Properties

Label 961.2.d.f.374.1
Level $961$
Weight $2$
Character 961.374
Analytic conductor $7.674$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(374,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 374.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 961.374
Dual form 961.2.d.f.388.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.363271i) q^{2} +(0.809017 - 0.587785i) q^{3} +(-0.500000 - 1.53884i) q^{4} -2.61803 q^{5} +0.618034 q^{6} +(0.927051 + 2.85317i) q^{7} +(0.690983 - 2.12663i) q^{8} +(-0.618034 + 1.90211i) q^{9} +(-1.30902 - 0.951057i) q^{10} +(-0.236068 - 0.726543i) q^{11} +(-1.30902 - 0.951057i) q^{12} +(-3.92705 + 2.85317i) q^{13} +(-0.572949 + 1.76336i) q^{14} +(-2.11803 + 1.53884i) q^{15} +(-1.50000 + 1.08981i) q^{16} +(0.0729490 - 0.224514i) q^{17} +(-1.00000 + 0.726543i) q^{18} +(-4.04508 - 2.93893i) q^{19} +(1.30902 + 4.02874i) q^{20} +(2.42705 + 1.76336i) q^{21} +(0.145898 - 0.449028i) q^{22} +(-1.69098 + 5.20431i) q^{23} +(-0.690983 - 2.12663i) q^{24} +1.85410 q^{25} -3.00000 q^{26} +(1.54508 + 4.75528i) q^{27} +(3.92705 - 2.85317i) q^{28} +(6.97214 + 5.06555i) q^{29} -1.61803 q^{30} -5.61803 q^{32} +(-0.618034 - 0.449028i) q^{33} +(0.118034 - 0.0857567i) q^{34} +(-2.42705 - 7.46969i) q^{35} +3.23607 q^{36} +0.236068 q^{37} +(-0.954915 - 2.93893i) q^{38} +(-1.50000 + 4.61653i) q^{39} +(-1.80902 + 5.56758i) q^{40} +(-5.23607 - 3.80423i) q^{41} +(0.572949 + 1.76336i) q^{42} +(3.73607 + 2.71441i) q^{43} +(-1.00000 + 0.726543i) q^{44} +(1.61803 - 4.97980i) q^{45} +(-2.73607 + 1.98787i) q^{46} +(2.73607 - 1.98787i) q^{47} +(-0.572949 + 1.76336i) q^{48} +(-1.61803 + 1.17557i) q^{49} +(0.927051 + 0.673542i) q^{50} +(-0.0729490 - 0.224514i) q^{51} +(6.35410 + 4.61653i) q^{52} +(-3.92705 + 12.0862i) q^{53} +(-0.954915 + 2.93893i) q^{54} +(0.618034 + 1.90211i) q^{55} +6.70820 q^{56} -5.00000 q^{57} +(1.64590 + 5.06555i) q^{58} +(-7.66312 + 5.56758i) q^{59} +(3.42705 + 2.48990i) q^{60} -6.94427 q^{61} -6.00000 q^{63} +(0.190983 + 0.138757i) q^{64} +(10.2812 - 7.46969i) q^{65} +(-0.145898 - 0.449028i) q^{66} -4.23607 q^{67} -0.381966 q^{68} +(1.69098 + 5.20431i) q^{69} +(1.50000 - 4.61653i) q^{70} +(0.0278640 - 0.0857567i) q^{71} +(3.61803 + 2.62866i) q^{72} +(-2.64590 - 8.14324i) q^{73} +(0.118034 + 0.0857567i) q^{74} +(1.50000 - 1.08981i) q^{75} +(-2.50000 + 7.69421i) q^{76} +(1.85410 - 1.34708i) q^{77} +(-2.42705 + 1.76336i) q^{78} +(3.92705 - 2.85317i) q^{80} +(-0.809017 - 0.587785i) q^{81} +(-1.23607 - 3.80423i) q^{82} +(3.30902 + 2.40414i) q^{83} +(1.50000 - 4.61653i) q^{84} +(-0.190983 + 0.587785i) q^{85} +(0.881966 + 2.71441i) q^{86} +8.61803 q^{87} -1.70820 q^{88} +(-1.97214 - 6.06961i) q^{89} +(2.61803 - 1.90211i) q^{90} +(-11.7812 - 8.55951i) q^{91} +8.85410 q^{92} +2.09017 q^{94} +(10.5902 + 7.69421i) q^{95} +(-4.54508 + 3.30220i) q^{96} +(-1.63525 - 5.03280i) q^{97} -1.23607 q^{98} +1.52786 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + q^{3} - 2 q^{4} - 6 q^{5} - 2 q^{6} - 3 q^{7} + 5 q^{8} + 2 q^{9} - 3 q^{10} + 8 q^{11} - 3 q^{12} - 9 q^{13} - 9 q^{14} - 4 q^{15} - 6 q^{16} + 7 q^{17} - 4 q^{18} - 5 q^{19} + 3 q^{20}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.363271i 0.353553 + 0.256872i 0.750358 0.661031i \(-0.229881\pi\)
−0.396805 + 0.917903i \(0.629881\pi\)
\(3\) 0.809017 0.587785i 0.467086 0.339358i −0.329218 0.944254i \(-0.606785\pi\)
0.796305 + 0.604896i \(0.206785\pi\)
\(4\) −0.500000 1.53884i −0.250000 0.769421i
\(5\) −2.61803 −1.17082 −0.585410 0.810737i \(-0.699067\pi\)
−0.585410 + 0.810737i \(0.699067\pi\)
\(6\) 0.618034 0.252311
\(7\) 0.927051 + 2.85317i 0.350392 + 1.07840i 0.958633 + 0.284644i \(0.0918755\pi\)
−0.608241 + 0.793752i \(0.708125\pi\)
\(8\) 0.690983 2.12663i 0.244299 0.751876i
\(9\) −0.618034 + 1.90211i −0.206011 + 0.634038i
\(10\) −1.30902 0.951057i −0.413948 0.300750i
\(11\) −0.236068 0.726543i −0.0711772 0.219061i 0.909140 0.416491i \(-0.136740\pi\)
−0.980317 + 0.197430i \(0.936740\pi\)
\(12\) −1.30902 0.951057i −0.377881 0.274546i
\(13\) −3.92705 + 2.85317i −1.08917 + 0.791327i −0.979259 0.202615i \(-0.935056\pi\)
−0.109909 + 0.993942i \(0.535056\pi\)
\(14\) −0.572949 + 1.76336i −0.153127 + 0.471277i
\(15\) −2.11803 + 1.53884i −0.546874 + 0.397327i
\(16\) −1.50000 + 1.08981i −0.375000 + 0.272453i
\(17\) 0.0729490 0.224514i 0.0176927 0.0544526i −0.941820 0.336117i \(-0.890886\pi\)
0.959513 + 0.281664i \(0.0908864\pi\)
\(18\) −1.00000 + 0.726543i −0.235702 + 0.171248i
\(19\) −4.04508 2.93893i −0.928006 0.674236i 0.0174977 0.999847i \(-0.494430\pi\)
−0.945504 + 0.325611i \(0.894430\pi\)
\(20\) 1.30902 + 4.02874i 0.292705 + 0.900854i
\(21\) 2.42705 + 1.76336i 0.529626 + 0.384796i
\(22\) 0.145898 0.449028i 0.0311056 0.0957331i
\(23\) −1.69098 + 5.20431i −0.352594 + 1.08517i 0.604797 + 0.796380i \(0.293254\pi\)
−0.957391 + 0.288794i \(0.906746\pi\)
\(24\) −0.690983 2.12663i −0.141046 0.434096i
\(25\) 1.85410 0.370820
\(26\) −3.00000 −0.588348
\(27\) 1.54508 + 4.75528i 0.297352 + 0.915155i
\(28\) 3.92705 2.85317i 0.742143 0.539198i
\(29\) 6.97214 + 5.06555i 1.29469 + 0.940650i 0.999889 0.0149080i \(-0.00474555\pi\)
0.294804 + 0.955558i \(0.404746\pi\)
\(30\) −1.61803 −0.295411
\(31\) 0 0
\(32\) −5.61803 −0.993137
\(33\) −0.618034 0.449028i −0.107586 0.0781657i
\(34\) 0.118034 0.0857567i 0.0202427 0.0147072i
\(35\) −2.42705 7.46969i −0.410246 1.26261i
\(36\) 3.23607 0.539345
\(37\) 0.236068 0.0388093 0.0194047 0.999812i \(-0.493823\pi\)
0.0194047 + 0.999812i \(0.493823\pi\)
\(38\) −0.954915 2.93893i −0.154908 0.476757i
\(39\) −1.50000 + 4.61653i −0.240192 + 0.739236i
\(40\) −1.80902 + 5.56758i −0.286031 + 0.880312i
\(41\) −5.23607 3.80423i −0.817736 0.594120i 0.0983268 0.995154i \(-0.468651\pi\)
−0.916063 + 0.401034i \(0.868651\pi\)
\(42\) 0.572949 + 1.76336i 0.0884080 + 0.272092i
\(43\) 3.73607 + 2.71441i 0.569745 + 0.413944i 0.835013 0.550231i \(-0.185460\pi\)
−0.265268 + 0.964175i \(0.585460\pi\)
\(44\) −1.00000 + 0.726543i −0.150756 + 0.109530i
\(45\) 1.61803 4.97980i 0.241202 0.742344i
\(46\) −2.73607 + 1.98787i −0.403411 + 0.293095i
\(47\) 2.73607 1.98787i 0.399097 0.289961i −0.370076 0.929001i \(-0.620668\pi\)
0.769173 + 0.639041i \(0.220668\pi\)
\(48\) −0.572949 + 1.76336i −0.0826981 + 0.254518i
\(49\) −1.61803 + 1.17557i −0.231148 + 0.167939i
\(50\) 0.927051 + 0.673542i 0.131105 + 0.0952532i
\(51\) −0.0729490 0.224514i −0.0102149 0.0314382i
\(52\) 6.35410 + 4.61653i 0.881155 + 0.640197i
\(53\) −3.92705 + 12.0862i −0.539422 + 1.66017i 0.194474 + 0.980908i \(0.437700\pi\)
−0.733896 + 0.679262i \(0.762300\pi\)
\(54\) −0.954915 + 2.93893i −0.129947 + 0.399937i
\(55\) 0.618034 + 1.90211i 0.0833357 + 0.256481i
\(56\) 6.70820 0.896421
\(57\) −5.00000 −0.662266
\(58\) 1.64590 + 5.06555i 0.216117 + 0.665140i
\(59\) −7.66312 + 5.56758i −0.997653 + 0.724837i −0.961584 0.274512i \(-0.911484\pi\)
−0.0360694 + 0.999349i \(0.511484\pi\)
\(60\) 3.42705 + 2.48990i 0.442430 + 0.321444i
\(61\) −6.94427 −0.889123 −0.444561 0.895748i \(-0.646640\pi\)
−0.444561 + 0.895748i \(0.646640\pi\)
\(62\) 0 0
\(63\) −6.00000 −0.755929
\(64\) 0.190983 + 0.138757i 0.0238729 + 0.0173447i
\(65\) 10.2812 7.46969i 1.27522 0.926502i
\(66\) −0.145898 0.449028i −0.0179588 0.0552715i
\(67\) −4.23607 −0.517518 −0.258759 0.965942i \(-0.583314\pi\)
−0.258759 + 0.965942i \(0.583314\pi\)
\(68\) −0.381966 −0.0463202
\(69\) 1.69098 + 5.20431i 0.203570 + 0.626525i
\(70\) 1.50000 4.61653i 0.179284 0.551780i
\(71\) 0.0278640 0.0857567i 0.00330685 0.0101774i −0.949389 0.314101i \(-0.898297\pi\)
0.952696 + 0.303924i \(0.0982968\pi\)
\(72\) 3.61803 + 2.62866i 0.426389 + 0.309790i
\(73\) −2.64590 8.14324i −0.309679 0.953094i −0.977890 0.209122i \(-0.932940\pi\)
0.668211 0.743972i \(-0.267060\pi\)
\(74\) 0.118034 + 0.0857567i 0.0137212 + 0.00996902i
\(75\) 1.50000 1.08981i 0.173205 0.125841i
\(76\) −2.50000 + 7.69421i −0.286770 + 0.882586i
\(77\) 1.85410 1.34708i 0.211295 0.153514i
\(78\) −2.42705 + 1.76336i −0.274809 + 0.199661i
\(79\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(80\) 3.92705 2.85317i 0.439058 0.318994i
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) −1.23607 3.80423i −0.136501 0.420106i
\(83\) 3.30902 + 2.40414i 0.363212 + 0.263889i 0.754390 0.656426i \(-0.227933\pi\)
−0.391179 + 0.920315i \(0.627933\pi\)
\(84\) 1.50000 4.61653i 0.163663 0.503704i
\(85\) −0.190983 + 0.587785i −0.0207150 + 0.0637543i
\(86\) 0.881966 + 2.71441i 0.0951048 + 0.292703i
\(87\) 8.61803 0.923950
\(88\) −1.70820 −0.182095
\(89\) −1.97214 6.06961i −0.209046 0.643377i −0.999523 0.0308856i \(-0.990167\pi\)
0.790477 0.612492i \(-0.209833\pi\)
\(90\) 2.61803 1.90211i 0.275965 0.200500i
\(91\) −11.7812 8.55951i −1.23500 0.897280i
\(92\) 8.85410 0.923104
\(93\) 0 0
\(94\) 2.09017 0.215585
\(95\) 10.5902 + 7.69421i 1.08653 + 0.789409i
\(96\) −4.54508 + 3.30220i −0.463881 + 0.337029i
\(97\) −1.63525 5.03280i −0.166035 0.511003i 0.833076 0.553158i \(-0.186578\pi\)
−0.999111 + 0.0421553i \(0.986578\pi\)
\(98\) −1.23607 −0.124862
\(99\) 1.52786 0.153556
\(100\) −0.927051 2.85317i −0.0927051 0.285317i
\(101\) 1.47214 4.53077i 0.146483 0.450828i −0.850716 0.525626i \(-0.823831\pi\)
0.997199 + 0.0747977i \(0.0238311\pi\)
\(102\) 0.0450850 0.138757i 0.00446408 0.0137390i
\(103\) 0.118034 + 0.0857567i 0.0116302 + 0.00844986i 0.593585 0.804771i \(-0.297712\pi\)
−0.581955 + 0.813221i \(0.697712\pi\)
\(104\) 3.35410 + 10.3229i 0.328897 + 1.01224i
\(105\) −6.35410 4.61653i −0.620097 0.450527i
\(106\) −6.35410 + 4.61653i −0.617165 + 0.448397i
\(107\) 0.336881 1.03681i 0.0325675 0.100233i −0.933451 0.358704i \(-0.883219\pi\)
0.966019 + 0.258471i \(0.0832188\pi\)
\(108\) 6.54508 4.75528i 0.629801 0.457577i
\(109\) 6.80902 4.94704i 0.652186 0.473841i −0.211829 0.977307i \(-0.567942\pi\)
0.864015 + 0.503466i \(0.167942\pi\)
\(110\) −0.381966 + 1.17557i −0.0364190 + 0.112086i
\(111\) 0.190983 0.138757i 0.0181273 0.0131703i
\(112\) −4.50000 3.26944i −0.425210 0.308933i
\(113\) −0.572949 1.76336i −0.0538985 0.165883i 0.920484 0.390781i \(-0.127795\pi\)
−0.974382 + 0.224898i \(0.927795\pi\)
\(114\) −2.50000 1.81636i −0.234146 0.170117i
\(115\) 4.42705 13.6251i 0.412825 1.27054i
\(116\) 4.30902 13.2618i 0.400082 1.23133i
\(117\) −3.00000 9.23305i −0.277350 0.853596i
\(118\) −5.85410 −0.538914
\(119\) 0.708204 0.0649209
\(120\) 1.80902 + 5.56758i 0.165140 + 0.508248i
\(121\) 8.42705 6.12261i 0.766096 0.556601i
\(122\) −3.47214 2.52265i −0.314352 0.228390i
\(123\) −6.47214 −0.583573
\(124\) 0 0
\(125\) 8.23607 0.736656
\(126\) −3.00000 2.17963i −0.267261 0.194177i
\(127\) −8.28115 + 6.01661i −0.734833 + 0.533888i −0.891089 0.453829i \(-0.850058\pi\)
0.156255 + 0.987717i \(0.450058\pi\)
\(128\) 3.51722 + 10.8249i 0.310881 + 0.956794i
\(129\) 4.61803 0.406595
\(130\) 7.85410 0.688850
\(131\) 0.0278640 + 0.0857567i 0.00243449 + 0.00749260i 0.952266 0.305268i \(-0.0987461\pi\)
−0.949832 + 0.312761i \(0.898746\pi\)
\(132\) −0.381966 + 1.17557i −0.0332459 + 0.102320i
\(133\) 4.63525 14.2658i 0.401928 1.23701i
\(134\) −2.11803 1.53884i −0.182970 0.132936i
\(135\) −4.04508 12.4495i −0.348145 1.07148i
\(136\) −0.427051 0.310271i −0.0366193 0.0266055i
\(137\) 5.23607 3.80423i 0.447347 0.325017i −0.341200 0.939991i \(-0.610833\pi\)
0.788548 + 0.614974i \(0.210833\pi\)
\(138\) −1.04508 + 3.21644i −0.0889635 + 0.273802i
\(139\) −4.73607 + 3.44095i −0.401708 + 0.291858i −0.770236 0.637759i \(-0.779862\pi\)
0.368528 + 0.929617i \(0.379862\pi\)
\(140\) −10.2812 + 7.46969i −0.868916 + 0.631304i
\(141\) 1.04508 3.21644i 0.0880120 0.270873i
\(142\) 0.0450850 0.0327561i 0.00378345 0.00274883i
\(143\) 3.00000 + 2.17963i 0.250873 + 0.182270i
\(144\) −1.14590 3.52671i −0.0954915 0.293893i
\(145\) −18.2533 13.2618i −1.51585 1.10133i
\(146\) 1.63525 5.03280i 0.135335 0.416517i
\(147\) −0.618034 + 1.90211i −0.0509746 + 0.156884i
\(148\) −0.118034 0.363271i −0.00970233 0.0298607i
\(149\) −17.0344 −1.39552 −0.697758 0.716334i \(-0.745819\pi\)
−0.697758 + 0.716334i \(0.745819\pi\)
\(150\) 1.14590 0.0935622
\(151\) −6.02786 18.5519i −0.490541 1.50973i −0.823793 0.566891i \(-0.808146\pi\)
0.333252 0.942838i \(-0.391854\pi\)
\(152\) −9.04508 + 6.57164i −0.733653 + 0.533030i
\(153\) 0.381966 + 0.277515i 0.0308801 + 0.0224357i
\(154\) 1.41641 0.114137
\(155\) 0 0
\(156\) 7.85410 0.628831
\(157\) −7.85410 5.70634i −0.626826 0.455415i 0.228473 0.973550i \(-0.426627\pi\)
−0.855299 + 0.518135i \(0.826627\pi\)
\(158\) 0 0
\(159\) 3.92705 + 12.0862i 0.311435 + 0.958500i
\(160\) 14.7082 1.16279
\(161\) −16.4164 −1.29379
\(162\) −0.190983 0.587785i −0.0150050 0.0461808i
\(163\) −3.92705 + 12.0862i −0.307590 + 0.946666i 0.671108 + 0.741360i \(0.265819\pi\)
−0.978698 + 0.205306i \(0.934181\pi\)
\(164\) −3.23607 + 9.95959i −0.252694 + 0.777714i
\(165\) 1.61803 + 1.17557i 0.125964 + 0.0915180i
\(166\) 0.781153 + 2.40414i 0.0606292 + 0.186598i
\(167\) 7.47214 + 5.42882i 0.578211 + 0.420095i 0.838079 0.545549i \(-0.183679\pi\)
−0.259868 + 0.965644i \(0.583679\pi\)
\(168\) 5.42705 3.94298i 0.418706 0.304208i
\(169\) 3.26393 10.0453i 0.251072 0.772719i
\(170\) −0.309017 + 0.224514i −0.0237005 + 0.0172194i
\(171\) 8.09017 5.87785i 0.618671 0.449491i
\(172\) 2.30902 7.10642i 0.176061 0.541860i
\(173\) −0.736068 + 0.534785i −0.0559622 + 0.0406589i −0.615415 0.788204i \(-0.711011\pi\)
0.559452 + 0.828862i \(0.311011\pi\)
\(174\) 4.30902 + 3.13068i 0.326666 + 0.237337i
\(175\) 1.71885 + 5.29007i 0.129933 + 0.399891i
\(176\) 1.14590 + 0.832544i 0.0863753 + 0.0627553i
\(177\) −2.92705 + 9.00854i −0.220011 + 0.677123i
\(178\) 1.21885 3.75123i 0.0913564 0.281166i
\(179\) 6.11803 + 18.8294i 0.457283 + 1.40737i 0.868433 + 0.495806i \(0.165127\pi\)
−0.411150 + 0.911568i \(0.634873\pi\)
\(180\) −8.47214 −0.631476
\(181\) 17.0000 1.26360 0.631800 0.775131i \(-0.282316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(182\) −2.78115 8.55951i −0.206153 0.634473i
\(183\) −5.61803 + 4.08174i −0.415297 + 0.301731i
\(184\) 9.89919 + 7.19218i 0.729778 + 0.530215i
\(185\) −0.618034 −0.0454388
\(186\) 0 0
\(187\) −0.180340 −0.0131878
\(188\) −4.42705 3.21644i −0.322876 0.234583i
\(189\) −12.1353 + 8.81678i −0.882710 + 0.641326i
\(190\) 2.50000 + 7.69421i 0.181369 + 0.558197i
\(191\) −16.0902 −1.16424 −0.582122 0.813102i \(-0.697777\pi\)
−0.582122 + 0.813102i \(0.697777\pi\)
\(192\) 0.236068 0.0170367
\(193\) −0.736068 2.26538i −0.0529833 0.163066i 0.921064 0.389412i \(-0.127322\pi\)
−0.974047 + 0.226346i \(0.927322\pi\)
\(194\) 1.01064 3.11044i 0.0725599 0.223317i
\(195\) 3.92705 12.0862i 0.281222 0.865512i
\(196\) 2.61803 + 1.90211i 0.187002 + 0.135865i
\(197\) 5.07295 + 15.6129i 0.361433 + 1.11238i 0.952185 + 0.305522i \(0.0988311\pi\)
−0.590752 + 0.806853i \(0.701169\pi\)
\(198\) 0.763932 + 0.555029i 0.0542903 + 0.0394442i
\(199\) 21.6074 15.6987i 1.53171 1.11285i 0.576427 0.817149i \(-0.304446\pi\)
0.955280 0.295702i \(-0.0955535\pi\)
\(200\) 1.28115 3.94298i 0.0905912 0.278811i
\(201\) −3.42705 + 2.48990i −0.241726 + 0.175624i
\(202\) 2.38197 1.73060i 0.167595 0.121765i
\(203\) −7.98936 + 24.5887i −0.560743 + 1.72579i
\(204\) −0.309017 + 0.224514i −0.0216355 + 0.0157191i
\(205\) 13.7082 + 9.95959i 0.957422 + 0.695608i
\(206\) 0.0278640 + 0.0857567i 0.00194138 + 0.00597495i
\(207\) −8.85410 6.43288i −0.615403 0.447116i
\(208\) 2.78115 8.55951i 0.192838 0.593495i
\(209\) −1.18034 + 3.63271i −0.0816458 + 0.251280i
\(210\) −1.50000 4.61653i −0.103510 0.318571i
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 20.5623 1.41222
\(213\) −0.0278640 0.0857567i −0.00190921 0.00587595i
\(214\) 0.545085 0.396027i 0.0372612 0.0270719i
\(215\) −9.78115 7.10642i −0.667069 0.484654i
\(216\) 11.1803 0.760726
\(217\) 0 0
\(218\) 5.20163 0.352299
\(219\) −6.92705 5.03280i −0.468087 0.340085i
\(220\) 2.61803 1.90211i 0.176508 0.128240i
\(221\) 0.354102 + 1.08981i 0.0238195 + 0.0733088i
\(222\) 0.145898 0.00979203
\(223\) 0.708204 0.0474248 0.0237124 0.999719i \(-0.492451\pi\)
0.0237124 + 0.999719i \(0.492451\pi\)
\(224\) −5.20820 16.0292i −0.347988 1.07100i
\(225\) −1.14590 + 3.52671i −0.0763932 + 0.235114i
\(226\) 0.354102 1.08981i 0.0235545 0.0724933i
\(227\) 16.7812 + 12.1922i 1.11380 + 0.809226i 0.983259 0.182216i \(-0.0583271\pi\)
0.130546 + 0.991442i \(0.458327\pi\)
\(228\) 2.50000 + 7.69421i 0.165567 + 0.509561i
\(229\) 5.85410 + 4.25325i 0.386850 + 0.281063i 0.764163 0.645023i \(-0.223152\pi\)
−0.377314 + 0.926086i \(0.623152\pi\)
\(230\) 7.16312 5.20431i 0.472322 0.343162i
\(231\) 0.708204 2.17963i 0.0465964 0.143409i
\(232\) 15.5902 11.3269i 1.02354 0.743649i
\(233\) −15.2082 + 11.0494i −0.996323 + 0.723871i −0.961297 0.275516i \(-0.911151\pi\)
−0.0350260 + 0.999386i \(0.511151\pi\)
\(234\) 1.85410 5.70634i 0.121206 0.373035i
\(235\) −7.16312 + 5.20431i −0.467270 + 0.339492i
\(236\) 12.3992 + 9.00854i 0.807118 + 0.586406i
\(237\) 0 0
\(238\) 0.354102 + 0.257270i 0.0229530 + 0.0166763i
\(239\) −4.14590 + 12.7598i −0.268176 + 0.825360i 0.722769 + 0.691090i \(0.242869\pi\)
−0.990945 + 0.134271i \(0.957131\pi\)
\(240\) 1.50000 4.61653i 0.0968246 0.297995i
\(241\) −2.63525 8.11048i −0.169752 0.522442i 0.829603 0.558353i \(-0.188567\pi\)
−0.999355 + 0.0359113i \(0.988567\pi\)
\(242\) 6.43769 0.413831
\(243\) −16.0000 −1.02640
\(244\) 3.47214 + 10.6861i 0.222281 + 0.684110i
\(245\) 4.23607 3.07768i 0.270632 0.196626i
\(246\) −3.23607 2.35114i −0.206324 0.149903i
\(247\) 24.2705 1.54430
\(248\) 0 0
\(249\) 4.09017 0.259204
\(250\) 4.11803 + 2.99193i 0.260447 + 0.189226i
\(251\) −0.763932 + 0.555029i −0.0482190 + 0.0350331i −0.611634 0.791141i \(-0.709487\pi\)
0.563415 + 0.826174i \(0.309487\pi\)
\(252\) 3.00000 + 9.23305i 0.188982 + 0.581628i
\(253\) 4.18034 0.262816
\(254\) −6.32624 −0.396943
\(255\) 0.190983 + 0.587785i 0.0119598 + 0.0368085i
\(256\) −2.02786 + 6.24112i −0.126742 + 0.390070i
\(257\) 0.437694 1.34708i 0.0273026 0.0840288i −0.936477 0.350730i \(-0.885934\pi\)
0.963779 + 0.266701i \(0.0859336\pi\)
\(258\) 2.30902 + 1.67760i 0.143753 + 0.104443i
\(259\) 0.218847 + 0.673542i 0.0135985 + 0.0418519i
\(260\) −16.6353 12.0862i −1.03167 0.749556i
\(261\) −13.9443 + 10.1311i −0.863129 + 0.627100i
\(262\) −0.0172209 + 0.0530006i −0.00106391 + 0.00327439i
\(263\) 8.73607 6.34712i 0.538689 0.391380i −0.284909 0.958555i \(-0.591963\pi\)
0.823598 + 0.567174i \(0.191963\pi\)
\(264\) −1.38197 + 1.00406i −0.0850541 + 0.0617954i
\(265\) 10.2812 31.6421i 0.631566 1.94376i
\(266\) 7.50000 5.44907i 0.459855 0.334104i
\(267\) −5.16312 3.75123i −0.315978 0.229571i
\(268\) 2.11803 + 6.51864i 0.129380 + 0.398189i
\(269\) 1.11803 + 0.812299i 0.0681677 + 0.0495268i 0.621347 0.783535i \(-0.286586\pi\)
−0.553180 + 0.833062i \(0.686586\pi\)
\(270\) 2.50000 7.69421i 0.152145 0.468255i
\(271\) 2.95492 9.09429i 0.179498 0.552439i −0.820312 0.571916i \(-0.806200\pi\)
0.999810 + 0.0194773i \(0.00620021\pi\)
\(272\) 0.135255 + 0.416272i 0.00820103 + 0.0252402i
\(273\) −14.5623 −0.881351
\(274\) 4.00000 0.241649
\(275\) −0.437694 1.34708i −0.0263939 0.0812322i
\(276\) 7.16312 5.20431i 0.431169 0.313263i
\(277\) −10.7812 7.83297i −0.647777 0.470637i 0.214736 0.976672i \(-0.431111\pi\)
−0.862513 + 0.506035i \(0.831111\pi\)
\(278\) −3.61803 −0.216995
\(279\) 0 0
\(280\) −17.5623 −1.04955
\(281\) −15.3992 11.1882i −0.918638 0.667430i 0.0245463 0.999699i \(-0.492186\pi\)
−0.943185 + 0.332269i \(0.892186\pi\)
\(282\) 1.69098 1.22857i 0.100697 0.0731603i
\(283\) 2.02786 + 6.24112i 0.120544 + 0.370996i 0.993063 0.117584i \(-0.0375149\pi\)
−0.872519 + 0.488580i \(0.837515\pi\)
\(284\) −0.145898 −0.00865746
\(285\) 13.0902 0.775395
\(286\) 0.708204 + 2.17963i 0.0418770 + 0.128884i
\(287\) 6.00000 18.4661i 0.354169 1.09002i
\(288\) 3.47214 10.6861i 0.204598 0.629687i
\(289\) 13.7082 + 9.95959i 0.806365 + 0.585858i
\(290\) −4.30902 13.2618i −0.253034 0.778759i
\(291\) −4.28115 3.11044i −0.250966 0.182337i
\(292\) −11.2082 + 8.14324i −0.655911 + 0.476547i
\(293\) −2.54508 + 7.83297i −0.148685 + 0.457607i −0.997467 0.0711377i \(-0.977337\pi\)
0.848781 + 0.528744i \(0.177337\pi\)
\(294\) −1.00000 + 0.726543i −0.0583212 + 0.0423728i
\(295\) 20.0623 14.5761i 1.16807 0.848654i
\(296\) 0.163119 0.502029i 0.00948110 0.0291798i
\(297\) 3.09017 2.24514i 0.179310 0.130276i
\(298\) −8.51722 6.18812i −0.493389 0.358468i
\(299\) −8.20820 25.2623i −0.474693 1.46095i
\(300\) −2.42705 1.76336i −0.140126 0.101807i
\(301\) −4.28115 + 13.1760i −0.246762 + 0.759454i
\(302\) 3.72542 11.4657i 0.214374 0.659776i
\(303\) −1.47214 4.53077i −0.0845720 0.260286i
\(304\) 9.27051 0.531700
\(305\) 18.1803 1.04100
\(306\) 0.0901699 + 0.277515i 0.00515467 + 0.0158645i
\(307\) −4.92705 + 3.57971i −0.281202 + 0.204305i −0.719441 0.694553i \(-0.755602\pi\)
0.438240 + 0.898858i \(0.355602\pi\)
\(308\) −3.00000 2.17963i −0.170941 0.124196i
\(309\) 0.145898 0.00829985
\(310\) 0 0
\(311\) 16.4721 0.934049 0.467025 0.884244i \(-0.345326\pi\)
0.467025 + 0.884244i \(0.345326\pi\)
\(312\) 8.78115 + 6.37988i 0.497135 + 0.361190i
\(313\) −1.00000 + 0.726543i −0.0565233 + 0.0410666i −0.615688 0.787990i \(-0.711122\pi\)
0.559165 + 0.829057i \(0.311122\pi\)
\(314\) −1.85410 5.70634i −0.104633 0.322027i
\(315\) 15.7082 0.885057
\(316\) 0 0
\(317\) 8.00000 + 24.6215i 0.449325 + 1.38288i 0.877671 + 0.479265i \(0.159097\pi\)
−0.428346 + 0.903615i \(0.640903\pi\)
\(318\) −2.42705 + 7.46969i −0.136102 + 0.418880i
\(319\) 2.03444 6.26137i 0.113907 0.350569i
\(320\) −0.500000 0.363271i −0.0279508 0.0203075i
\(321\) −0.336881 1.03681i −0.0188029 0.0578693i
\(322\) −8.20820 5.96361i −0.457425 0.332339i
\(323\) −0.954915 + 0.693786i −0.0531329 + 0.0386033i
\(324\) −0.500000 + 1.53884i −0.0277778 + 0.0854912i
\(325\) −7.28115 + 5.29007i −0.403886 + 0.293440i
\(326\) −6.35410 + 4.61653i −0.351921 + 0.255686i
\(327\) 2.60081 8.00448i 0.143825 0.442649i
\(328\) −11.7082 + 8.50651i −0.646477 + 0.469693i
\(329\) 8.20820 + 5.96361i 0.452533 + 0.328784i
\(330\) 0.381966 + 1.17557i 0.0210265 + 0.0647130i
\(331\) −9.11803 6.62464i −0.501172 0.364123i 0.308292 0.951292i \(-0.400243\pi\)
−0.809465 + 0.587169i \(0.800243\pi\)
\(332\) 2.04508 6.29412i 0.112239 0.345435i
\(333\) −0.145898 + 0.449028i −0.00799516 + 0.0246066i
\(334\) 1.76393 + 5.42882i 0.0965181 + 0.297052i
\(335\) 11.0902 0.605921
\(336\) −5.56231 −0.303449
\(337\) 5.86475 + 18.0498i 0.319473 + 0.983237i 0.973874 + 0.227089i \(0.0729209\pi\)
−0.654401 + 0.756148i \(0.727079\pi\)
\(338\) 5.28115 3.83698i 0.287257 0.208704i
\(339\) −1.50000 1.08981i −0.0814688 0.0591906i
\(340\) 1.00000 0.0542326
\(341\) 0 0
\(342\) 6.18034 0.334195
\(343\) 12.1353 + 8.81678i 0.655242 + 0.476061i
\(344\) 8.35410 6.06961i 0.450423 0.327251i
\(345\) −4.42705 13.6251i −0.238344 0.733549i
\(346\) −0.562306 −0.0302298
\(347\) 8.12461 0.436152 0.218076 0.975932i \(-0.430022\pi\)
0.218076 + 0.975932i \(0.430022\pi\)
\(348\) −4.30902 13.2618i −0.230988 0.710907i
\(349\) −5.16312 + 15.8904i −0.276375 + 0.850596i 0.712477 + 0.701696i \(0.247573\pi\)
−0.988852 + 0.148900i \(0.952427\pi\)
\(350\) −1.06231 + 3.26944i −0.0567826 + 0.174759i
\(351\) −19.6353 14.2658i −1.04805 0.761455i
\(352\) 1.32624 + 4.08174i 0.0706887 + 0.217558i
\(353\) 26.1976 + 19.0336i 1.39436 + 1.01306i 0.995372 + 0.0961006i \(0.0306370\pi\)
0.398984 + 0.916958i \(0.369363\pi\)
\(354\) −4.73607 + 3.44095i −0.251719 + 0.182885i
\(355\) −0.0729490 + 0.224514i −0.00387173 + 0.0119160i
\(356\) −8.35410 + 6.06961i −0.442767 + 0.321689i
\(357\) 0.572949 0.416272i 0.0303237 0.0220314i
\(358\) −3.78115 + 11.6372i −0.199840 + 0.615045i
\(359\) 20.4894 14.8864i 1.08139 0.785674i 0.103463 0.994633i \(-0.467008\pi\)
0.977924 + 0.208960i \(0.0670078\pi\)
\(360\) −9.47214 6.88191i −0.499225 0.362708i
\(361\) 1.85410 + 5.70634i 0.0975843 + 0.300334i
\(362\) 8.50000 + 6.17561i 0.446750 + 0.324583i
\(363\) 3.21885 9.90659i 0.168946 0.519961i
\(364\) −7.28115 + 22.4091i −0.381636 + 1.17456i
\(365\) 6.92705 + 21.3193i 0.362578 + 1.11590i
\(366\) −4.29180 −0.224336
\(367\) −36.2705 −1.89331 −0.946653 0.322256i \(-0.895559\pi\)
−0.946653 + 0.322256i \(0.895559\pi\)
\(368\) −3.13525 9.64932i −0.163436 0.503006i
\(369\) 10.4721 7.60845i 0.545158 0.396080i
\(370\) −0.309017 0.224514i −0.0160650 0.0116719i
\(371\) −38.1246 −1.97933
\(372\) 0 0
\(373\) −0.347524 −0.0179941 −0.00899706 0.999960i \(-0.502864\pi\)
−0.00899706 + 0.999960i \(0.502864\pi\)
\(374\) −0.0901699 0.0655123i −0.00466258 0.00338756i
\(375\) 6.66312 4.84104i 0.344082 0.249990i
\(376\) −2.33688 7.19218i −0.120515 0.370908i
\(377\) −41.8328 −2.15450
\(378\) −9.27051 −0.476824
\(379\) −5.69098 17.5150i −0.292326 0.899687i −0.984106 0.177579i \(-0.943173\pi\)
0.691780 0.722108i \(-0.256827\pi\)
\(380\) 6.54508 20.1437i 0.335756 1.03335i
\(381\) −3.16312 + 9.73508i −0.162051 + 0.498743i
\(382\) −8.04508 5.84510i −0.411622 0.299061i
\(383\) −5.20820 16.0292i −0.266127 0.819054i −0.991432 0.130626i \(-0.958301\pi\)
0.725305 0.688428i \(-0.241699\pi\)
\(384\) 9.20820 + 6.69015i 0.469904 + 0.341405i
\(385\) −4.85410 + 3.52671i −0.247388 + 0.179738i
\(386\) 0.454915 1.40008i 0.0231546 0.0712624i
\(387\) −7.47214 + 5.42882i −0.379830 + 0.275963i
\(388\) −6.92705 + 5.03280i −0.351668 + 0.255502i
\(389\) −8.98278 + 27.6462i −0.455445 + 1.40172i 0.415167 + 0.909745i \(0.363723\pi\)
−0.870612 + 0.491970i \(0.836277\pi\)
\(390\) 6.35410 4.61653i 0.321752 0.233767i
\(391\) 1.04508 + 0.759299i 0.0528522 + 0.0383994i
\(392\) 1.38197 + 4.25325i 0.0697998 + 0.214822i
\(393\) 0.0729490 + 0.0530006i 0.00367979 + 0.00267352i
\(394\) −3.13525 + 9.64932i −0.157952 + 0.486126i
\(395\) 0 0
\(396\) −0.763932 2.35114i −0.0383890 0.118149i
\(397\) 16.2918 0.817662 0.408831 0.912610i \(-0.365937\pi\)
0.408831 + 0.912610i \(0.365937\pi\)
\(398\) 16.5066 0.827400
\(399\) −4.63525 14.2658i −0.232053 0.714186i
\(400\) −2.78115 + 2.02063i −0.139058 + 0.101031i
\(401\) 24.1353 + 17.5353i 1.20526 + 0.875671i 0.994792 0.101931i \(-0.0325020\pi\)
0.210466 + 0.977601i \(0.432502\pi\)
\(402\) −2.61803 −0.130576
\(403\) 0 0
\(404\) −7.70820 −0.383497
\(405\) 2.11803 + 1.53884i 0.105246 + 0.0764657i
\(406\) −12.9271 + 9.39205i −0.641559 + 0.466120i
\(407\) −0.0557281 0.171513i −0.00276234 0.00850160i
\(408\) −0.527864 −0.0261332
\(409\) −6.18034 −0.305598 −0.152799 0.988257i \(-0.548829\pi\)
−0.152799 + 0.988257i \(0.548829\pi\)
\(410\) 3.23607 + 9.95959i 0.159818 + 0.491869i
\(411\) 2.00000 6.15537i 0.0986527 0.303622i
\(412\) 0.0729490 0.224514i 0.00359394 0.0110610i
\(413\) −22.9894 16.7027i −1.13123 0.821888i
\(414\) −2.09017 6.43288i −0.102726 0.316159i
\(415\) −8.66312 6.29412i −0.425256 0.308966i
\(416\) 22.0623 16.0292i 1.08169 0.785896i
\(417\) −1.80902 + 5.56758i −0.0885879 + 0.272646i
\(418\) −1.90983 + 1.38757i −0.0934128 + 0.0678684i
\(419\) −3.61803 + 2.62866i −0.176753 + 0.128418i −0.672644 0.739966i \(-0.734841\pi\)
0.495891 + 0.868385i \(0.334841\pi\)
\(420\) −3.92705 + 12.0862i −0.191620 + 0.589747i
\(421\) −11.9443 + 8.67802i −0.582128 + 0.422941i −0.839491 0.543374i \(-0.817147\pi\)
0.257363 + 0.966315i \(0.417147\pi\)
\(422\) −4.00000 2.90617i −0.194717 0.141470i
\(423\) 2.09017 + 6.43288i 0.101628 + 0.312777i
\(424\) 22.9894 + 16.7027i 1.11646 + 0.811157i
\(425\) 0.135255 0.416272i 0.00656083 0.0201921i
\(426\) 0.0172209 0.0530006i 0.000834357 0.00256789i
\(427\) −6.43769 19.8132i −0.311542 0.958827i
\(428\) −1.76393 −0.0852629
\(429\) 3.70820 0.179034
\(430\) −2.30902 7.10642i −0.111351 0.342702i
\(431\) −23.6525 + 17.1845i −1.13930 + 0.827750i −0.987022 0.160588i \(-0.948661\pi\)
−0.152278 + 0.988338i \(0.548661\pi\)
\(432\) −7.50000 5.44907i −0.360844 0.262168i
\(433\) 0.583592 0.0280456 0.0140228 0.999902i \(-0.495536\pi\)
0.0140228 + 0.999902i \(0.495536\pi\)
\(434\) 0 0
\(435\) −22.5623 −1.08178
\(436\) −11.0172 8.00448i −0.527629 0.383345i
\(437\) 22.1353 16.0822i 1.05887 0.769316i
\(438\) −1.63525 5.03280i −0.0781355 0.240476i
\(439\) 41.8328 1.99657 0.998286 0.0585295i \(-0.0186412\pi\)
0.998286 + 0.0585295i \(0.0186412\pi\)
\(440\) 4.47214 0.213201
\(441\) −1.23607 3.80423i −0.0588604 0.181154i
\(442\) −0.218847 + 0.673542i −0.0104095 + 0.0320371i
\(443\) −12.7082 + 39.1118i −0.603785 + 1.85826i −0.0988488 + 0.995102i \(0.531516\pi\)
−0.504936 + 0.863157i \(0.668484\pi\)
\(444\) −0.309017 0.224514i −0.0146653 0.0106550i
\(445\) 5.16312 + 15.8904i 0.244755 + 0.753279i
\(446\) 0.354102 + 0.257270i 0.0167672 + 0.0121821i
\(447\) −13.7812 + 10.0126i −0.651826 + 0.473579i
\(448\) −0.218847 + 0.673542i −0.0103396 + 0.0318219i
\(449\) −19.4721 + 14.1473i −0.918947 + 0.667654i −0.943262 0.332050i \(-0.892260\pi\)
0.0243148 + 0.999704i \(0.492260\pi\)
\(450\) −1.85410 + 1.34708i −0.0874032 + 0.0635021i
\(451\) −1.52786 + 4.70228i −0.0719443 + 0.221422i
\(452\) −2.42705 + 1.76336i −0.114159 + 0.0829413i
\(453\) −15.7812 11.4657i −0.741463 0.538705i
\(454\) 3.96149 + 12.1922i 0.185922 + 0.572209i
\(455\) 30.8435 + 22.4091i 1.44596 + 1.05055i
\(456\) −3.45492 + 10.6331i −0.161791 + 0.497942i
\(457\) −4.86475 + 14.9721i −0.227563 + 0.700367i 0.770458 + 0.637491i \(0.220028\pi\)
−0.998021 + 0.0628768i \(0.979972\pi\)
\(458\) 1.38197 + 4.25325i 0.0645750 + 0.198742i
\(459\) 1.18034 0.0550935
\(460\) −23.1803 −1.08079
\(461\) 3.31966 + 10.2169i 0.154612 + 0.475847i 0.998121 0.0612677i \(-0.0195143\pi\)
−0.843509 + 0.537114i \(0.819514\pi\)
\(462\) 1.14590 0.832544i 0.0533120 0.0387334i
\(463\) 25.1803 + 18.2946i 1.17023 + 0.850222i 0.991036 0.133592i \(-0.0426513\pi\)
0.179193 + 0.983814i \(0.442651\pi\)
\(464\) −15.9787 −0.741793
\(465\) 0 0
\(466\) −11.6180 −0.538195
\(467\) 26.5172 + 19.2659i 1.22707 + 0.891519i 0.996667 0.0815762i \(-0.0259954\pi\)
0.230404 + 0.973095i \(0.425995\pi\)
\(468\) −12.7082 + 9.23305i −0.587437 + 0.426798i
\(469\) −3.92705 12.0862i −0.181334 0.558090i
\(470\) −5.47214 −0.252411
\(471\) −9.70820 −0.447330
\(472\) 6.54508 + 20.1437i 0.301262 + 0.927189i
\(473\) 1.09017 3.35520i 0.0501261 0.154272i
\(474\) 0 0
\(475\) −7.50000 5.44907i −0.344124 0.250020i
\(476\) −0.354102 1.08981i −0.0162302 0.0499515i
\(477\) −20.5623 14.9394i −0.941483 0.684028i
\(478\) −6.70820 + 4.87380i −0.306826 + 0.222922i
\(479\) −2.76393 + 8.50651i −0.126287 + 0.388672i −0.994133 0.108161i \(-0.965504\pi\)
0.867846 + 0.496833i \(0.165504\pi\)
\(480\) 11.8992 8.64527i 0.543121 0.394601i
\(481\) −0.927051 + 0.673542i −0.0422699 + 0.0307109i
\(482\) 1.62868 5.01255i 0.0741842 0.228316i
\(483\) −13.2812 + 9.64932i −0.604313 + 0.439059i
\(484\) −13.6353 9.90659i −0.619784 0.450300i
\(485\) 4.28115 + 13.1760i 0.194397 + 0.598293i
\(486\) −8.00000 5.81234i −0.362887 0.263653i
\(487\) 7.08359 21.8011i 0.320988 0.987900i −0.652231 0.758020i \(-0.726167\pi\)
0.973219 0.229880i \(-0.0738333\pi\)
\(488\) −4.79837 + 14.7679i −0.217212 + 0.668510i
\(489\) 3.92705 + 12.0862i 0.177587 + 0.546558i
\(490\) 3.23607 0.146191
\(491\) −27.5967 −1.24542 −0.622712 0.782451i \(-0.713969\pi\)
−0.622712 + 0.782451i \(0.713969\pi\)
\(492\) 3.23607 + 9.95959i 0.145893 + 0.449013i
\(493\) 1.64590 1.19581i 0.0741275 0.0538568i
\(494\) 12.1353 + 8.81678i 0.545991 + 0.396686i
\(495\) −4.00000 −0.179787
\(496\) 0 0
\(497\) 0.270510 0.0121340
\(498\) 2.04508 + 1.48584i 0.0916424 + 0.0665821i
\(499\) −3.35410 + 2.43690i −0.150150 + 0.109091i −0.660324 0.750981i \(-0.729581\pi\)
0.510174 + 0.860071i \(0.329581\pi\)
\(500\) −4.11803 12.6740i −0.184164 0.566799i
\(501\) 9.23607 0.412637
\(502\) −0.583592 −0.0260470
\(503\) 4.06231 + 12.5025i 0.181129 + 0.557459i 0.999860 0.0167188i \(-0.00532200\pi\)
−0.818731 + 0.574177i \(0.805322\pi\)
\(504\) −4.14590 + 12.7598i −0.184673 + 0.568365i
\(505\) −3.85410 + 11.8617i −0.171505 + 0.527839i
\(506\) 2.09017 + 1.51860i 0.0929194 + 0.0675099i
\(507\) −3.26393 10.0453i −0.144956 0.446130i
\(508\) 13.3992 + 9.73508i 0.594493 + 0.431924i
\(509\) 1.54508 1.12257i 0.0684847 0.0497570i −0.553016 0.833171i \(-0.686523\pi\)
0.621501 + 0.783413i \(0.286523\pi\)
\(510\) −0.118034 + 0.363271i −0.00522663 + 0.0160859i
\(511\) 20.7812 15.0984i 0.919304 0.667914i
\(512\) 15.1353 10.9964i 0.668890 0.485977i
\(513\) 7.72542 23.7764i 0.341086 1.04975i
\(514\) 0.708204 0.514540i 0.0312375 0.0226954i
\(515\) −0.309017 0.224514i −0.0136169 0.00989327i
\(516\) −2.30902 7.10642i −0.101649 0.312843i
\(517\) −2.09017 1.51860i −0.0919256 0.0667878i
\(518\) −0.135255 + 0.416272i −0.00594276 + 0.0182899i
\(519\) −0.281153 + 0.865300i −0.0123412 + 0.0379824i
\(520\) −8.78115 27.0256i −0.385079 1.18515i
\(521\) 31.0689 1.36115 0.680576 0.732677i \(-0.261729\pi\)
0.680576 + 0.732677i \(0.261729\pi\)
\(522\) −10.6525 −0.466246
\(523\) 10.5451 + 32.4544i 0.461104 + 1.41913i 0.863816 + 0.503807i \(0.168068\pi\)
−0.402712 + 0.915327i \(0.631932\pi\)
\(524\) 0.118034 0.0857567i 0.00515634 0.00374630i
\(525\) 4.50000 + 3.26944i 0.196396 + 0.142690i
\(526\) 6.67376 0.290990
\(527\) 0 0
\(528\) 1.41641 0.0616412
\(529\) −5.61803 4.08174i −0.244262 0.177467i
\(530\) 16.6353 12.0862i 0.722589 0.524992i
\(531\) −5.85410 18.0171i −0.254046 0.781874i
\(532\) −24.2705 −1.05226
\(533\) 31.4164 1.36080
\(534\) −1.21885 3.75123i −0.0527447 0.162331i
\(535\) −0.881966 + 2.71441i −0.0381307 + 0.117354i
\(536\) −2.92705 + 9.00854i −0.126429 + 0.389110i
\(537\) 16.0172 + 11.6372i 0.691194 + 0.502182i
\(538\) 0.263932 + 0.812299i 0.0113789 + 0.0350207i
\(539\) 1.23607 + 0.898056i 0.0532412 + 0.0386820i
\(540\) −17.1353 + 12.4495i −0.737384 + 0.535741i
\(541\) 6.79837 20.9232i 0.292285 0.899560i −0.691835 0.722056i \(-0.743197\pi\)
0.984120 0.177505i \(-0.0568025\pi\)
\(542\) 4.78115 3.47371i 0.205368 0.149209i
\(543\) 13.7533 9.99235i 0.590210 0.428813i
\(544\) −0.409830 + 1.26133i −0.0175713 + 0.0540790i
\(545\) −17.8262 + 12.9515i −0.763592 + 0.554782i
\(546\) −7.28115 5.29007i −0.311605 0.226394i
\(547\) −7.32624 22.5478i −0.313247 0.964076i −0.976470 0.215654i \(-0.930812\pi\)
0.663223 0.748422i \(-0.269188\pi\)
\(548\) −8.47214 6.15537i −0.361912 0.262944i
\(549\) 4.29180 13.2088i 0.183169 0.563737i
\(550\) 0.270510 0.832544i 0.0115346 0.0354998i
\(551\) −13.3156 40.9812i −0.567263 1.74586i
\(552\) 12.2361 0.520802
\(553\) 0 0
\(554\) −2.54508 7.83297i −0.108130 0.332791i
\(555\) −0.500000 + 0.363271i −0.0212238 + 0.0154200i
\(556\) 7.66312 + 5.56758i 0.324989 + 0.236118i
\(557\) 35.8885 1.52065 0.760323 0.649545i \(-0.225041\pi\)
0.760323 + 0.649545i \(0.225041\pi\)
\(558\) 0 0
\(559\) −22.4164 −0.948113
\(560\) 11.7812 + 8.55951i 0.497845 + 0.361705i
\(561\) −0.145898 + 0.106001i −0.00615982 + 0.00447537i
\(562\) −3.63525 11.1882i −0.153344 0.471944i
\(563\) −8.56231 −0.360858 −0.180429 0.983588i \(-0.557749\pi\)
−0.180429 + 0.983588i \(0.557749\pi\)
\(564\) −5.47214 −0.230418
\(565\) 1.50000 + 4.61653i 0.0631055 + 0.194219i
\(566\) −1.25329 + 3.85723i −0.0526797 + 0.162131i
\(567\) 0.927051 2.85317i 0.0389325 0.119822i
\(568\) −0.163119 0.118513i −0.00684432 0.00497269i
\(569\) 4.79837 + 14.7679i 0.201158 + 0.619102i 0.999849 + 0.0173602i \(0.00552620\pi\)
−0.798691 + 0.601741i \(0.794474\pi\)
\(570\) 6.54508 + 4.75528i 0.274143 + 0.199177i
\(571\) −5.66312 + 4.11450i −0.236994 + 0.172186i −0.699943 0.714199i \(-0.746791\pi\)
0.462949 + 0.886385i \(0.346791\pi\)
\(572\) 1.85410 5.70634i 0.0775239 0.238594i
\(573\) −13.0172 + 9.45756i −0.543802 + 0.395095i
\(574\) 9.70820 7.05342i 0.405213 0.294404i
\(575\) −3.13525 + 9.64932i −0.130749 + 0.402405i
\(576\) −0.381966 + 0.277515i −0.0159153 + 0.0115631i
\(577\) −31.5344 22.9111i −1.31280 0.953802i −0.999992 0.00398440i \(-0.998732\pi\)
−0.312804 0.949818i \(-0.601268\pi\)
\(578\) 3.23607 + 9.95959i 0.134603 + 0.414264i
\(579\) −1.92705 1.40008i −0.0800855 0.0581855i
\(580\) −11.2812 + 34.7198i −0.468424 + 1.44166i
\(581\) −3.79180 + 11.6699i −0.157310 + 0.484151i
\(582\) −1.01064 3.11044i −0.0418925 0.128932i
\(583\) 9.70820 0.402073
\(584\) −19.1459 −0.792263
\(585\) 7.85410 + 24.1724i 0.324727 + 0.999407i
\(586\) −4.11803 + 2.99193i −0.170114 + 0.123595i
\(587\) −29.1353 21.1680i −1.20254 0.873697i −0.208008 0.978127i \(-0.566698\pi\)
−0.994532 + 0.104430i \(0.966698\pi\)
\(588\) 3.23607 0.133453
\(589\) 0 0
\(590\) 15.3262 0.630971
\(591\) 13.2812 + 9.64932i 0.546314 + 0.396920i
\(592\) −0.354102 + 0.257270i −0.0145535 + 0.0105737i
\(593\) 1.88854 + 5.81234i 0.0775532 + 0.238684i 0.982316 0.187232i \(-0.0599517\pi\)
−0.904762 + 0.425917i \(0.859952\pi\)
\(594\) 2.36068 0.0968599
\(595\) −1.85410 −0.0760108
\(596\) 8.51722 + 26.2133i 0.348879 + 1.07374i
\(597\) 8.25329 25.4010i 0.337785 1.03959i
\(598\) 5.07295 15.6129i 0.207448 0.638460i
\(599\) −24.1074 17.5150i −0.985001 0.715645i −0.0261805 0.999657i \(-0.508334\pi\)
−0.958821 + 0.284012i \(0.908334\pi\)
\(600\) −1.28115 3.94298i −0.0523029 0.160972i
\(601\) −17.7984 12.9313i −0.726011 0.527478i 0.162288 0.986743i \(-0.448113\pi\)
−0.888299 + 0.459266i \(0.848113\pi\)
\(602\) −6.92705 + 5.03280i −0.282326 + 0.205121i
\(603\) 2.61803 8.05748i 0.106615 0.328126i
\(604\) −25.5344 + 18.5519i −1.03898 + 0.754864i
\(605\) −22.0623 + 16.0292i −0.896960 + 0.651680i
\(606\) 0.909830 2.80017i 0.0369593 0.113749i
\(607\) 20.5623 14.9394i 0.834598 0.606371i −0.0862582 0.996273i \(-0.527491\pi\)
0.920856 + 0.389902i \(0.127491\pi\)
\(608\) 22.7254 + 16.5110i 0.921638 + 0.669609i
\(609\) 7.98936 + 24.5887i 0.323745 + 0.996385i
\(610\) 9.09017 + 6.60440i 0.368050 + 0.267404i
\(611\) −5.07295 + 15.6129i −0.205230 + 0.631632i
\(612\) 0.236068 0.726543i 0.00954248 0.0293687i
\(613\) 7.74265 + 23.8294i 0.312723 + 0.962461i 0.976682 + 0.214692i \(0.0688748\pi\)
−0.663959 + 0.747769i \(0.731125\pi\)
\(614\) −3.76393 −0.151900
\(615\) 16.9443 0.683259
\(616\) −1.58359 4.87380i −0.0638047 0.196371i
\(617\) 11.5172 8.36775i 0.463666 0.336873i −0.331302 0.943525i \(-0.607488\pi\)
0.794968 + 0.606652i \(0.207488\pi\)
\(618\) 0.0729490 + 0.0530006i 0.00293444 + 0.00213200i
\(619\) −40.0000 −1.60774 −0.803868 0.594808i \(-0.797228\pi\)
−0.803868 + 0.594808i \(0.797228\pi\)
\(620\) 0 0
\(621\) −27.3607 −1.09795
\(622\) 8.23607 + 5.98385i 0.330236 + 0.239931i
\(623\) 15.4894 11.2537i 0.620568 0.450869i
\(624\) −2.78115 8.55951i −0.111335 0.342655i
\(625\) −30.8328 −1.23331
\(626\) −0.763932 −0.0305329
\(627\) 1.18034 + 3.63271i 0.0471382 + 0.145077i
\(628\) −4.85410 + 14.9394i −0.193700 + 0.596147i
\(629\) 0.0172209 0.0530006i 0.000686643 0.00211327i
\(630\) 7.85410 + 5.70634i 0.312915 + 0.227346i
\(631\) −2.69756 8.30224i −0.107388 0.330507i 0.882895 0.469570i \(-0.155591\pi\)
−0.990284 + 0.139063i \(0.955591\pi\)
\(632\) 0 0
\(633\) −6.47214 + 4.70228i −0.257244 + 0.186899i
\(634\) −4.94427 + 15.2169i −0.196362 + 0.604340i
\(635\) 21.6803 15.7517i 0.860358 0.625087i
\(636\) 16.6353 12.0862i 0.659631 0.479250i
\(637\) 3.00000 9.23305i 0.118864 0.365827i
\(638\) 3.29180 2.39163i 0.130323 0.0946855i
\(639\) 0.145898 + 0.106001i 0.00577164 + 0.00419334i
\(640\) −9.20820 28.3399i −0.363986 1.12023i
\(641\) 33.2426 + 24.1522i 1.31301 + 0.953954i 0.999991 + 0.00420601i \(0.00133882\pi\)
0.313014 + 0.949748i \(0.398661\pi\)
\(642\) 0.208204 0.640786i 0.00821715 0.0252898i
\(643\) 2.51722 7.74721i 0.0992695 0.305520i −0.889073 0.457765i \(-0.848650\pi\)
0.988343 + 0.152245i \(0.0486502\pi\)
\(644\) 8.20820 + 25.2623i 0.323449 + 0.995472i
\(645\) −12.0902 −0.476050
\(646\) −0.729490 −0.0287014
\(647\) −9.23607 28.4257i −0.363107 1.11753i −0.951158 0.308705i \(-0.900104\pi\)
0.588050 0.808824i \(-0.299896\pi\)
\(648\) −1.80902 + 1.31433i −0.0710649 + 0.0516317i
\(649\) 5.85410 + 4.25325i 0.229794 + 0.166955i
\(650\) −5.56231 −0.218172
\(651\) 0 0
\(652\) 20.5623 0.805282
\(653\) −32.0795 23.3071i −1.25537 0.912079i −0.256848 0.966452i \(-0.582684\pi\)
−0.998521 + 0.0543729i \(0.982684\pi\)
\(654\) 4.20820 3.05744i 0.164554 0.119555i
\(655\) −0.0729490 0.224514i −0.00285035 0.00877249i
\(656\) 12.0000 0.468521
\(657\) 17.1246 0.668095
\(658\) 1.93769 + 5.96361i 0.0755392 + 0.232486i
\(659\) 7.01064 21.5765i 0.273096 0.840503i −0.716621 0.697463i \(-0.754312\pi\)
0.989717 0.143040i \(-0.0456877\pi\)
\(660\) 1.00000 3.07768i 0.0389249 0.119799i
\(661\) 13.4443 + 9.76784i 0.522922 + 0.379925i 0.817703 0.575640i \(-0.195247\pi\)
−0.294782 + 0.955565i \(0.595247\pi\)
\(662\) −2.15248 6.62464i −0.0836583 0.257474i
\(663\) 0.927051 + 0.673542i 0.0360037 + 0.0261582i
\(664\) 7.39919 5.37582i 0.287144 0.208622i
\(665\) −12.1353 + 37.3485i −0.470585 + 1.44831i
\(666\) −0.236068 + 0.171513i −0.00914745 + 0.00664601i
\(667\) −38.1525 + 27.7194i −1.47727 + 1.07330i
\(668\) 4.61803 14.2128i 0.178677 0.549912i
\(669\) 0.572949 0.416272i 0.0221515 0.0160940i
\(670\) 5.54508 + 4.02874i 0.214225 + 0.155644i
\(671\) 1.63932 + 5.04531i 0.0632853 + 0.194772i
\(672\) −13.6353 9.90659i −0.525991 0.382155i
\(673\) −1.36475 + 4.20025i −0.0526071 + 0.161908i −0.973908 0.226942i \(-0.927127\pi\)
0.921301 + 0.388849i \(0.127127\pi\)
\(674\) −3.62461 + 11.1554i −0.139615 + 0.429690i
\(675\) 2.86475 + 8.81678i 0.110264 + 0.339358i
\(676\) −17.0902 −0.657314
\(677\) 28.6525 1.10120 0.550602 0.834768i \(-0.314398\pi\)
0.550602 + 0.834768i \(0.314398\pi\)
\(678\) −0.354102 1.08981i −0.0135992 0.0418540i
\(679\) 12.8435 9.33132i 0.492887 0.358103i
\(680\) 1.11803 + 0.812299i 0.0428746 + 0.0311503i
\(681\) 20.7426 0.794860
\(682\) 0 0
\(683\) 10.0557 0.384772 0.192386 0.981319i \(-0.438377\pi\)
0.192386 + 0.981319i \(0.438377\pi\)
\(684\) −13.0902 9.51057i −0.500515 0.363646i
\(685\) −13.7082 + 9.95959i −0.523764 + 0.380536i
\(686\) 2.86475 + 8.81678i 0.109376 + 0.336626i
\(687\) 7.23607 0.276073
\(688\) −8.56231 −0.326435
\(689\) −19.0623 58.6677i −0.726216 2.23506i
\(690\) 2.73607 8.42075i 0.104160 0.320573i
\(691\) 1.18441 3.64522i 0.0450569 0.138671i −0.925997 0.377530i \(-0.876773\pi\)
0.971054 + 0.238859i \(0.0767735\pi\)
\(692\) 1.19098 + 0.865300i 0.0452744 + 0.0328938i
\(693\) 1.41641 + 4.35926i 0.0538049 + 0.165594i
\(694\) 4.06231 + 2.95144i 0.154203 + 0.112035i
\(695\) 12.3992 9.00854i 0.470328 0.341713i
\(696\) 5.95492 18.3273i 0.225720 0.694696i
\(697\) −1.23607 + 0.898056i −0.0468194 + 0.0340163i
\(698\) −8.35410 + 6.06961i −0.316207 + 0.229738i
\(699\) −5.80902 + 17.8783i −0.219717 + 0.676220i
\(700\) 7.28115 5.29007i 0.275202 0.199946i
\(701\) 24.2984 + 17.6538i 0.917737 + 0.666775i 0.942960 0.332907i \(-0.108030\pi\)
−0.0252228 + 0.999682i \(0.508030\pi\)
\(702\) −4.63525 14.2658i −0.174946 0.538430i
\(703\) −0.954915 0.693786i −0.0360153 0.0261666i
\(704\) 0.0557281 0.171513i 0.00210033 0.00646416i
\(705\) −2.73607 + 8.42075i −0.103046 + 0.317144i
\(706\) 6.18441 + 19.0336i 0.232753 + 0.716341i
\(707\) 14.2918 0.537498
\(708\) 15.3262 0.575995
\(709\) 1.28115 + 3.94298i 0.0481147 + 0.148082i 0.972227 0.234038i \(-0.0751941\pi\)
−0.924113 + 0.382120i \(0.875194\pi\)
\(710\) −0.118034 + 0.0857567i −0.00442974 + 0.00321839i
\(711\) 0 0
\(712\) −14.2705 −0.534810
\(713\) 0 0
\(714\) 0.437694 0.0163803
\(715\) −7.85410 5.70634i −0.293727 0.213405i
\(716\) 25.9164 18.8294i 0.968542 0.703687i
\(717\) 4.14590 + 12.7598i 0.154831 + 0.476522i
\(718\) 15.6525 0.584145
\(719\) −41.3820 −1.54329 −0.771643 0.636055i \(-0.780565\pi\)
−0.771643 + 0.636055i \(0.780565\pi\)
\(720\) 3.00000 + 9.23305i 0.111803 + 0.344095i
\(721\) −0.135255 + 0.416272i −0.00503716 + 0.0155028i
\(722\) −1.14590 + 3.52671i −0.0426459 + 0.131251i
\(723\) −6.89919 5.01255i −0.256584 0.186419i
\(724\) −8.50000 26.1603i −0.315900 0.972240i
\(725\) 12.9271 + 9.39205i 0.480099 + 0.348812i
\(726\) 5.20820 3.78398i 0.193295 0.140437i
\(727\) −7.36475 + 22.6664i −0.273143 + 0.840649i 0.716561 + 0.697524i \(0.245715\pi\)
−0.989705 + 0.143125i \(0.954285\pi\)
\(728\) −26.3435 + 19.1396i −0.976354 + 0.709362i
\(729\) −10.5172 + 7.64121i −0.389527 + 0.283008i
\(730\) −4.28115 + 13.1760i −0.158453 + 0.487667i
\(731\) 0.881966 0.640786i 0.0326207 0.0237003i
\(732\) 9.09017 + 6.60440i 0.335982 + 0.244105i
\(733\) 8.63525 + 26.5766i 0.318950 + 0.981628i 0.974098 + 0.226127i \(0.0726065\pi\)
−0.655147 + 0.755501i \(0.727393\pi\)
\(734\) −18.1353 13.1760i −0.669384 0.486336i
\(735\) 1.61803 4.97980i 0.0596821 0.183683i
\(736\) 9.50000 29.2380i 0.350175 1.07773i
\(737\) 1.00000 + 3.07768i 0.0368355 + 0.113368i
\(738\) 8.00000 0.294484
\(739\) 21.7082 0.798549 0.399275 0.916831i \(-0.369262\pi\)
0.399275 + 0.916831i \(0.369262\pi\)
\(740\) 0.309017 + 0.951057i 0.0113597 + 0.0349615i
\(741\) 19.6353 14.2658i 0.721319 0.524069i
\(742\) −19.0623 13.8496i −0.699799 0.508434i
\(743\) −3.43769 −0.126117 −0.0630584 0.998010i \(-0.520085\pi\)
−0.0630584 + 0.998010i \(0.520085\pi\)
\(744\) 0 0
\(745\) 44.5967 1.63390
\(746\) −0.173762 0.126246i −0.00636188 0.00462218i
\(747\) −6.61803 + 4.80828i −0.242141 + 0.175926i
\(748\) 0.0901699 + 0.277515i 0.00329694 + 0.0101469i
\(749\) 3.27051 0.119502
\(750\) 5.09017 0.185867
\(751\) −12.3090 37.8833i −0.449162 1.38238i −0.877854 0.478929i \(-0.841025\pi\)
0.428691 0.903451i \(-0.358975\pi\)
\(752\) −1.93769 + 5.96361i −0.0706604 + 0.217470i
\(753\) −0.291796 + 0.898056i −0.0106336 + 0.0327270i
\(754\) −20.9164 15.1967i −0.761731 0.553430i
\(755\) 15.7812 + 48.5694i 0.574335 + 1.76762i
\(756\) 19.6353 + 14.2658i 0.714127 + 0.518844i
\(757\) −34.8885 + 25.3480i −1.26805 + 0.921289i −0.999123 0.0418726i \(-0.986668\pi\)
−0.268923 + 0.963162i \(0.586668\pi\)
\(758\) 3.51722 10.8249i 0.127751 0.393178i
\(759\) 3.38197 2.45714i 0.122758 0.0891886i
\(760\) 23.6803 17.2048i 0.858976 0.624083i
\(761\) 1.08359 3.33495i 0.0392802 0.120892i −0.929494 0.368838i \(-0.879756\pi\)
0.968774 + 0.247946i \(0.0797556\pi\)
\(762\) −5.11803 + 3.71847i −0.185407 + 0.134706i
\(763\) 20.4271 + 14.8411i 0.739509 + 0.537285i
\(764\) 8.04508 + 24.7602i 0.291061 + 0.895794i
\(765\) −1.00000 0.726543i −0.0361551 0.0262682i
\(766\) 3.21885 9.90659i 0.116302 0.357940i
\(767\) 14.2082 43.7284i 0.513029 1.57894i
\(768\) 2.02786 + 6.24112i 0.0731742 + 0.225207i
\(769\) −53.7426 −1.93801 −0.969005 0.247042i \(-0.920541\pi\)
−0.969005 + 0.247042i \(0.920541\pi\)
\(770\) −3.70820 −0.133634
\(771\) −0.437694 1.34708i −0.0157632 0.0485140i
\(772\) −3.11803 + 2.26538i −0.112220 + 0.0815330i
\(773\) 15.4443 + 11.2209i 0.555492 + 0.403588i 0.829806 0.558052i \(-0.188451\pi\)
−0.274314 + 0.961640i \(0.588451\pi\)
\(774\) −5.70820 −0.205177
\(775\) 0 0
\(776\) −11.8328 −0.424773
\(777\) 0.572949 + 0.416272i 0.0205544 + 0.0149337i
\(778\) −14.5344 + 10.5599i −0.521085 + 0.378590i
\(779\) 10.0000 + 30.7768i 0.358287 + 1.10269i
\(780\) −20.5623 −0.736249
\(781\) −0.0688837 −0.00246485
\(782\) 0.246711 + 0.759299i 0.00882237 + 0.0271525i
\(783\) −13.3156 + 40.9812i −0.475861 + 1.46455i
\(784\) 1.14590 3.52671i 0.0409249 0.125954i
\(785\) 20.5623 + 14.9394i 0.733900 + 0.533210i
\(786\) 0.0172209 + 0.0530006i 0.000614250 + 0.00189047i
\(787\) −25.3156 18.3929i −0.902403 0.655635i 0.0366787 0.999327i \(-0.488322\pi\)
−0.939082 + 0.343693i \(0.888322\pi\)
\(788\) 21.4894 15.6129i 0.765527 0.556188i
\(789\) 3.33688 10.2699i 0.118796 0.365617i
\(790\) 0 0
\(791\) 4.50000 3.26944i 0.160002 0.116248i
\(792\) 1.05573 3.24920i 0.0375137 0.115455i
\(793\) 27.2705 19.8132i 0.968404 0.703587i
\(794\) 8.14590 + 5.91834i 0.289087 + 0.210034i
\(795\) −10.2812 31.6421i −0.364635 1.12223i
\(796\) −34.9615 25.4010i −1.23918 0.900315i
\(797\) 2.79837 8.61251i 0.0991235 0.305071i −0.889183 0.457552i \(-0.848726\pi\)
0.988306 + 0.152481i \(0.0487264\pi\)
\(798\) 2.86475 8.81678i 0.101411 0.312111i
\(799\) −0.246711 0.759299i −0.00872801 0.0268621i
\(800\) −10.4164 −0.368276
\(801\) 12.7639 0.450991
\(802\) 5.69756 + 17.5353i 0.201188 + 0.619193i
\(803\) −5.29180 + 3.84471i −0.186743 + 0.135677i
\(804\) 5.54508 + 4.02874i 0.195560 + 0.142083i
\(805\) 42.9787 1.51480
\(806\) 0 0
\(807\) 1.38197 0.0486475
\(808\) −8.61803 6.26137i −0.303181 0.220274i
\(809\) −44.3328 + 32.2097i −1.55866 + 1.13243i −0.621561 + 0.783366i \(0.713501\pi\)
−0.937098 + 0.349066i \(0.886499\pi\)
\(810\) 0.500000 + 1.53884i 0.0175682 + 0.0540694i
\(811\) 42.7771 1.50211 0.751053 0.660242i \(-0.229546\pi\)
0.751053 + 0.660242i \(0.229546\pi\)
\(812\) 41.8328 1.46804
\(813\) −2.95492 9.09429i −0.103633 0.318951i
\(814\) 0.0344419 0.106001i 0.00120719 0.00371534i
\(815\) 10.2812 31.6421i 0.360133 1.10838i
\(816\) 0.354102 + 0.257270i 0.0123960 + 0.00900626i
\(817\) −7.13525 21.9601i −0.249631 0.768285i
\(818\) −3.09017 2.24514i −0.108045 0.0784995i
\(819\) 23.5623 17.1190i 0.823334 0.598187i
\(820\) 8.47214 26.0746i 0.295860 0.910563i
\(821\) 26.2705 19.0866i 0.916847 0.666128i −0.0258901 0.999665i \(-0.508242\pi\)
0.942737 + 0.333536i \(0.108242\pi\)
\(822\) 3.23607 2.35114i 0.112871 0.0820055i
\(823\) −1.89261 + 5.82485i −0.0659722 + 0.203042i −0.978609 0.205731i \(-0.934043\pi\)
0.912636 + 0.408772i \(0.134043\pi\)
\(824\) 0.263932 0.191758i 0.00919451 0.00668020i
\(825\) −1.14590 0.832544i −0.0398950 0.0289854i
\(826\) −5.42705 16.7027i −0.188831 0.581163i
\(827\) −2.16312 1.57160i −0.0752190 0.0546498i 0.549540 0.835467i \(-0.314803\pi\)
−0.624759 + 0.780817i \(0.714803\pi\)
\(828\) −5.47214 + 16.8415i −0.190170 + 0.585283i
\(829\) −6.70820 + 20.6457i −0.232986 + 0.717056i 0.764397 + 0.644746i \(0.223037\pi\)
−0.997382 + 0.0723096i \(0.976963\pi\)
\(830\) −2.04508 6.29412i −0.0709859 0.218472i
\(831\) −13.3262 −0.462282
\(832\) −1.14590 −0.0397269
\(833\) 0.145898 + 0.449028i 0.00505507 + 0.0155579i
\(834\) −2.92705 + 2.12663i −0.101355 + 0.0736391i
\(835\) −19.5623 14.2128i −0.676982 0.491856i
\(836\) 6.18034 0.213752
\(837\) 0 0
\(838\) −2.76393 −0.0954784
\(839\) −9.04508 6.57164i −0.312271 0.226878i 0.420599 0.907246i \(-0.361820\pi\)
−0.732870 + 0.680368i \(0.761820\pi\)
\(840\) −14.2082 + 10.3229i −0.490230 + 0.356173i
\(841\) 13.9894 + 43.0548i 0.482392 + 1.48465i
\(842\) −9.12461 −0.314455
\(843\) −19.0344 −0.655581
\(844\) 4.00000 + 12.3107i 0.137686 + 0.423753i
\(845\) −8.54508 + 26.2991i −0.293960 + 0.904715i
\(846\) −1.29180 + 3.97574i −0.0444129 + 0.136689i
\(847\) 25.2812 + 18.3678i 0.868671 + 0.631126i
\(848\) −7.28115 22.4091i −0.250036 0.769531i
\(849\) 5.30902 + 3.85723i 0.182205 + 0.132380i
\(850\) 0.218847 0.159002i 0.00750639 0.00545371i
\(851\) −0.399187 + 1.22857i −0.0136840 + 0.0421149i
\(852\) −0.118034 + 0.0857567i −0.00404378 + 0.00293798i
\(853\) −3.23607 + 2.35114i −0.110801 + 0.0805015i −0.641806 0.766867i \(-0.721815\pi\)
0.531005 + 0.847369i \(0.321815\pi\)
\(854\) 3.97871 12.2452i 0.136149 0.419023i
\(855\) −21.1803 + 15.3884i −0.724352 + 0.526273i
\(856\) −1.97214 1.43284i −0.0674062 0.0489735i
\(857\) −2.52786 7.77997i −0.0863502 0.265759i 0.898553 0.438865i \(-0.144619\pi\)
−0.984903 + 0.173107i \(0.944619\pi\)
\(858\) 1.85410 + 1.34708i 0.0632980 + 0.0459887i
\(859\) 13.3779 41.1729i 0.456448 1.40480i −0.412979 0.910741i \(-0.635512\pi\)
0.869427 0.494062i \(-0.164488\pi\)
\(860\) −6.04508 + 18.6049i −0.206136 + 0.634420i
\(861\) −6.00000 18.4661i −0.204479 0.629323i
\(862\) −18.0689 −0.615429
\(863\) 2.49342 0.0848771 0.0424385 0.999099i \(-0.486487\pi\)
0.0424385 + 0.999099i \(0.486487\pi\)
\(864\) −8.68034 26.7153i −0.295311 0.908874i
\(865\) 1.92705 1.40008i 0.0655217 0.0476043i
\(866\) 0.291796 + 0.212002i 0.00991563 + 0.00720413i
\(867\) 16.9443 0.575458
\(868\) 0 0
\(869\) 0 0
\(870\) −11.2812 8.19624i −0.382467 0.277878i
\(871\) 16.6353 12.0862i 0.563664 0.409526i
\(872\) −5.81559 17.8986i −0.196941 0.606122i
\(873\) 10.5836 0.358200
\(874\) 16.9098 0.571984
\(875\) 7.63525 + 23.4989i 0.258119 + 0.794408i
\(876\) −4.28115 + 13.1760i −0.144647 + 0.445177i
\(877\) 5.03444 15.4944i 0.170001 0.523209i −0.829369 0.558701i \(-0.811300\pi\)
0.999370 + 0.0354920i \(0.0112998\pi\)
\(878\) 20.9164 + 15.1967i 0.705895 + 0.512862i
\(879\) 2.54508 + 7.83297i 0.0858436 + 0.264199i
\(880\) −3.00000 2.17963i −0.101130 0.0734752i
\(881\) 12.4271 9.02878i 0.418678 0.304187i −0.358428 0.933557i \(-0.616687\pi\)
0.777106 + 0.629370i \(0.216687\pi\)
\(882\) 0.763932 2.35114i 0.0257229 0.0791670i
\(883\) 0.809017 0.587785i 0.0272256 0.0197805i −0.574089 0.818793i \(-0.694644\pi\)
0.601315 + 0.799012i \(0.294644\pi\)
\(884\) 1.50000 1.08981i 0.0504505 0.0366544i
\(885\) 7.66312 23.5847i 0.257593 0.792790i
\(886\) −20.5623 + 14.9394i −0.690804 + 0.501899i
\(887\) −31.6353 22.9844i −1.06221 0.771739i −0.0877123 0.996146i \(-0.527956\pi\)
−0.974496 + 0.224407i \(0.927956\pi\)
\(888\) −0.163119 0.502029i −0.00547391 0.0168470i
\(889\) −24.8435 18.0498i −0.833223 0.605372i
\(890\) −3.19098 + 9.82084i −0.106962 + 0.329195i
\(891\) −0.236068 + 0.726543i −0.00790857 + 0.0243401i
\(892\) −0.354102 1.08981i −0.0118562 0.0364897i
\(893\) −16.9098 −0.565866
\(894\) −10.5279 −0.352104
\(895\) −16.0172 49.2959i −0.535397 1.64778i
\(896\) −27.6246 + 20.0705i −0.922874 + 0.670507i
\(897\) −21.4894 15.6129i −0.717509 0.521301i
\(898\) −14.8754 −0.496398
\(899\) 0 0
\(900\) 6.00000 0.200000
\(901\) 2.42705 + 1.76336i 0.0808568 + 0.0587459i
\(902\) −2.47214 + 1.79611i −0.0823131 + 0.0598040i
\(903\) 4.28115 + 13.1760i 0.142468 + 0.438471i
\(904\) −4.14590 −0.137891
\(905\) −44.5066 −1.47945
\(906\) −3.72542 11.4657i −0.123769 0.380922i
\(907\) 16.3541 50.3328i 0.543029 1.67127i −0.182601 0.983187i \(-0.558452\pi\)
0.725631 0.688085i \(-0.241548\pi\)
\(908\) 10.3713 31.9196i 0.344184 1.05929i
\(909\) 7.70820 + 5.60034i 0.255665 + 0.185751i
\(910\) 7.28115 + 22.4091i 0.241368 + 0.742854i
\(911\) −6.61803 4.80828i −0.219265 0.159306i 0.472731 0.881207i \(-0.343268\pi\)
−0.691996 + 0.721901i \(0.743268\pi\)
\(912\) 7.50000 5.44907i 0.248350 0.180437i
\(913\) 0.965558 2.97168i 0.0319553 0.0983483i
\(914\) −7.87132 + 5.71885i −0.260360 + 0.189163i
\(915\) 14.7082 10.6861i 0.486238 0.353273i
\(916\) 3.61803 11.1352i 0.119543 0.367916i
\(917\) −0.218847 + 0.159002i −0.00722697 + 0.00525070i
\(918\) 0.590170 + 0.428784i 0.0194785 + 0.0141520i
\(919\) 3.05166 + 9.39205i 0.100665 + 0.309815i 0.988689 0.149983i \(-0.0479218\pi\)
−0.888024 + 0.459798i \(0.847922\pi\)
\(920\) −25.9164 18.8294i −0.854439 0.620786i
\(921\) −1.88197 + 5.79210i −0.0620129 + 0.190856i
\(922\) −2.05166 + 6.31437i −0.0675679 + 0.207953i
\(923\) 0.135255 + 0.416272i 0.00445197 + 0.0137018i
\(924\) −3.70820 −0.121991
\(925\) 0.437694 0.0143913
\(926\) 5.94427 + 18.2946i 0.195341 + 0.601197i
\(927\) −0.236068 + 0.171513i −0.00775349 + 0.00563324i
\(928\) −39.1697 28.4585i −1.28581 0.934194i
\(929\) 33.5410 1.10045 0.550223 0.835018i \(-0.314543\pi\)
0.550223 + 0.835018i \(0.314543\pi\)
\(930\) 0 0
\(931\) 10.0000 0.327737
\(932\) 24.6074 + 17.8783i 0.806042 + 0.585624i
\(933\) 13.3262 9.68208i 0.436281 0.316977i
\(934\) 6.25987 + 19.2659i 0.204829 + 0.630399i
\(935\) 0.472136 0.0154405
\(936\) −21.7082 −0.709555
\(937\) 12.5106 + 38.5038i 0.408705 + 1.25786i 0.917762 + 0.397131i \(0.129994\pi\)
−0.509057 + 0.860733i \(0.670006\pi\)
\(938\) 2.42705 7.46969i 0.0792460 0.243894i
\(939\) −0.381966 + 1.17557i −0.0124650 + 0.0383633i
\(940\) 11.5902 + 8.42075i 0.378030 + 0.274655i
\(941\) 8.83282 + 27.1846i 0.287942 + 0.886193i 0.985502 + 0.169667i \(0.0542691\pi\)
−0.697560 + 0.716526i \(0.745731\pi\)
\(942\) −4.85410 3.52671i −0.158155 0.114906i
\(943\) 28.6525 20.8172i 0.933053 0.677903i
\(944\) 5.42705 16.7027i 0.176635 0.543628i
\(945\) 31.7705 23.0826i 1.03349 0.750878i
\(946\) 1.76393 1.28157i 0.0573504 0.0416675i
\(947\) 6.81966 20.9888i 0.221609 0.682043i −0.777009 0.629490i \(-0.783264\pi\)
0.998618 0.0525534i \(-0.0167360\pi\)
\(948\) 0 0
\(949\) 33.6246 + 24.4297i 1.09150 + 0.793022i
\(950\) −1.77051 5.44907i −0.0574429 0.176791i
\(951\) 20.9443 + 15.2169i 0.679165 + 0.493442i
\(952\) 0.489357 1.50609i 0.0158601 0.0488125i
\(953\) 13.0451 40.1486i 0.422572 1.30054i −0.482729 0.875770i \(-0.660354\pi\)
0.905300 0.424772i \(-0.139646\pi\)
\(954\) −4.85410 14.9394i −0.157157 0.483681i
\(955\) 42.1246 1.36312
\(956\) 21.7082 0.702093
\(957\) −2.03444 6.26137i −0.0657642 0.202401i
\(958\) −4.47214 + 3.24920i −0.144488 + 0.104977i
\(959\) 15.7082 + 11.4127i 0.507244 + 0.368535i
\(960\) −0.618034 −0.0199470
\(961\) 0 0
\(962\) −0.708204 −0.0228334
\(963\) 1.76393 + 1.28157i 0.0568419 + 0.0412981i
\(964\) −11.1631 + 8.11048i −0.359540 + 0.261221i
\(965\) 1.92705 + 5.93085i 0.0620340 + 0.190921i
\(966\) −10.1459 −0.326439
\(967\) 43.6525 1.40377 0.701884 0.712291i \(-0.252342\pi\)
0.701884 + 0.712291i \(0.252342\pi\)
\(968\) −7.19756 22.1518i −0.231338 0.711986i
\(969\) −0.364745 + 1.12257i −0.0117173 + 0.0360621i
\(970\) −2.64590 + 8.14324i −0.0849547 + 0.261464i
\(971\) 16.6353 + 12.0862i 0.533851 + 0.387865i 0.821796 0.569782i \(-0.192972\pi\)
−0.287945 + 0.957647i \(0.592972\pi\)
\(972\) 8.00000 + 24.6215i 0.256600 + 0.789734i
\(973\) −14.2082 10.3229i −0.455494 0.330936i
\(974\) 11.4615 8.32726i 0.367250 0.266823i
\(975\) −2.78115 + 8.55951i −0.0890682 + 0.274124i
\(976\) 10.4164 7.56796i 0.333421 0.242245i
\(977\) 4.90983 3.56720i 0.157079 0.114125i −0.506469 0.862258i \(-0.669050\pi\)
0.663549 + 0.748133i \(0.269050\pi\)
\(978\) −2.42705 + 7.46969i −0.0776085 + 0.238855i
\(979\) −3.94427 + 2.86568i −0.126059 + 0.0915876i
\(980\) −6.85410 4.97980i −0.218946 0.159074i
\(981\) 5.20163 + 16.0090i 0.166075 + 0.511127i
\(982\) −13.7984 10.0251i −0.440324 0.319914i
\(983\) 6.50000 20.0049i 0.207318 0.638059i −0.792292 0.610142i \(-0.791113\pi\)
0.999610 0.0279171i \(-0.00888743\pi\)
\(984\) −4.47214 + 13.7638i −0.142566 + 0.438775i
\(985\) −13.2812 40.8752i −0.423173 1.30239i
\(986\) 1.25735 0.0400423
\(987\) 10.1459 0.322947
\(988\) −12.1353 37.3485i −0.386074 1.18821i
\(989\) −20.4443 + 14.8536i −0.650090 + 0.472318i
\(990\) −2.00000 1.45309i −0.0635642 0.0461821i
\(991\) −17.2705 −0.548616 −0.274308 0.961642i \(-0.588449\pi\)
−0.274308 + 0.961642i \(0.588449\pi\)
\(992\) 0 0
\(993\) −11.2705 −0.357659
\(994\) 0.135255 + 0.0982684i 0.00429003 + 0.00311689i
\(995\) −56.5689 + 41.0997i −1.79335 + 1.30295i
\(996\) −2.04508 6.29412i −0.0648010 0.199437i
\(997\) −27.2492 −0.862992 −0.431496 0.902115i \(-0.642014\pi\)
−0.431496 + 0.902115i \(0.642014\pi\)
\(998\) −2.56231 −0.0811084
\(999\) 0.364745 + 1.12257i 0.0115400 + 0.0355165i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.f.374.1 4
31.2 even 5 31.2.d.a.8.1 yes 4
31.3 odd 30 961.2.g.g.235.1 8
31.4 even 5 961.2.a.d.1.1 2
31.5 even 3 961.2.g.f.732.1 8
31.6 odd 6 961.2.g.g.816.1 8
31.7 even 15 961.2.c.f.439.1 4
31.8 even 5 31.2.d.a.4.1 4
31.9 even 15 961.2.g.b.844.1 8
31.10 even 15 961.2.g.b.448.1 8
31.11 odd 30 961.2.c.d.521.1 4
31.12 odd 30 961.2.g.c.846.1 8
31.13 odd 30 961.2.g.g.338.1 8
31.14 even 15 961.2.g.b.547.1 8
31.15 odd 10 961.2.d.e.388.1 4
31.16 even 5 inner 961.2.d.f.388.1 4
31.17 odd 30 961.2.g.c.547.1 8
31.18 even 15 961.2.g.f.338.1 8
31.19 even 15 961.2.g.b.846.1 8
31.20 even 15 961.2.c.f.521.1 4
31.21 odd 30 961.2.g.c.448.1 8
31.22 odd 30 961.2.g.c.844.1 8
31.23 odd 10 961.2.d.b.531.1 4
31.24 odd 30 961.2.c.d.439.1 4
31.25 even 3 961.2.g.f.816.1 8
31.26 odd 6 961.2.g.g.732.1 8
31.27 odd 10 961.2.a.e.1.1 2
31.28 even 15 961.2.g.f.235.1 8
31.29 odd 10 961.2.d.b.628.1 4
31.30 odd 2 961.2.d.e.374.1 4
93.2 odd 10 279.2.i.a.163.1 4
93.8 odd 10 279.2.i.a.190.1 4
93.35 odd 10 8649.2.a.g.1.2 2
93.89 even 10 8649.2.a.f.1.2 2
124.39 odd 10 496.2.n.b.97.1 4
124.95 odd 10 496.2.n.b.225.1 4
155.2 odd 20 775.2.bf.a.349.1 8
155.8 odd 20 775.2.bf.a.624.1 8
155.33 odd 20 775.2.bf.a.349.2 8
155.39 even 10 775.2.k.c.376.1 4
155.64 even 10 775.2.k.c.101.1 4
155.132 odd 20 775.2.bf.a.624.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.4.1 4 31.8 even 5
31.2.d.a.8.1 yes 4 31.2 even 5
279.2.i.a.163.1 4 93.2 odd 10
279.2.i.a.190.1 4 93.8 odd 10
496.2.n.b.97.1 4 124.39 odd 10
496.2.n.b.225.1 4 124.95 odd 10
775.2.k.c.101.1 4 155.64 even 10
775.2.k.c.376.1 4 155.39 even 10
775.2.bf.a.349.1 8 155.2 odd 20
775.2.bf.a.349.2 8 155.33 odd 20
775.2.bf.a.624.1 8 155.8 odd 20
775.2.bf.a.624.2 8 155.132 odd 20
961.2.a.d.1.1 2 31.4 even 5
961.2.a.e.1.1 2 31.27 odd 10
961.2.c.d.439.1 4 31.24 odd 30
961.2.c.d.521.1 4 31.11 odd 30
961.2.c.f.439.1 4 31.7 even 15
961.2.c.f.521.1 4 31.20 even 15
961.2.d.b.531.1 4 31.23 odd 10
961.2.d.b.628.1 4 31.29 odd 10
961.2.d.e.374.1 4 31.30 odd 2
961.2.d.e.388.1 4 31.15 odd 10
961.2.d.f.374.1 4 1.1 even 1 trivial
961.2.d.f.388.1 4 31.16 even 5 inner
961.2.g.b.448.1 8 31.10 even 15
961.2.g.b.547.1 8 31.14 even 15
961.2.g.b.844.1 8 31.9 even 15
961.2.g.b.846.1 8 31.19 even 15
961.2.g.c.448.1 8 31.21 odd 30
961.2.g.c.547.1 8 31.17 odd 30
961.2.g.c.844.1 8 31.22 odd 30
961.2.g.c.846.1 8 31.12 odd 30
961.2.g.f.235.1 8 31.28 even 15
961.2.g.f.338.1 8 31.18 even 15
961.2.g.f.732.1 8 31.5 even 3
961.2.g.f.816.1 8 31.25 even 3
961.2.g.g.235.1 8 31.3 odd 30
961.2.g.g.338.1 8 31.13 odd 30
961.2.g.g.732.1 8 31.26 odd 6
961.2.g.g.816.1 8 31.6 odd 6
8649.2.a.f.1.2 2 93.89 even 10
8649.2.a.g.1.2 2 93.35 odd 10