \(0.0590965\pi\)
−0.128149 + 0.991755i \(0.540903\pi\)
\(318\) −4.61653 + 6.35410i −0.258882 + 0.356320i
\(319\) 5.32624 + 3.86974i 0.298212 + 0.216664i
\(320\) 0 0
\(321\) 0.881966 0.640786i 0.0492265 0.0357652i
\(322\) 9.64932 3.13525i 0.537736 0.174721i
\(323\) 1.12257 + 0.364745i 0.0624615 + 0.0202950i
\(324\) −1.30902 0.951057i −0.0727232 0.0528365i
\(325\) 0 0
\(326\) 2.42705 7.46969i 0.134422 0.413708i
\(327\) −4.94704 + 6.80902i −0.273572 + 0.376540i
\(328\) 13.7638 + 4.47214i 0.759980 + 0.246932i
\(329\) 3.13525 + 9.64932i 0.172852 + 0.531984i
\(330\) 0 0
\(331\) 3.48278 + 10.7189i 0.191431 + 0.589164i 1.00000 0.000762014i \(0.000242557\pi\)
−0.808569 + 0.588402i \(0.799757\pi\)
\(332\) −3.88998 + 5.35410i −0.213491 + 0.293845i
\(333\) −0.277515 + 0.381966i −0.0152077 + 0.0209316i
\(334\) 4.61803 3.35520i 0.252688 0.183588i
\(335\) 0 0
\(336\) −5.56231 −0.303449
\(337\) 11.1554 + 15.3541i 0.607674 + 0.836391i 0.996384 0.0849690i \(-0.0270791\pi\)
−0.388710 + 0.921360i \(0.627079\pi\)
\(338\) −6.20837 2.01722i −0.337691 0.109722i
\(339\) −0.572949 1.76336i −0.0311183 0.0957723i
\(340\) 0 0
\(341\) −3.20163 + 2.80017i −0.173378 + 0.151638i
\(342\) 6.18034i 0.334195i
\(343\) 14.2658 4.63525i 0.770283 0.250280i
\(344\) 3.19098 9.82084i 0.172046 0.529504i
\(345\) 0 0
\(346\) −0.562306 −0.0302298
\(347\) 8.12461i 0.436152i −0.975932 0.218076i \(-0.930022\pi\)
0.975932 0.218076i \(-0.0699781\pi\)
\(348\) 8.19624 + 11.2812i 0.439364 + 0.604733i
\(349\) −13.5172 9.82084i −0.723560 0.525697i 0.163959 0.986467i \(-0.447573\pi\)
−0.887520 + 0.460770i \(0.847573\pi\)
\(350\) 0 0
\(351\) 7.50000 + 23.0826i 0.400320 + 1.23206i
\(352\) 2.52265 + 3.47214i 0.134458 + 0.185065i
\(353\) 30.7971 10.0066i 1.63916 0.532596i 0.662812 0.748786i \(-0.269363\pi\)
0.976351 + 0.216190i \(0.0693630\pi\)
\(354\) −1.80902 + 5.56758i −0.0961482 + 0.295914i
\(355\) 0 0
\(356\) 3.19098 9.82084i 0.169122 0.520503i
\(357\) 0.673542 + 0.218847i 0.0356476 + 0.0115826i
\(358\) −7.19218 + 9.89919i −0.380119 + 0.523188i
\(359\) 7.82624 24.0867i 0.413053 1.27125i −0.500928 0.865489i \(-0.667008\pi\)
0.913981 0.405757i \(-0.132992\pi\)
\(360\) 0 0
\(361\) −4.85410 + 3.52671i −0.255479 + 0.185616i
\(362\) −9.99235 + 3.24671i −0.525186 + 0.170643i
\(363\) 6.12261 8.42705i 0.321354 0.442305i
\(364\) −19.0623 13.8496i −0.999136 0.725915i
\(365\) 0 0
\(366\) −4.29180 −0.224336
\(367\) 36.2705i 1.89331i 0.322256 + 0.946653i \(0.395559\pi\)
−0.322256 + 0.946653i \(0.604441\pi\)
\(368\) 5.96361 + 8.20820i 0.310875 + 0.427882i
\(369\) 4.00000 12.3107i 0.208232 0.640871i
\(370\) 0 0
\(371\) −38.1246 −1.97933
\(372\) −8.28199 + 3.54508i −0.429401 + 0.183804i
\(373\) 0.347524i 0.0179941i −0.999960 0.00899706i \(-0.997136\pi\)
0.999960 0.00899706i \(-0.00286389\pi\)
\(374\) −0.0344419 0.106001i −0.00178095 0.00548119i
\(375\) 0 0
\(376\) 6.11803 4.44501i 0.315514 0.229234i
\(377\) 41.8328i 2.15450i
\(378\) 9.27051i 0.476824i
\(379\) −14.8992 + 10.8249i −0.765320 + 0.556037i −0.900537 0.434779i \(-0.856827\pi\)
0.135218 + 0.990816i \(0.456827\pi\)
\(380\) 0 0
\(381\) 8.28115 + 6.01661i 0.424256 + 0.308240i
\(382\) 9.45756 3.07295i 0.483891 0.157226i
\(383\) 9.90659 + 13.6353i 0.506203 + 0.696729i 0.983273 0.182136i \(-0.0583012\pi\)
−0.477070 + 0.878865i \(0.658301\pi\)
\(384\) 3.51722 + 10.8249i 0.179487 + 0.552406i
\(385\) 0 0
\(386\) −1.19098 0.865300i −0.0606194 0.0440426i
\(387\) −8.78402 2.85410i −0.446517 0.145082i
\(388\) 8.14324 + 2.64590i 0.413410 + 0.134325i
\(389\) −23.5172 17.0863i −1.19237 0.866308i −0.198858 0.980028i \(-0.563723\pi\)
−0.993513 + 0.113721i \(0.963723\pi\)
\(390\) 0 0
\(391\) −0.399187 1.22857i −0.0201878 0.0621315i
\(392\) 2.62866 + 3.61803i 0.132767 + 0.182738i
\(393\) 0.0857567 0.0278640i 0.00432585 0.00140556i
\(394\) −8.20820 5.96361i −0.413523 0.300442i
\(395\) 0 0
\(396\) 2.00000 1.45309i 0.100504 0.0730203i
\(397\) 16.2918i 0.817662i −0.912610 0.408831i \(-0.865937\pi\)
0.912610 0.408831i \(-0.134063\pi\)
\(398\) 16.5066i 0.827400i
\(399\) −12.1353 + 8.81678i −0.607523 + 0.441391i
\(400\) 0 0
\(401\) −9.21885 28.3727i −0.460367 1.41686i −0.864717 0.502260i \(-0.832502\pi\)
0.404349 0.914605i \(-0.367498\pi\)
\(402\) 2.61803i 0.130576i
\(403\) −26.3521 6.00000i −1.31269 0.298881i
\(404\) 7.70820 0.383497
\(405\) 0 0
\(406\) 4.93769 15.1967i 0.245054 0.754198i
\(407\) −0.106001 0.145898i −0.00525428 0.00723190i
\(408\) 0.527864i 0.0261332i
\(409\) 6.18034 0.305598 0.152799 0.988257i \(-0.451171\pi\)
0.152799 + 0.988257i \(0.451171\pi\)
\(410\) 0 0
\(411\) −5.23607 3.80423i −0.258276 0.187649i
\(412\) −0.138757 + 0.190983i −0.00683608 + 0.00940906i
\(413\) −27.0256 + 8.78115i −1.32984 + 0.432092i
\(414\) −5.47214 + 3.97574i −0.268941 + 0.195397i
\(415\) 0 0
\(416\) −8.42705 + 25.9358i −0.413170 + 1.27161i
\(417\) 3.44095 4.73607i 0.168504 0.231926i
\(418\) 2.24514 + 0.729490i 0.109813 + 0.0356805i
\(419\) −1.38197 + 4.25325i −0.0675135 + 0.207785i −0.979122 0.203275i \(-0.934841\pi\)
0.911608 + 0.411060i \(0.134841\pi\)
\(420\) 0 0
\(421\) 4.56231 14.0413i 0.222353 0.684333i −0.776196 0.630491i \(-0.782853\pi\)
0.998549 0.0538414i \(-0.0171466\pi\)
\(422\) 4.70228 1.52786i 0.228904 0.0743753i
\(423\) −3.97574 5.47214i −0.193307 0.266064i
\(424\) 8.78115 + 27.0256i 0.426450 + 1.31248i
\(425\) 0 0
\(426\) −0.0450850 0.0327561i −0.00218437 0.00158704i
\(427\) −12.2452 16.8541i −0.592588 0.815627i
\(428\) 1.76393i 0.0852629i
\(429\) −3.70820 −0.179034
\(430\) 0 0
\(431\) 9.03444 27.8052i 0.435174 1.33933i −0.457735 0.889089i \(-0.651339\pi\)
0.892908 0.450238i \(-0.148661\pi\)
\(432\) 8.81678 2.86475i 0.424197 0.137830i
\(433\) 0.583592i 0.0280456i 0.999902 + 0.0140228i \(0.00446375\pi\)
−0.999902 + 0.0140228i \(0.995536\pi\)
\(434\) 8.86475 + 5.29007i 0.425521 + 0.253931i
\(435\) 0 0
\(436\) 4.20820 + 12.9515i 0.201536 + 0.620265i
\(437\) 26.0216 + 8.45492i 1.24478 + 0.404453i
\(438\) 3.11044 + 4.28115i 0.148623 + 0.204561i
\(439\) −41.8328 −1.99657 −0.998286 0.0585295i \(-0.981359\pi\)
−0.998286 + 0.0585295i \(0.981359\pi\)
\(440\) 0 0
\(441\) 3.23607 2.35114i 0.154098 0.111959i
\(442\) 0.416272 0.572949i 0.0198000 0.0272524i
\(443\) −24.1724 + 33.2705i −1.14847 + 1.58073i −0.401514 + 0.915853i \(0.631516\pi\)
−0.746953 + 0.664877i \(0.768484\pi\)
\(444\) −0.118034 0.363271i −0.00560165 0.0172401i
\(445\) 0 0
\(446\) −0.135255 0.416272i −0.00640451 0.0197110i
\(447\) −16.2007 5.26393i −0.766268 0.248975i
\(448\) −0.416272 + 0.572949i −0.0196670 + 0.0270693i
\(449\) −7.43769 + 22.8909i −0.351006 + 1.08029i 0.607283 + 0.794486i \(0.292260\pi\)
−0.958289 + 0.285801i \(0.907740\pi\)
\(450\) 0 0
\(451\) 4.00000 + 2.90617i 0.188353 + 0.136846i
\(452\) −2.85317 0.927051i −0.134202 0.0436048i
\(453\) −18.5519 + 6.02786i −0.871642 + 0.283214i
\(454\) 10.3713 7.53521i 0.486750 0.353645i
\(455\) 0 0
\(456\) 9.04508 + 6.57164i 0.423575 + 0.307745i
\(457\) 9.25330 12.7361i 0.432851 0.595768i −0.535754 0.844374i \(-0.679972\pi\)
0.968605 + 0.248606i \(0.0799725\pi\)
\(458\) −2.62866 3.61803i −0.122829 0.169060i
\(459\) −1.18034 −0.0550935
\(460\) 0 0
\(461\) −8.69098 + 6.31437i −0.404779 + 0.294089i −0.771485 0.636248i \(-0.780486\pi\)
0.366705 + 0.930337i \(0.380486\pi\)
\(462\) 1.34708 + 0.437694i 0.0626720 + 0.0203634i
\(463\) 29.6013 9.61803i 1.37569 0.446988i 0.474438 0.880289i \(-0.342651\pi\)
0.901249 + 0.433301i \(0.142651\pi\)
\(464\) 15.9787 0.741793
\(465\) 0 0
\(466\) −11.6180 −0.538195
\(467\) −31.1729 + 10.1287i −1.44251 + 0.468699i −0.922678 0.385571i \(-0.874005\pi\)
−0.519830 + 0.854270i \(0.674005\pi\)
\(468\) 14.9394 + 4.85410i 0.690574 + 0.224381i
\(469\) −10.2812 + 7.46969i −0.474740 + 0.344918i
\(470\) 0 0
\(471\) −9.70820 −0.447330
\(472\) 12.4495 + 17.1353i 0.573034 + 0.788714i
\(473\) 2.07363 2.85410i 0.0953454 0.131232i
\(474\) 0 0
\(475\) 0 0
\(476\) 0.927051 0.673542i 0.0424913 0.0308717i
\(477\) 24.1724 7.85410i 1.10678 0.359615i
\(478\) 7.88597 + 2.56231i 0.360696 + 0.117197i
\(479\) −7.23607 5.25731i −0.330624 0.240213i 0.410071 0.912054i \(-0.365504\pi\)
−0.740696 + 0.671841i \(0.765504\pi\)
\(480\) 0 0
\(481\) 0.354102 1.08981i 0.0161457 0.0496912i
\(482\) −3.09793 + 4.26393i −0.141107 + 0.194217i
\(483\) 15.6129 + 5.07295i 0.710413 + 0.230827i
\(484\) −5.20820 16.0292i −0.236737 0.728600i
\(485\) 0 0
\(486\) 3.05573 + 9.40456i 0.138611 + 0.426600i
\(487\) −13.4738 + 18.5451i −0.610556 + 0.840358i −0.996623 0.0821126i \(-0.973833\pi\)
0.386067 + 0.922471i \(0.373833\pi\)
\(488\) −9.12705 + 12.5623i −0.413162 + 0.568669i
\(489\) 10.2812 7.46969i 0.464930 0.337791i
\(490\) 0 0
\(491\) −27.5967 −1.24542 −0.622712 0.782451i \(-0.713969\pi\)
−0.622712 + 0.782451i \(0.713969\pi\)
\(492\) 6.15537 + 8.47214i 0.277505 + 0.381953i
\(493\) −1.93487 0.628677i −0.0871421 0.0283142i
\(494\) 4.63525 + 14.2658i 0.208550 + 0.641851i
\(495\) 0 0
\(496\) −2.29180 + 10.0656i −0.102905 + 0.451959i
\(497\) 0.270510i 0.0121340i
\(498\) 2.40414 0.781153i 0.107732 0.0350043i
\(499\) −1.28115 + 3.94298i −0.0573523 + 0.176512i −0.975629 0.219427i \(-0.929581\pi\)
0.918277 + 0.395940i \(0.129581\pi\)
\(500\) 0 0
\(501\) 9.23607 0.412637
\(502\) 0.583592i 0.0260470i
\(503\) −7.72696 10.6353i −0.344528 0.474203i 0.601229 0.799077i \(-0.294678\pi\)
−0.945757 + 0.324874i \(0.894678\pi\)
\(504\) −10.8541 7.88597i −0.483480 0.351269i
\(505\) 0 0
\(506\) −0.798374 2.45714i −0.0354920 0.109233i
\(507\) −6.20837 8.54508i −0.275723 0.379501i
\(508\) 15.7517 5.11803i 0.698868 0.227076i
\(509\) 0.590170 1.81636i 0.0261588 0.0805086i −0.937125 0.348994i \(-0.886523\pi\)
0.963284 + 0.268486i \(0.0865232\pi\)
\(510\) 0 0
\(511\) −7.93769 + 24.4297i −0.351143 + 1.08071i
\(512\) 17.7926 + 5.78115i 0.786327 + 0.255493i
\(513\) 14.6946 20.2254i 0.648784 0.892974i
\(514\) 0.270510 0.832544i 0.0119317 0.0367219i
\(515\) 0 0
\(516\) 6.04508 4.39201i 0.266120 0.193348i
\(517\) 2.45714 0.798374i 0.108065 0.0351124i
\(518\) −0.257270 + 0.354102i −0.0113038 + 0.0155583i
\(519\) −0.736068 0.534785i −0.0323098 0.0234744i
\(520\) 0 0
\(521\) 31.0689 1.36115 0.680576 0.732677i \(-0.261729\pi\)
0.680576 + 0.732677i \(0.261729\pi\)
\(522\) 10.6525i 0.466246i
\(523\) −20.0579 27.6074i −0.877073 1.20719i −0.977223 0.212215i \(-0.931932\pi\)
0.100150 0.994972i \(-0.468068\pi\)
\(524\) 0.0450850 0.138757i 0.00196955 0.00606164i
\(525\) 0 0
\(526\) 6.67376 0.290990
\(527\) 0.673542 1.12868i 0.0293399 0.0491659i
\(528\) 1.41641i 0.0616412i
\(529\) −2.14590 6.60440i −0.0932999 0.287148i
\(530\) 0 0
\(531\) 15.3262 11.1352i 0.665102 0.483225i
\(532\) 24.2705i 1.05226i
\(533\) 31.4164i 1.36080i
\(534\) −3.19098 + 2.31838i −0.138087 + 0.100326i
\(535\) 0 0
\(536\) 7.66312 + 5.56758i 0.330996 + 0.240483i
\(537\) −18.8294 + 6.11803i −0.812547 + 0.264013i
\(538\) −0.502029 0.690983i −0.0216440 0.0297904i
\(539\) 0.472136 + 1.45309i 0.0203363 + 0.0625888i
\(540\) 0 0
\(541\) −17.7984 12.9313i −0.765212 0.555959i 0.135293 0.990806i \(-0.456803\pi\)
−0.900504 + 0.434847i \(0.856803\pi\)
\(542\) 5.62058 + 1.82624i 0.241425 + 0.0784436i
\(543\) −16.1680 5.25329i −0.693834 0.225440i
\(544\) −1.07295 0.779543i −0.0460023 0.0334226i
\(545\) 0 0
\(546\) 2.78115 + 8.55951i 0.119022 + 0.366313i
\(547\) −13.9353 19.1803i −0.595832 0.820092i 0.399487 0.916739i \(-0.369188\pi\)
−0.995319 + 0.0966468i \(0.969188\pi\)
\(548\) −9.95959 + 3.23607i −0.425453 + 0.138238i
\(549\) 11.2361 + 8.16348i 0.479544 + 0.348409i
\(550\) 0 0
\(551\) 34.8607 25.3278i 1.48511 1.07900i
\(552\) 12.2361i 0.520802i
\(553\) 0 0
\(554\) −6.66312 + 4.84104i −0.283089 + 0.205676i
\(555\) 0 0
\(556\) −2.92705 9.00854i −0.124135 0.382047i
\(557\) 35.8885i 1.52065i −0.649545 0.760323i \(-0.725041\pi\)
0.649545 0.760323i \(-0.274959\pi\)
\(558\) −6.71040 1.52786i −0.284074 0.0646796i
\(559\) 22.4164 0.948113
\(560\) 0 0
\(561\) 0.0557281 0.171513i 0.00235284 0.00724130i
\(562\) −6.91467 9.51722i −0.291678 0.401460i
\(563\) 8.56231i 0.360858i −0.983588 0.180429i \(-0.942251\pi\)
0.983588 0.180429i \(-0.0577486\pi\)
\(564\) 5.47214 0.230418
\(565\) 0 0
\(566\) 3.28115 + 2.38390i 0.137917 + 0.100203i
\(567\) −1.76336 + 2.42705i −0.0740540 + 0.101927i
\(568\) −0.191758 + 0.0623059i −0.00804598 + 0.00261430i
\(569\) 12.5623 9.12705i 0.526639 0.382626i −0.292460 0.956278i \(-0.594474\pi\)
0.819099 + 0.573652i \(0.194474\pi\)
\(570\) 0 0
\(571\) 2.16312 6.65740i 0.0905237 0.278603i −0.895538 0.444986i \(-0.853209\pi\)
0.986061 + 0.166383i \(0.0532087\pi\)
\(572\) −3.52671 + 4.85410i −0.147459 + 0.202960i
\(573\) 15.3027 + 4.97214i 0.639278 + 0.207714i
\(574\) 3.70820 11.4127i 0.154777 0.476356i
\(575\) 0 0
\(576\) 0.145898 0.449028i 0.00607908 0.0187095i
\(577\) 37.0710 12.0451i 1.54328 0.501443i 0.591004 0.806669i \(-0.298732\pi\)
0.952280 + 0.305225i \(0.0987317\pi\)
\(578\) −6.15537 8.47214i −0.256030 0.352394i
\(579\) −0.736068 2.26538i −0.0305899 0.0941462i
\(580\) 0 0
\(581\) 9.92705 + 7.21242i 0.411843 + 0.299222i
\(582\) −1.92236 2.64590i −0.0796843 0.109676i
\(583\) 9.70820i 0.402073i
\(584\) 19.1459 0.792263
\(585\) 0 0
\(586\) 1.57295 4.84104i 0.0649779 0.199981i
\(587\) 34.2505 11.1287i 1.41367 0.459330i 0.500086 0.865976i \(-0.333302\pi\)
0.913586 + 0.406646i \(0.133302\pi\)
\(588\) 3.23607i 0.133453i
\(589\) 10.9549 + 25.5928i 0.451389 + 1.05453i
\(590\) 0 0
\(591\) −5.07295 15.6129i −0.208673 0.642230i
\(592\) −0.416272 0.135255i −0.0171087 0.00555894i
\(593\) −3.59222 4.94427i −0.147515 0.203037i 0.728865 0.684658i \(-0.240048\pi\)
−0.876380 + 0.481621i \(0.840048\pi\)
\(594\) −2.36068 −0.0968599
\(595\) 0 0
\(596\) −22.2984 + 16.2007i −0.913377 + 0.663607i
\(597\) −15.6987 + 21.6074i −0.642505 + 0.884332i
\(598\) 9.64932 13.2812i 0.394590 0.543107i
\(599\) −9.20820 28.3399i −0.376237 1.15794i −0.942640 0.333810i \(-0.891666\pi\)
0.566403 0.824128i \(-0.308334\pi\)
\(600\) 0 0
\(601\) 6.79837 + 20.9232i 0.277311 + 0.853477i 0.988599 + 0.150575i \(0.0481126\pi\)
−0.711287 + 0.702902i \(0.751887\pi\)
\(602\) −8.14324 2.64590i −0.331894 0.107839i
\(603\) 4.97980 6.85410i 0.202793 0.279121i
\(604\) −9.75329 + 30.0175i −0.396856 + 1.22140i
\(605\) 0 0
\(606\) −2.38197 1.73060i −0.0967608 0.0703008i
\(607\) 24.1724 + 7.85410i 0.981129 + 0.318788i 0.755300 0.655379i \(-0.227491\pi\)
0.225829 + 0.974167i \(0.427491\pi\)
\(608\) 26.7153 8.68034i 1.08345 0.352034i
\(609\) 20.9164 15.1967i 0.847576 0.615800i
\(610\) 0 0
\(611\) 13.2812 + 9.64932i 0.537298 + 0.390370i
\(612\) −0.449028 + 0.618034i −0.0181509 + 0.0249825i
\(613\) −14.7274 20.2705i −0.594834 0.818718i 0.400390 0.916345i \(-0.368875\pi\)
−0.995223 + 0.0976269i \(0.968875\pi\)
\(614\) 3.76393 0.151900
\(615\) 0 0
\(616\) 4.14590 3.01217i 0.167043 0.121364i
\(617\) 13.5393 + 4.39919i 0.545072 + 0.177105i 0.568593 0.822619i \(-0.307488\pi\)
−0.0235215 + 0.999723i \(0.507488\pi\)
\(618\) 0.0857567 0.0278640i 0.00344964 0.00112086i
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 0 0
\(621\) −27.3607 −1.09795
\(622\) −9.68208 + 3.14590i −0.388216 + 0.126139i
\(623\) −18.2088 5.91641i −0.729521 0.237036i
\(624\) −7.28115 + 5.29007i −0.291479 + 0.211772i
\(625\) 0 0
\(626\) −0.763932 −0.0305329
\(627\) 2.24514 + 3.09017i 0.0896623 + 0.123410i
\(628\) −9.23305 + 12.7082i −0.368439 + 0.507113i
\(629\) 0.0450850 + 0.0327561i 0.00179766 + 0.00130607i
\(630\) 0 0
\(631\) 7.06231 5.13107i 0.281146 0.204264i −0.438271 0.898843i \(-0.644409\pi\)
0.719417 + 0.694578i \(0.244409\pi\)
\(632\) 0 0
\(633\) 7.60845 + 2.47214i 0.302409 + 0.0982586i
\(634\) −12.9443 9.40456i −0.514083 0.373503i
\(635\) 0 0
\(636\) −6.35410 + 19.5559i −0.251957 + 0.775442i
\(637\) −5.70634 + 7.85410i −0.226093 + 0.311191i
\(638\) −3.86974 1.25735i −0.153204 0.0497791i
\(639\) 0.0557281 + 0.171513i 0.00220457 + 0.00678497i
\(640\) 0 0
\(641\) −12.6976 39.0791i −0.501523 1.54353i −0.806538 0.591183i \(-0.798661\pi\)
0.305014 0.952348i \(-0.401339\pi\)
\(642\) −0.396027 + 0.545085i −0.0156300 + 0.0215128i
\(643\) 4.78804 6.59017i 0.188822 0.259891i −0.704102 0.710099i \(-0.748650\pi\)
0.892924 + 0.450208i \(0.148650\pi\)
\(644\) 21.4894 15.6129i 0.846799 0.615236i
\(645\) 0 0
\(646\) −0.729490 −0.0287014
\(647\) −17.5680 24.1803i −0.690671 0.950627i 0.309329 0.950955i \(-0.399896\pi\)
−1.00000 0.000327889i \(0.999896\pi\)
\(648\) 2.12663 + 0.690983i 0.0835418 + 0.0271444i
\(649\) 2.23607 + 6.88191i 0.0877733 + 0.270139i
\(650\) 0 0
\(651\) 6.57295 + 15.3557i 0.257614 + 0.601836i
\(652\) 20.5623i 0.805282i
\(653\) −37.7117 + 12.2533i −1.47577 + 0.479508i −0.932847 0.360272i \(-0.882684\pi\)
−0.542927 + 0.839780i \(0.682684\pi\)
\(654\) 1.60739 4.94704i 0.0628540 0.193445i
\(655\) 0 0
\(656\) 12.0000 0.468521
\(657\) 17.1246i 0.668095i
\(658\) −3.68571 5.07295i −0.143684 0.197764i
\(659\) 18.3541 + 13.3350i 0.714974 + 0.519459i 0.884775 0.466019i \(-0.154312\pi\)
−0.169800 + 0.985478i \(0.554312\pi\)
\(660\) 0 0
\(661\) −5.13525 15.8047i −0.199738 0.614731i −0.999889 0.0149316i \(-0.995247\pi\)
0.800150 0.599800i \(-0.204753\pi\)
\(662\) −4.09425 5.63525i −0.159128 0.219020i
\(663\) 1.08981 0.354102i 0.0423249 0.0137522i
\(664\) 2.82624 8.69827i 0.109679 0.337558i
\(665\) 0 0
\(666\) 0.0901699 0.277515i 0.00349401 0.0107535i
\(667\) −44.8509 14.5729i −1.73663 0.564267i
\(668\) 8.78402 12.0902i 0.339864 0.467783i
\(669\) 0.218847 0.673542i 0.00846112 0.0260406i
\(670\) 0 0
\(671\) −4.29180 + 3.11817i −0.165683 + 0.120376i
\(672\) 16.0292 5.20820i 0.618340 0.200911i
\(673\) −2.59590 + 3.57295i −0.100065 + 0.137727i −0.856113 0.516788i \(-0.827127\pi\)
0.756049 + 0.654516i \(0.227127\pi\)
\(674\) −9.48936 6.89442i −0.365516 0.265563i
\(675\) 0 0
\(676\) −17.0902 −0.657314
\(677\) 28.6525i 1.10120i −0.834768 0.550602i \(-0.814398\pi\)
0.834768 0.550602i \(-0.185602\pi\)
\(678\) 0.673542 + 0.927051i 0.0258672 + 0.0356032i
\(679\) 4.90576 15.0984i 0.188266 0.579423i
\(680\) 0 0
\(681\) 20.7426 0.794860
\(682\) 1.34708 2.25735i 0.0515825 0.0864386i
\(683\) 10.0557i 0.384772i 0.981319 + 0.192386i \(0.0616225\pi\)
−0.981319 + 0.192386i \(0.938377\pi\)
\(684\) −5.00000 15.3884i −0.191180 0.588391i
\(685\) 0 0
\(686\) −7.50000 + 5.44907i −0.286351 + 0.208046i
\(687\) 7.23607i 0.276073i
\(688\) 8.56231i 0.326435i
\(689\) −49.9058 + 36.2587i −1.90126 + 1.38134i
\(690\) 0 0
\(691\) −3.10081 2.25287i −0.117960 0.0857033i 0.527241 0.849716i \(-0.323227\pi\)
−0.645201 + 0.764013i \(0.723227\pi\)
\(692\) −1.40008 + 0.454915i −0.0532232 + 0.0172933i
\(693\) −2.69417 3.70820i −0.102343 0.140863i
\(694\) 1.55166 + 4.77553i 0.0589003 + 0.181277i
\(695\) 0 0
\(696\) −15.5902 11.3269i −0.590944 0.429346i
\(697\) −1.45309 0.472136i −0.0550395 0.0178834i
\(698\) 9.82084 + 3.19098i 0.371724 + 0.120780i
\(699\) −15.2082 11.0494i −0.575227 0.417927i
\(700\) 0 0
\(701\) −9.28115 28.5645i −0.350544 1.07886i −0.958548 0.284930i \(-0.908030\pi\)
0.608004 0.793934i \(-0.291970\pi\)
\(702\) −8.81678 12.1353i −0.332768 0.458016i
\(703\) −1.12257 + 0.364745i −0.0423385 + 0.0137566i
\(704\) 0.145898 + 0.106001i 0.00549874 + 0.00399507i
\(705\) 0 0
\(706\) −16.1910 + 11.7634i −0.609356 + 0.442723i
\(707\) 14.2918i 0.537498i
\(708\) 15.3262i 0.575995i
\(709\) 3.35410 2.43690i 0.125966 0.0915196i −0.523018 0.852321i \(-0.675194\pi\)
0.648984 + 0.760802i \(0.275194\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 14.2705i 0.534810i
\(713\) 15.6129 26.1631i 0.584709 0.979817i
\(714\) −0.437694 −0.0163803
\(715\) 0 0
\(716\) −9.89919 + 30.4666i −0.369950 + 1.13859i
\(717\) 7.88597 + 10.8541i 0.294507 + 0.405354i
\(718\) 15.6525i 0.584145i
\(719\) 41.3820 1.54329 0.771643 0.636055i \(-0.219435\pi\)
0.771643 + 0.636055i \(0.219435\pi\)
\(720\) 0 0
\(721\) 0.354102 + 0.257270i 0.0131874 + 0.00958124i
\(722\) 2.17963 3.00000i 0.0811173 0.111648i
\(723\) −8.11048 + 2.63525i −0.301632 + 0.0980062i
\(724\) −22.2533 + 16.1680i −0.827037 + 0.600878i
\(725\) 0 0
\(726\) −1.98936 + 6.12261i −0.0738320 + 0.227231i
\(727\) 14.0086 19.2812i 0.519549 0.715098i −0.465944 0.884814i \(-0.654285\pi\)
0.985493 + 0.169716i \(0.0542850\pi\)
\(728\) 30.9686 + 10.0623i 1.14777 + 0.372934i
\(729\) −4.01722 + 12.3637i −0.148786 + 0.457916i
\(730\) 0 0
\(731\) −0.336881 + 1.03681i −0.0124600 + 0.0383479i
\(732\) −10.6861 + 3.47214i −0.394971 + 0.128334i
\(733\) −16.4252 22.6074i −0.606680 0.835023i 0.389619 0.920976i \(-0.372607\pi\)
−0.996299 + 0.0859529i \(0.972607\pi\)
\(734\) −6.92705 21.3193i −0.255682 0.786909i
\(735\) 0 0
\(736\) −24.8713 18.0701i −0.916769 0.666072i
\(737\) 1.90211 + 2.61803i 0.0700652 + 0.0964365i
\(738\) 8.00000i 0.294484i
\(739\) −21.7082 −0.798549 −0.399275 0.916831i \(-0.630738\pi\)
−0.399275 + 0.916831i \(0.630738\pi\)
\(740\) 0 0
\(741\) −7.50000 + 23.0826i −0.275519 + 0.847961i
\(742\) 22.4091 7.28115i 0.822663 0.267300i
\(743\) 3.43769i 0.126117i −0.998010 0.0630584i \(-0.979915\pi\)
0.998010 0.0630584i \(-0.0200854\pi\)
\(744\) 9.37132 8.19624i 0.343569 0.300489i
\(745\) 0 0
\(746\) 0.0663712 + 0.204270i 0.00243002 + 0.00747884i
\(747\) −7.77997 2.52786i −0.284654 0.0924897i
\(748\) −0.171513 0.236068i −0.00627115 0.00863150i
\(749\) −3.27051 −0.119502
\(750\) 0 0
\(751\) 32.2254 23.4131i 1.17592 0.854358i 0.184217 0.982886i \(-0.441025\pi\)
0.991706 + 0.128528i \(0.0410252\pi\)
\(752\) 3.68571 5.07295i 0.134404 0.184991i
\(753\) −0.555029 + 0.763932i −0.0202264 + 0.0278392i
\(754\) −7.98936 24.5887i −0.290955 0.895468i
\(755\) 0 0
\(756\) −7.50000 23.0826i −0.272772 0.839507i
\(757\) −41.0139 13.3262i −1.49068 0.484350i −0.553394 0.832920i \(-0.686668\pi\)
−0.937283 + 0.348569i \(0.886668\pi\)
\(758\) 6.69015 9.20820i 0.242997 0.334457i
\(759\) 1.29180 3.97574i 0.0468892 0.144310i
\(760\) 0 0
\(761\) −2.83688 2.06111i −0.102837 0.0747154i 0.535178 0.844739i \(-0.320244\pi\)
−0.638015 + 0.770024i \(0.720244\pi\)
\(762\) −6.01661 1.95492i −0.217959 0.0708191i
\(763\) 24.0134 7.80244i 0.869345 0.282467i
\(764\) 21.0623 15.3027i 0.762007 0.553631i
\(765\) 0 0
\(766\) −8.42705 6.12261i −0.304482 0.221219i
\(767\) −27.0256 + 37.1976i −0.975838 + 1.34313i
\(768\) −3.85723 5.30902i −0.139186 0.191573i
\(769\) 53.7426 1.93801 0.969005 0.247042i \(-0.0794587\pi\)
0.969005 + 0.247042i \(0.0794587\pi\)
\(770\) 0 0
\(771\) 1.14590 0.832544i 0.0412685 0.0299833i
\(772\) −3.66547 1.19098i −0.131923 0.0428644i
\(773\) 18.1558 5.89919i 0.653020 0.212179i 0.0362746 0.999342i \(-0.488451\pi\)
0.616745 + 0.787163i \(0.288451\pi\)
\(774\) 5.70820 0.205177
\(775\) 0 0
\(776\) −11.8328 −0.424773
\(777\) −0.673542 + 0.218847i −0.0241632 + 0.00785109i
\(778\) 17.0863 + 5.55166i 0.612572 + 0.199037i
\(779\) 26.1803 19.0211i 0.938008 0.681503i
\(780\) 0 0
\(781\) −0.0688837 −0.00246485
\(782\) 0.469272 + 0.645898i 0.0167811 + 0.0230973i
\(783\) −25.3278 + 34.8607i −0.905141 + 1.24582i
\(784\) 3.00000 + 2.17963i 0.107143 + 0.0778438i
\(785\) 0 0
\(786\) −0.0450850 + 0.0327561i −0.00160813 + 0.00116837i
\(787\) 29.7603 9.66970i 1.06084 0.344687i 0.273926 0.961751i \(-0.411678\pi\)
0.786913 + 0.617063i \(0.211678\pi\)
\(788\) −25.2623 8.20820i −0.899931 0.292405i
\(789\) 8.73607 + 6.34712i 0.311012 + 0.225964i
\(790\) 0 0
\(791\) −1.71885 + 5.29007i −0.0611152 + 0.188093i
\(792\) −2.00811 + 2.76393i −0.0713552 + 0.0982120i
\(793\) −32.0584 10.4164i −1.13843 0.369897i
\(794\) 3.11146 + 9.57608i 0.110421 + 0.339842i
\(795\) 0 0
\(796\) 13.3541 + 41.0997i 0.473324 + 1.45674i
\(797\) −5.32282 + 7.32624i −0.188544 + 0.259509i −0.892816 0.450422i \(-0.851274\pi\)
0.704272 + 0.709930i \(0.251274\pi\)
\(798\) 5.44907 7.50000i 0.192895 0.265497i
\(799\) −0.645898 + 0.469272i −0.0228502 + 0.0166017i
\(800\) 0 0
\(801\) 12.7639 0.450991
\(802\) 10.8374 + 14.9164i 0.382682 + 0.526717i
\(803\) 6.22088 + 2.02129i 0.219530 + 0.0713296i
\(804\) 2.11803 + 6.51864i 0.0746973 + 0.229895i
\(805\) 0 0
\(806\) 16.6353 1.50609i 0.585952 0.0530496i
\(807\) 1.38197i 0.0486475i
\(808\) −10.1311 + 3.29180i −0.356411 + 0.115805i
\(809\) −16.9336 + 52.1164i −0.595355 + 1.83231i −0.0424020 + 0.999101i \(0.513501\pi\)
−0.552953 + 0.833213i \(0.686499\pi\)
\(810\) 0 0
\(811\) 42.7771 1.50211 0.751053 0.660242i \(-0.229546\pi\)
0.751053 + 0.660242i \(0.229546\pi\)
\(812\) 41.8328i 1.46804i
\(813\) 5.62058 + 7.73607i 0.197122 + 0.271316i
\(814\) 0.0901699 + 0.0655123i 0.00316045 + 0.00229620i
\(815\) 0 0
\(816\) −0.135255 0.416272i −0.00473487 0.0145724i
\(817\) −13.5721 18.6803i −0.474826 0.653542i
\(818\) −3.63271 + 1.18034i −0.127015 + 0.0412696i
\(819\) 9.00000 27.6992i 0.314485 0.967887i
\(820\) 0 0
\(821\) −10.0344 + 30.8828i −0.350204 + 1.07782i 0.608534 + 0.793528i \(0.291758\pi\)
−0.958738 + 0.284290i \(0.908242\pi\)
\(822\) 3.80423 + 1.23607i 0.132688 + 0.0431128i
\(823\) −3.59996 + 4.95492i −0.125487 + 0.172717i −0.867138 0.498068i \(-0.834043\pi\)
0.741651 + 0.670786i \(0.234043\pi\)
\(824\) 0.100813 0.310271i 0.00351199 0.0108088i
\(825\) 0 0
\(826\) 14.2082 10.3229i 0.494367 0.359178i
\(827\) 2.54290 0.826238i 0.0884253 0.0287311i −0.264470 0.964394i \(-0.585197\pi\)
0.352896 + 0.935663i \(0.385197\pi\)
\(828\) −10.4086 + 14.3262i −0.361725 + 0.497871i
\(829\) −17.5623 12.7598i −0.609964 0.443165i 0.239438 0.970912i \(-0.423037\pi\)
−0.849402 + 0.527747i \(0.823037\pi\)
\(830\) 0 0
\(831\) −13.3262 −0.462282
\(832\) 1.14590i 0.0397269i
\(833\) −0.277515 0.381966i −0.00961531 0.0132343i
\(834\) −1.11803 + 3.44095i −0.0387144 + 0.119151i
\(835\) 0 0
\(836\) 6.18034 0.213752
\(837\) −18.3273 20.9549i −0.633486 0.724308i
\(838\) 2.76393i 0.0954784i
\(839\) −3.45492 10.6331i −0.119277 0.367097i 0.873538 0.486756i \(-0.161820\pi\)
−0.992815 + 0.119659i \(0.961820\pi\)
\(840\) 0 0
\(841\) −36.6246 + 26.6093i −1.26292 + 0.917563i
\(842\) 9.12461i 0.314455i
\(843\) 19.0344i 0.655581i
\(844\) 10.4721 7.60845i 0.360466 0.261894i
\(845\) 0 0
\(846\) 3.38197 + 2.45714i 0.116274 + 0.0844783i
\(847\) −29.7198 + 9.65654i −1.02118 + 0.331803i
\(848\) 13.8496 + 19.0623i 0.475596 + 0.654602i
\(849\) 2.02786 + 6.24112i 0.0695961 + 0.214195i
\(850\) 0 0
\(851\) 1.04508 + 0.759299i 0.0358251 + 0.0260284i
\(852\) −0.138757 0.0450850i −0.00475375 0.00154459i
\(853\) 3.80423 + 1.23607i 0.130254 + 0.0423222i 0.373419 0.927663i \(-0.378185\pi\)
−0.243164 + 0.969985i \(0.578185\pi\)
\(854\) 10.4164 + 7.56796i 0.356442 + 0.258970i
\(855\) 0 0
\(856\) 0.753289 + 2.31838i 0.0257469 + 0.0792408i
\(857\) −4.80828 6.61803i −0.164248 0.226068i 0.718958 0.695054i \(-0.244619\pi\)
−0.883206 + 0.468986i \(0.844619\pi\)
\(858\) 2.17963 0.708204i 0.0744113 0.0241777i
\(859\) 35.0238 + 25.4463i 1.19500 + 0.868216i 0.993783 0.111332i \(-0.0355116\pi\)
0.201213 + 0.979547i \(0.435512\pi\)
\(860\) 0 0
\(861\) 15.7082 11.4127i 0.535334 0.388943i
\(862\) 18.0689i 0.615429i
\(863\) 2.49342i 0.0848771i 0.999099 + 0.0424385i \(0.0135127\pi\)
−0.999099 + 0.0424385i \(0.986487\pi\)
\(864\) −22.7254 + 16.5110i −0.773135 + 0.561715i
\(865\) 0 0
\(866\) −0.111456 0.343027i −0.00378744 0.0116565i
\(867\) 16.9443i 0.575458i
\(868\) 26.3521 + 6.00000i 0.894447 + 0.203653i
\(869\) 0 0
\(870\) 0 0
\(871\) −6.35410 + 19.5559i −0.215301 + 0.662627i
\(872\) −11.0619 15.2254i −0.374604 0.515598i
\(873\) 10.5836i 0.358200i
\(874\) −16.9098 −0.571984
\(875\) 0 0
\(876\) 11.2082 + 8.14324i 0.378690 + 0.275134i
\(877\) −9.57608 + 13.1803i −0.323361 + 0.445068i −0.939490 0.342577i \(-0.888700\pi\)
0.616129 + 0.787646i \(0.288700\pi\)
\(878\) 24.5887 7.98936i 0.829829 0.269628i
\(879\) 6.66312 4.84104i 0.224741 0.163284i
\(880\) 0 0
\(881\) −4.74671 + 14.6089i −0.159921 + 0.492185i −0.998626 0.0523999i \(-0.983313\pi\)
0.838705 + 0.544585i \(0.183313\pi\)
\(882\) −1.45309 + 2.00000i −0.0489279 + 0.0673435i
\(883\) −0.951057 0.309017i −0.0320056 0.0103992i 0.292970 0.956121i \(-0.405356\pi\)
−0.324976 + 0.945722i \(0.605356\pi\)
\(884\) 0.572949 1.76336i 0.0192704 0.0593081i
\(885\) 0 0
\(886\) 7.85410 24.1724i 0.263864 0.812089i
\(887\) 37.1895 12.0836i 1.24870 0.405727i 0.391245 0.920286i \(-0.372044\pi\)
0.857455 + 0.514559i \(0.172044\pi\)
\(888\) 0.310271 + 0.427051i 0.0104120 + 0.0143309i
\(889\) −9.48936 29.2052i −0.318263 0.979512i
\(890\) 0 0
\(891\) 0.618034 + 0.449028i 0.0207049 + 0.0150430i
\(892\) −0.673542 0.927051i −0.0225519 0.0310400i
\(893\) 16.9098i 0.565866i
\(894\) 10.5279 0.352104
\(895\) 0 0
\(896\) 10.5517 32.4747i 0.352506 1.08490i
\(897\) 25.2623 8.20820i 0.843482 0.274064i
\(898\) 14.8754i 0.496398i
\(899\) −18.8820 44.1119i −0.629749 1.47121i
\(900\) 0 0
\(901\) −0.927051 2.85317i −0.0308845 0.0950529i
\(902\) −2.90617 0.944272i −0.0967649 0.0314408i
\(903\) −8.14324 11.2082i −0.270990 0.372986i
\(904\) 4.14590 0.137891
\(905\) 0 0
\(906\) 9.75329 7.08618i 0.324031 0.235423i
\(907\) −31.1074 + 42.8156i −1.03290 + 1.42167i −0.130157 + 0.991493i \(0.541548\pi\)
−0.902745 + 0.430175i \(0.858452\pi\)
\(908\) 19.7274 27.1525i 0.654678 0.901087i
\(909\) 2.94427 + 9.06154i 0.0976553 + 0.300552i
\(910\) 0 0
\(911\) 2.52786 + 7.77997i 0.0837519 + 0.257762i 0.984159 0.177286i \(-0.0567316\pi\)
−0.900408 + 0.435047i \(0.856732\pi\)
\(912\) 8.81678 + 2.86475i 0.291953 + 0.0948612i
\(913\) 1.83660 2.52786i 0.0607826 0.0836601i
\(914\) −3.00658 + 9.25330i −0.0994488 + 0.306072i
\(915\) 0 0
\(916\) −9.47214 6.88191i −0.312968 0.227385i
\(917\) −0.257270 0.0835921i −0.00849581 0.00276046i
\(918\) 0.693786 0.225425i 0.0228984 0.00744013i
\(919\) 7.98936 5.80461i 0.263545 0.191476i −0.448164 0.893952i \(-0.647922\pi\)
0.711708 + 0.702475i \(0.247922\pi\)
\(920\) 0 0
\(921\) 4.92705 + 3.57971i 0.162352 + 0.117956i
\(922\) 3.90249 5.37132i 0.128522 0.176895i
\(923\) −0.257270 0.354102i −0.00846815 0.0116554i
\(924\) 3.70820 0.121991
\(925\) 0 0
\(926\) −15.5623 + 11.3067i −0.511409 + 0.371560i
\(927\) −0.277515 0.0901699i −0.00911477 0.00296157i
\(928\) −46.0467 + 14.9615i −1.51156 + 0.491135i
\(929\) −33.5410 −1.10045 −0.550223 0.835018i \(-0.685457\pi\)
−0.550223 + 0.835018i \(0.685457\pi\)
\(930\) 0 0
\(931\) 10.0000 0.327737
\(932\) −28.9277 + 9.39919i −0.947559 + 0.307881i
\(933\) −15.6659 5.09017i −0.512880 0.166645i
\(934\) 16.3885 11.9070i 0.536250 0.389608i
\(935\) 0 0
\(936\) −21.7082 −0.709555
\(937\) 23.7967 + 32.7533i 0.777403 + 1.07000i 0.995564 + 0.0940905i \(0.0299943\pi\)
−0.218161 + 0.975913i \(0.570006\pi\)
\(938\) 4.61653 6.35410i 0.150735 0.207469i
\(939\) −1.00000 0.726543i −0.0326338 0.0237098i
\(940\) 0 0
\(941\) −23.1246 + 16.8010i −0.753841 + 0.547697i −0.897015 0.442000i \(-0.854269\pi\)
0.143174 + 0.989698i \(0.454269\pi\)
\(942\) 5.70634 1.85410i 0.185923 0.0604099i
\(943\) −33.6830 10.9443i −1.09687 0.356395i
\(944\) 14.2082 + 10.3229i 0.462438 + 0.335981i
\(945\) 0 0
\(946\) −0.673762 + 2.07363i −0.0219059 + 0.0674194i
\(947\) −12.9718 + 17.8541i −0.421526 + 0.580180i −0.965982 0.258609i \(-0.916736\pi\)
0.544456 + 0.838789i \(0.316736\pi\)
\(948\) 0 0
\(949\) 12.8435 + 39.5281i 0.416916 + 1.28314i
\(950\) 0 0
\(951\) −8.00000 24.6215i −0.259418 0.798406i
\(952\) −0.930812 + 1.28115i −0.0301678 + 0.0415224i
\(953\) 24.8132 34.1525i 0.803779 1.10631i −0.188474 0.982078i \(-0.560354\pi\)
0.992254 0.124229i \(-0.0396458\pi\)
\(954\) −12.7082 + 9.23305i −0.411443 + 0.298931i
\(955\) 0 0
\(956\) 21.7082 0.702093
\(957\) −3.86974 5.32624i −0.125091 0.172173i
\(958\) 5.25731 + 1.70820i 0.169856 + 0.0551896i
\(959\) 6.00000 + 18.4661i 0.193750 + 0.596302i
\(960\) 0 0
\(961\) 30.4959 5.56758i 0.983740 0.179599i
\(962\) 0.708204i 0.0228334i
\(963\) 2.07363 0.673762i 0.0668217 0.0217117i
\(964\) −4.26393 + 13.1230i −0.137332 + 0.422664i
\(965\) 0 0
\(966\) −10.1459 −0.326439
\(967\) 43.6525i 1.40377i −0.712291 0.701884i \(-0.752342\pi\)
0.712291 0.701884i \(-0.247658\pi\)
\(968\) 13.6906 + 18.8435i 0.440032 + 0.605652i
\(969\) −0.954915 0.693786i −0.0306763 0.0222876i
\(970\) 0 0
\(971\) −6.35410 19.5559i −0.203913 0.627579i −0.999756 0.0220767i \(-0.992972\pi\)
0.795843 0.605502i \(-0.207028\pi\)
\(972\) 15.2169 + 20.9443i 0.488082 + 0.671788i
\(973\) −16.7027 + 5.42705i −0.535465 + 0.173983i
\(974\) 4.37790 13.4738i 0.140277 0.431728i
\(975\) 0 0
\(976\) −3.97871 + 12.2452i −0.127356 + 0.391960i
\(977\) 5.77185 + 1.87539i 0.184658 + 0.0599990i 0.399886 0.916565i \(-0.369050\pi\)
−0.215228 + 0.976564i \(0.569050\pi\)
\(978\) −4.61653 + 6.35410i −0.147620 + 0.203182i
\(979\) −1.50658 + 4.63677i −0.0481504 + 0.148192i
\(980\) 0 0
\(981\) −13.6180 + 9.89408i −0.434790 + 0.315894i
\(982\) 16.2210 5.27051i 0.517632 0.168189i
\(983\) 12.3637 17.0172i 0.394342 0.542765i −0.564971 0.825111i \(-0.691113\pi\)
0.959313 + 0.282346i \(0.0911126\pi\)
\(984\) −11.7082 8.50651i −0.373244 0.271178i
\(985\) 0 0
\(986\) 1.25735 0.0400423
\(987\) 10.1459i 0.322947i
\(988\) 23.0826 + 31.7705i 0.734356 + 1.01075i
\(989\) −7.80902 + 24.0337i −0.248312 + 0.764227i
\(990\) 0 0
\(991\) −17.2705 −0.548616 −0.274308 0.961642i \(-0.588449\pi\)
−0.274308 + 0.961642i \(0.588449\pi\)
\(992\) −2.82041 31.1525i −0.0895482 0.989092i
\(993\) 11.2705i 0.357659i
\(994\) 0.0516628 + 0.159002i 0.00163864 + 0.00504323i
\(995\) 0 0
\(996\) 5.35410 3.88998i 0.169651 0.123259i
\(997\) 27.2492i 0.862992i 0.902115 + 0.431496i \(0.142014\pi\)
−0.902115 + 0.431496i \(0.857986\pi\)
\(998\) 2.56231i 0.0811084i
\(999\) 0.954915 0.693786i 0.0302122 0.0219504i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.bf.a.624.1 8
5.2 odd 4 31.2.d.a.4.1 4
5.3 odd 4 775.2.k.c.376.1 4
5.4 even 2 inner 775.2.bf.a.624.2 8
15.2 even 4 279.2.i.a.190.1 4
20.7 even 4 496.2.n.b.97.1 4
31.8 even 5 inner 775.2.bf.a.349.2 8
155.2 odd 20 961.2.d.f.388.1 4
155.7 odd 60 961.2.g.f.816.1 8
155.8 odd 20 775.2.k.c.101.1 4
155.12 even 60 961.2.g.g.235.1 8
155.17 even 60 961.2.g.c.846.1 8
155.22 even 60 961.2.g.c.448.1 8
155.27 even 20 961.2.d.e.374.1 4
155.37 even 12 961.2.g.c.547.1 8
155.39 even 10 inner 775.2.bf.a.349.1 8
155.42 even 60 961.2.g.g.732.1 8
155.47 odd 20 961.2.a.d.1.1 2
155.52 even 60 961.2.g.g.338.1 8
155.57 even 12 961.2.g.c.844.1 8
155.67 odd 12 961.2.g.b.844.1 8
155.72 odd 60 961.2.g.f.338.1 8
155.77 even 20 961.2.a.e.1.1 2
155.82 odd 60 961.2.g.f.732.1 8
155.87 odd 12 961.2.g.b.547.1 8
155.92 even 4 961.2.d.b.531.1 4
155.97 odd 20 961.2.d.f.374.1 4
155.102 odd 60 961.2.g.b.448.1 8
155.107 odd 60 961.2.g.b.846.1 8
155.112 odd 60 961.2.g.f.235.1 8
155.117 even 60 961.2.g.g.816.1 8
155.122 even 20 961.2.d.e.388.1 4
155.127 even 60 961.2.c.d.439.1 4
155.132 odd 20 31.2.d.a.8.1 yes 4
155.137 even 60 961.2.c.d.521.1 4
155.142 odd 60 961.2.c.f.521.1 4
155.147 even 20 961.2.d.b.628.1 4
155.152 odd 60 961.2.c.f.439.1 4
465.47 even 20 8649.2.a.g.1.2 2
465.77 odd 20 8649.2.a.f.1.2 2
465.287 even 20 279.2.i.a.163.1 4
620.287 even 20 496.2.n.b.225.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.4.1 4 5.2 odd 4
31.2.d.a.8.1 yes 4 155.132 odd 20
279.2.i.a.163.1 4 465.287 even 20
279.2.i.a.190.1 4 15.2 even 4
496.2.n.b.97.1 4 20.7 even 4
496.2.n.b.225.1 4 620.287 even 20
775.2.k.c.101.1 4 155.8 odd 20
775.2.k.c.376.1 4 5.3 odd 4
775.2.bf.a.349.1 8 155.39 even 10 inner
775.2.bf.a.349.2 8 31.8 even 5 inner
775.2.bf.a.624.1 8 1.1 even 1 trivial
775.2.bf.a.624.2 8 5.4 even 2 inner
961.2.a.d.1.1 2 155.47 odd 20
961.2.a.e.1.1 2 155.77 even 20
961.2.c.d.439.1 4 155.127 even 60
961.2.c.d.521.1 4 155.137 even 60
961.2.c.f.439.1 4 155.152 odd 60
961.2.c.f.521.1 4 155.142 odd 60
961.2.d.b.531.1 4 155.92 even 4
961.2.d.b.628.1 4 155.147 even 20
961.2.d.e.374.1 4 155.27 even 20
961.2.d.e.388.1 4 155.122 even 20
961.2.d.f.374.1 4 155.97 odd 20
961.2.d.f.388.1 4 155.2 odd 20
961.2.g.b.448.1 8 155.102 odd 60
961.2.g.b.547.1 8 155.87 odd 12
961.2.g.b.844.1 8 155.67 odd 12
961.2.g.b.846.1 8 155.107 odd 60
961.2.g.c.448.1 8 155.22 even 60
961.2.g.c.547.1 8 155.37 even 12
961.2.g.c.844.1 8 155.57 even 12
961.2.g.c.846.1 8 155.17 even 60
961.2.g.f.235.1 8 155.112 odd 60
961.2.g.f.338.1 8 155.72 odd 60
961.2.g.f.732.1 8 155.82 odd 60
961.2.g.f.816.1 8 155.7 odd 60
961.2.g.g.235.1 8 155.12 even 60
961.2.g.g.338.1 8 155.52 even 60
961.2.g.g.732.1 8 155.42 even 60
961.2.g.g.816.1 8 155.117 even 60
8649.2.a.f.1.2 2 465.77 odd 20
8649.2.a.g.1.2 2 465.47 even 20