Properties

Label 961.2.g.c.844.1
Level $961$
Weight $2$
Character 961.844
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(235,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([26]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.235");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{15})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 844.1
Root \(0.913545 + 0.406737i\) of defining polynomial
Character \(\chi\) \(=\) 961.844
Dual form 961.2.g.c.846.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.190983 - 0.587785i) q^{2} +(-0.978148 + 0.207912i) q^{3} +(1.30902 - 0.951057i) q^{4} +(1.30902 - 2.26728i) q^{5} +(0.309017 + 0.535233i) q^{6} +(2.74064 + 1.22021i) q^{7} +(-1.80902 - 1.31433i) q^{8} +(-1.82709 + 0.813473i) q^{9} +(-1.58268 - 0.336408i) q^{10} +(-0.0798526 - 0.759747i) q^{11} +(-1.08268 + 1.20243i) q^{12} +(-3.24803 - 3.60730i) q^{13} +(0.193806 - 1.84395i) q^{14} +(-0.809017 + 2.48990i) q^{15} +(0.572949 - 1.76336i) q^{16} +(0.0246758 - 0.234775i) q^{17} +(0.827091 + 0.918578i) q^{18} +(3.34565 - 3.71572i) q^{19} +(-0.442790 - 4.21286i) q^{20} +(-2.93444 - 0.623735i) q^{21} +(-0.431318 + 0.192035i) q^{22} +(-4.42705 - 3.21644i) q^{23} +(2.04275 + 0.909491i) q^{24} +(-0.927051 - 1.60570i) q^{25} +(-1.50000 + 2.59808i) q^{26} +(4.04508 - 2.93893i) q^{27} +(4.74803 - 1.00922i) q^{28} +(2.66312 + 8.19624i) q^{29} +1.61803 q^{30} -5.61803 q^{32} +(0.236068 + 0.726543i) q^{33} +(-0.142710 + 0.0303339i) q^{34} +(6.35410 - 4.61653i) q^{35} +(-1.61803 + 2.80252i) q^{36} +(0.118034 + 0.204441i) q^{37} +(-2.82301 - 1.25689i) q^{38} +(3.92705 + 2.85317i) q^{39} +(-5.34799 + 2.38108i) q^{40} +(-6.33070 - 1.34563i) q^{41} +(0.193806 + 1.84395i) q^{42} +(3.09007 - 3.43187i) q^{43} +(-0.827091 - 0.918578i) q^{44} +(-0.547318 + 5.20738i) q^{45} +(-1.04508 + 3.21644i) q^{46} +(-1.04508 + 3.21644i) q^{47} +(-0.193806 + 1.84395i) q^{48} +(1.33826 + 1.48629i) q^{49} +(-0.766755 + 0.851568i) q^{50} +(0.0246758 + 0.234775i) q^{51} +(-7.68247 - 1.63296i) q^{52} +(11.6095 - 5.16889i) q^{53} +(-2.50000 - 1.81636i) q^{54} +(-1.82709 - 0.813473i) q^{55} +(-3.35410 - 5.80948i) q^{56} +(-2.50000 + 4.33013i) q^{57} +(4.30902 - 3.13068i) q^{58} +(-9.26515 + 1.96937i) q^{59} +(1.30902 + 4.02874i) q^{60} +6.94427 q^{61} -6.00000 q^{63} +(-0.0729490 - 0.224514i) q^{64} +(-12.4305 + 2.64218i) q^{65} +(0.381966 - 0.277515i) q^{66} +(2.11803 - 3.66854i) q^{67} +(-0.190983 - 0.330792i) q^{68} +(4.99904 + 2.22572i) q^{69} +(-3.92705 - 2.85317i) q^{70} +(0.0823743 - 0.0366754i) q^{71} +(4.37441 + 0.929809i) q^{72} +(-0.895005 - 8.51540i) q^{73} +(0.0976248 - 0.108423i) q^{74} +(1.24064 + 1.37787i) q^{75} +(0.845653 - 8.04585i) q^{76} +(0.708204 - 2.17963i) q^{77} +(0.927051 - 2.85317i) q^{78} +(-3.24803 - 3.60730i) q^{80} +(0.669131 - 0.743145i) q^{81} +(0.418114 + 3.97809i) q^{82} +(-4.00079 - 0.850394i) q^{83} +(-4.43444 + 1.97434i) q^{84} +(-0.500000 - 0.363271i) q^{85} +(-2.60735 - 1.16087i) q^{86} +(-4.30902 - 7.46344i) q^{87} +(-0.854102 + 1.47935i) q^{88} +(-5.16312 + 3.75123i) q^{89} +(3.16535 - 0.672816i) q^{90} +(-4.50000 - 13.8496i) q^{91} -8.85410 q^{92} +2.09017 q^{94} +(-4.04508 - 12.4495i) q^{95} +(5.49527 - 1.16805i) q^{96} +(4.28115 - 3.11044i) q^{97} +(0.618034 - 1.07047i) q^{98} +(0.763932 + 1.32317i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{2} + q^{3} + 6 q^{4} + 6 q^{5} - 2 q^{6} + 3 q^{7} - 10 q^{8} - 2 q^{9} - 2 q^{10} - 2 q^{11} + 2 q^{12} + 6 q^{13} - 6 q^{14} - 2 q^{15} + 18 q^{16} - 3 q^{17} - 6 q^{18} + 5 q^{19} + 7 q^{20}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{14}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.190983 0.587785i −0.135045 0.415627i 0.860552 0.509363i \(-0.170119\pi\)
−0.995597 + 0.0937362i \(0.970119\pi\)
\(3\) −0.978148 + 0.207912i −0.564734 + 0.120038i −0.481427 0.876486i \(-0.659881\pi\)
−0.0833066 + 0.996524i \(0.526548\pi\)
\(4\) 1.30902 0.951057i 0.654508 0.475528i
\(5\) 1.30902 2.26728i 0.585410 1.01396i −0.409414 0.912349i \(-0.634267\pi\)
0.994824 0.101611i \(-0.0323999\pi\)
\(6\) 0.309017 + 0.535233i 0.126156 + 0.218508i
\(7\) 2.74064 + 1.22021i 1.03586 + 0.461196i 0.852983 0.521939i \(-0.174791\pi\)
0.182880 + 0.983135i \(0.441458\pi\)
\(8\) −1.80902 1.31433i −0.639584 0.464685i
\(9\) −1.82709 + 0.813473i −0.609030 + 0.271158i
\(10\) −1.58268 0.336408i −0.500486 0.106382i
\(11\) −0.0798526 0.759747i −0.0240765 0.229072i −0.999943 0.0107032i \(-0.996593\pi\)
0.975866 0.218369i \(-0.0700737\pi\)
\(12\) −1.08268 + 1.20243i −0.312542 + 0.347113i
\(13\) −3.24803 3.60730i −0.900841 1.00049i −0.999985 0.00541216i \(-0.998277\pi\)
0.0991444 0.995073i \(-0.468389\pi\)
\(14\) 0.193806 1.84395i 0.0517969 0.492815i
\(15\) −0.809017 + 2.48990i −0.208887 + 0.642889i
\(16\) 0.572949 1.76336i 0.143237 0.440839i
\(17\) 0.0246758 0.234775i 0.00598477 0.0569412i −0.991122 0.132956i \(-0.957553\pi\)
0.997107 + 0.0760150i \(0.0242197\pi\)
\(18\) 0.827091 + 0.918578i 0.194947 + 0.216511i
\(19\) 3.34565 3.71572i 0.767545 0.852446i −0.224995 0.974360i \(-0.572237\pi\)
0.992541 + 0.121914i \(0.0389033\pi\)
\(20\) −0.442790 4.21286i −0.0990108 0.942025i
\(21\) −2.93444 0.623735i −0.640348 0.136110i
\(22\) −0.431318 + 0.192035i −0.0919572 + 0.0409420i
\(23\) −4.42705 3.21644i −0.923104 0.670674i 0.0211907 0.999775i \(-0.493254\pi\)
−0.944295 + 0.329101i \(0.893254\pi\)
\(24\) 2.04275 + 0.909491i 0.416975 + 0.185649i
\(25\) −0.927051 1.60570i −0.185410 0.321140i
\(26\) −1.50000 + 2.59808i −0.294174 + 0.509525i
\(27\) 4.04508 2.93893i 0.778477 0.565597i
\(28\) 4.74803 1.00922i 0.897293 0.190726i
\(29\) 2.66312 + 8.19624i 0.494529 + 1.52200i 0.817690 + 0.575659i \(0.195254\pi\)
−0.323161 + 0.946344i \(0.604746\pi\)
\(30\) 1.61803 0.295411
\(31\) 0 0
\(32\) −5.61803 −0.993137
\(33\) 0.236068 + 0.726543i 0.0410942 + 0.126475i
\(34\) −0.142710 + 0.0303339i −0.0244745 + 0.00520222i
\(35\) 6.35410 4.61653i 1.07404 0.780335i
\(36\) −1.61803 + 2.80252i −0.269672 + 0.467086i
\(37\) 0.118034 + 0.204441i 0.0194047 + 0.0336099i 0.875565 0.483101i \(-0.160490\pi\)
−0.856160 + 0.516711i \(0.827156\pi\)
\(38\) −2.82301 1.25689i −0.457953 0.203894i
\(39\) 3.92705 + 2.85317i 0.628831 + 0.456873i
\(40\) −5.34799 + 2.38108i −0.845591 + 0.376481i
\(41\) −6.33070 1.34563i −0.988690 0.210153i −0.314940 0.949112i \(-0.601984\pi\)
−0.673750 + 0.738959i \(0.735318\pi\)
\(42\) 0.193806 + 1.84395i 0.0299050 + 0.284527i
\(43\) 3.09007 3.43187i 0.471231 0.523355i −0.459934 0.887953i \(-0.652127\pi\)
0.931165 + 0.364598i \(0.118794\pi\)
\(44\) −0.827091 0.918578i −0.124689 0.138481i
\(45\) −0.547318 + 5.20738i −0.0815894 + 0.776271i
\(46\) −1.04508 + 3.21644i −0.154089 + 0.474238i
\(47\) −1.04508 + 3.21644i −0.152441 + 0.469166i −0.997893 0.0648863i \(-0.979332\pi\)
0.845451 + 0.534052i \(0.179332\pi\)
\(48\) −0.193806 + 1.84395i −0.0279735 + 0.266151i
\(49\) 1.33826 + 1.48629i 0.191180 + 0.212327i
\(50\) −0.766755 + 0.851568i −0.108436 + 0.120430i
\(51\) 0.0246758 + 0.234775i 0.00345531 + 0.0328750i
\(52\) −7.68247 1.63296i −1.06537 0.226451i
\(53\) 11.6095 5.16889i 1.59469 0.710002i 0.598828 0.800877i \(-0.295633\pi\)
0.995862 + 0.0908755i \(0.0289665\pi\)
\(54\) −2.50000 1.81636i −0.340207 0.247175i
\(55\) −1.82709 0.813473i −0.246365 0.109689i
\(56\) −3.35410 5.80948i −0.448211 0.776324i
\(57\) −2.50000 + 4.33013i −0.331133 + 0.573539i
\(58\) 4.30902 3.13068i 0.565802 0.411079i
\(59\) −9.26515 + 1.96937i −1.20622 + 0.256390i −0.766796 0.641890i \(-0.778150\pi\)
−0.439423 + 0.898280i \(0.644817\pi\)
\(60\) 1.30902 + 4.02874i 0.168993 + 0.520108i
\(61\) 6.94427 0.889123 0.444561 0.895748i \(-0.353360\pi\)
0.444561 + 0.895748i \(0.353360\pi\)
\(62\) 0 0
\(63\) −6.00000 −0.755929
\(64\) −0.0729490 0.224514i −0.00911863 0.0280642i
\(65\) −12.4305 + 2.64218i −1.54181 + 0.327723i
\(66\) 0.381966 0.277515i 0.0470168 0.0341597i
\(67\) 2.11803 3.66854i 0.258759 0.448184i −0.707151 0.707063i \(-0.750020\pi\)
0.965910 + 0.258879i \(0.0833531\pi\)
\(68\) −0.190983 0.330792i −0.0231601 0.0401145i
\(69\) 4.99904 + 2.22572i 0.601814 + 0.267945i
\(70\) −3.92705 2.85317i −0.469372 0.341019i
\(71\) 0.0823743 0.0366754i 0.00977604 0.00435257i −0.401843 0.915709i \(-0.631630\pi\)
0.411619 + 0.911356i \(0.364964\pi\)
\(72\) 4.37441 + 0.929809i 0.515529 + 0.109579i
\(73\) −0.895005 8.51540i −0.104752 0.996652i −0.913042 0.407867i \(-0.866273\pi\)
0.808289 0.588786i \(-0.200394\pi\)
\(74\) 0.0976248 0.108423i 0.0113487 0.0126040i
\(75\) 1.24064 + 1.37787i 0.143256 + 0.159102i
\(76\) 0.845653 8.04585i 0.0970031 0.922922i
\(77\) 0.708204 2.17963i 0.0807073 0.248392i
\(78\) 0.927051 2.85317i 0.104968 0.323058i
\(79\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(80\) −3.24803 3.60730i −0.363141 0.403308i
\(81\) 0.669131 0.743145i 0.0743478 0.0825716i
\(82\) 0.418114 + 3.97809i 0.0461730 + 0.439306i
\(83\) −4.00079 0.850394i −0.439144 0.0933429i −0.0169662 0.999856i \(-0.505401\pi\)
−0.422178 + 0.906513i \(0.638734\pi\)
\(84\) −4.43444 + 1.97434i −0.483837 + 0.215418i
\(85\) −0.500000 0.363271i −0.0542326 0.0394023i
\(86\) −2.60735 1.16087i −0.281158 0.125180i
\(87\) −4.30902 7.46344i −0.461975 0.800164i
\(88\) −0.854102 + 1.47935i −0.0910476 + 0.157699i
\(89\) −5.16312 + 3.75123i −0.547290 + 0.397629i −0.826785 0.562518i \(-0.809833\pi\)
0.279496 + 0.960147i \(0.409833\pi\)
\(90\) 3.16535 0.672816i 0.333657 0.0709211i
\(91\) −4.50000 13.8496i −0.471728 1.45183i
\(92\) −8.85410 −0.923104
\(93\) 0 0
\(94\) 2.09017 0.215585
\(95\) −4.04508 12.4495i −0.415017 1.27729i
\(96\) 5.49527 1.16805i 0.560858 0.119214i
\(97\) 4.28115 3.11044i 0.434685 0.315817i −0.348834 0.937184i \(-0.613422\pi\)
0.783520 + 0.621367i \(0.213422\pi\)
\(98\) 0.618034 1.07047i 0.0624309 0.108133i
\(99\) 0.763932 + 1.32317i 0.0767781 + 0.132983i
\(100\) −2.74064 1.22021i −0.274064 0.122021i
\(101\) −3.85410 2.80017i −0.383497 0.278627i 0.379288 0.925279i \(-0.376169\pi\)
−0.762786 + 0.646651i \(0.776169\pi\)
\(102\) 0.133284 0.0593421i 0.0131971 0.00587574i
\(103\) 0.142710 + 0.0303339i 0.0140616 + 0.00298889i 0.214937 0.976628i \(-0.431045\pi\)
−0.200876 + 0.979617i \(0.564379\pi\)
\(104\) 1.13456 + 10.7946i 0.111253 + 1.05850i
\(105\) −5.25542 + 5.83674i −0.512876 + 0.569607i
\(106\) −5.25542 5.83674i −0.510452 0.566914i
\(107\) −0.113954 + 1.08420i −0.0110163 + 0.104813i −0.998648 0.0519766i \(-0.983448\pi\)
0.987632 + 0.156790i \(0.0501146\pi\)
\(108\) 2.50000 7.69421i 0.240563 0.740376i
\(109\) −2.60081 + 8.00448i −0.249113 + 0.766690i 0.745820 + 0.666147i \(0.232058\pi\)
−0.994933 + 0.100543i \(0.967942\pi\)
\(110\) −0.129204 + 1.22930i −0.0123191 + 0.117209i
\(111\) −0.157960 0.175433i −0.0149929 0.0166513i
\(112\) 3.72191 4.13360i 0.351687 0.390588i
\(113\) 0.193806 + 1.84395i 0.0182318 + 0.173464i 0.999849 0.0173983i \(-0.00553834\pi\)
−0.981617 + 0.190862i \(0.938872\pi\)
\(114\) 3.02264 + 0.642482i 0.283096 + 0.0601740i
\(115\) −13.0877 + 5.82701i −1.22043 + 0.543371i
\(116\) 11.2812 + 8.19624i 1.04743 + 0.761002i
\(117\) 8.86889 + 3.94868i 0.819929 + 0.365056i
\(118\) 2.92705 + 5.06980i 0.269457 + 0.466713i
\(119\) 0.354102 0.613323i 0.0324605 0.0562232i
\(120\) 4.73607 3.44095i 0.432342 0.314115i
\(121\) 10.1888 2.16569i 0.926253 0.196881i
\(122\) −1.32624 4.08174i −0.120072 0.369543i
\(123\) 6.47214 0.583573
\(124\) 0 0
\(125\) 8.23607 0.736656
\(126\) 1.14590 + 3.52671i 0.102085 + 0.314184i
\(127\) 10.0124 2.12820i 0.888456 0.188847i 0.258994 0.965879i \(-0.416609\pi\)
0.629461 + 0.777032i \(0.283276\pi\)
\(128\) −9.20820 + 6.69015i −0.813898 + 0.591331i
\(129\) −2.30902 + 3.99933i −0.203298 + 0.352122i
\(130\) 3.92705 + 6.80185i 0.344425 + 0.596562i
\(131\) 0.0823743 + 0.0366754i 0.00719708 + 0.00320435i 0.410332 0.911936i \(-0.365413\pi\)
−0.403135 + 0.915141i \(0.632079\pi\)
\(132\) 1.00000 + 0.726543i 0.0870388 + 0.0632374i
\(133\) 13.7032 6.10105i 1.18822 0.529028i
\(134\) −2.56082 0.544320i −0.221221 0.0470221i
\(135\) −1.36830 13.0185i −0.117764 1.12045i
\(136\) −0.353210 + 0.392279i −0.0302875 + 0.0336377i
\(137\) 4.33070 + 4.80973i 0.369997 + 0.410923i 0.899176 0.437587i \(-0.144167\pi\)
−0.529179 + 0.848510i \(0.677500\pi\)
\(138\) 0.353512 3.36344i 0.0300929 0.286315i
\(139\) −1.80902 + 5.56758i −0.153439 + 0.472236i −0.997999 0.0632239i \(-0.979862\pi\)
0.844561 + 0.535460i \(0.179862\pi\)
\(140\) 3.92705 12.0862i 0.331896 1.02147i
\(141\) 0.353512 3.36344i 0.0297711 0.283253i
\(142\) −0.0372894 0.0414140i −0.00312925 0.00347539i
\(143\) −2.48127 + 2.75573i −0.207494 + 0.230446i
\(144\) 0.387613 + 3.68789i 0.0323011 + 0.307324i
\(145\) 22.0693 + 4.69097i 1.83275 + 0.389564i
\(146\) −4.83430 + 2.15237i −0.400089 + 0.178131i
\(147\) −1.61803 1.17557i −0.133453 0.0969594i
\(148\) 0.348943 + 0.155360i 0.0286830 + 0.0127705i
\(149\) 8.51722 + 14.7523i 0.697758 + 1.20855i 0.969242 + 0.246109i \(0.0791522\pi\)
−0.271484 + 0.962443i \(0.587514\pi\)
\(150\) 0.572949 0.992377i 0.0467811 0.0810272i
\(151\) −15.7812 + 11.4657i −1.28425 + 0.933064i −0.999673 0.0255888i \(-0.991854\pi\)
−0.284579 + 0.958652i \(0.591854\pi\)
\(152\) −10.9360 + 2.32452i −0.887029 + 0.188544i
\(153\) 0.145898 + 0.449028i 0.0117952 + 0.0363018i
\(154\) −1.41641 −0.114137
\(155\) 0 0
\(156\) 7.85410 0.628831
\(157\) 3.00000 + 9.23305i 0.239426 + 0.736878i 0.996503 + 0.0835524i \(0.0266266\pi\)
−0.757077 + 0.653325i \(0.773373\pi\)
\(158\) 0 0
\(159\) −10.2812 + 7.46969i −0.815348 + 0.592385i
\(160\) −7.35410 + 12.7377i −0.581393 + 1.00700i
\(161\) −8.20820 14.2170i −0.646897 1.12046i
\(162\) −0.564602 0.251377i −0.0443593 0.0197500i
\(163\) 10.2812 + 7.46969i 0.805282 + 0.585072i 0.912459 0.409168i \(-0.134181\pi\)
−0.107177 + 0.994240i \(0.534181\pi\)
\(164\) −9.56677 + 4.25940i −0.747039 + 0.332603i
\(165\) 1.95630 + 0.415823i 0.152297 + 0.0323718i
\(166\) 0.264234 + 2.51402i 0.0205085 + 0.195125i
\(167\) 6.18014 6.86374i 0.478233 0.531132i −0.454958 0.890513i \(-0.650346\pi\)
0.933191 + 0.359381i \(0.117012\pi\)
\(168\) 4.48866 + 4.98517i 0.346308 + 0.384614i
\(169\) −1.10406 + 10.5044i −0.0849278 + 0.808034i
\(170\) −0.118034 + 0.363271i −0.00905279 + 0.0278616i
\(171\) −3.09017 + 9.51057i −0.236311 + 0.727291i
\(172\) 0.781051 7.43120i 0.0595546 0.566624i
\(173\) 0.608795 + 0.676135i 0.0462858 + 0.0514056i 0.765843 0.643027i \(-0.222322\pi\)
−0.719557 + 0.694433i \(0.755655\pi\)
\(174\) −3.56395 + 3.95817i −0.270182 + 0.300068i
\(175\) −0.581419 5.53184i −0.0439512 0.418167i
\(176\) −1.38546 0.294488i −0.104433 0.0221978i
\(177\) 8.65323 3.85266i 0.650416 0.289584i
\(178\) 3.19098 + 2.31838i 0.239174 + 0.173770i
\(179\) −18.0867 8.05272i −1.35186 0.601889i −0.402314 0.915502i \(-0.631794\pi\)
−0.949551 + 0.313613i \(0.898461\pi\)
\(180\) 4.23607 + 7.33708i 0.315738 + 0.546874i
\(181\) 8.50000 14.7224i 0.631800 1.09431i −0.355383 0.934721i \(-0.615650\pi\)
0.987184 0.159589i \(-0.0510169\pi\)
\(182\) −7.28115 + 5.29007i −0.539715 + 0.392126i
\(183\) −6.79252 + 1.44380i −0.502118 + 0.106728i
\(184\) 3.78115 + 11.6372i 0.278750 + 0.857905i
\(185\) 0.618034 0.0454388
\(186\) 0 0
\(187\) −0.180340 −0.0131878
\(188\) 1.69098 + 5.20431i 0.123328 + 0.379563i
\(189\) 14.6722 3.11868i 1.06725 0.226850i
\(190\) −6.54508 + 4.75528i −0.474830 + 0.344984i
\(191\) 8.04508 13.9345i 0.582122 1.00826i −0.413106 0.910683i \(-0.635556\pi\)
0.995228 0.0975816i \(-0.0311107\pi\)
\(192\) 0.118034 + 0.204441i 0.00851837 + 0.0147542i
\(193\) −2.17603 0.968833i −0.156634 0.0697381i 0.326922 0.945051i \(-0.393989\pi\)
−0.483556 + 0.875313i \(0.660655\pi\)
\(194\) −2.64590 1.92236i −0.189964 0.138017i
\(195\) 11.6095 5.16889i 0.831375 0.370152i
\(196\) 3.16535 + 0.672816i 0.226097 + 0.0480583i
\(197\) 1.71598 + 16.3265i 0.122259 + 1.16321i 0.867856 + 0.496816i \(0.165498\pi\)
−0.745597 + 0.666397i \(0.767836\pi\)
\(198\) 0.631841 0.701731i 0.0449030 0.0498698i
\(199\) 17.8713 + 19.8481i 1.26686 + 1.40699i 0.872925 + 0.487854i \(0.162220\pi\)
0.393936 + 0.919138i \(0.371113\pi\)
\(200\) −0.433364 + 4.12319i −0.0306435 + 0.291553i
\(201\) −1.30902 + 4.02874i −0.0923309 + 0.284165i
\(202\) −0.909830 + 2.80017i −0.0640154 + 0.197019i
\(203\) −2.70249 + 25.7125i −0.189678 + 1.80466i
\(204\) 0.255585 + 0.283856i 0.0178945 + 0.0198739i
\(205\) −11.3379 + 12.5920i −0.791875 + 0.879467i
\(206\) −0.00942533 0.0896760i −0.000656694 0.00624802i
\(207\) 10.7051 + 2.27544i 0.744057 + 0.158154i
\(208\) −8.22191 + 3.66063i −0.570087 + 0.253819i
\(209\) −3.09017 2.24514i −0.213752 0.155300i
\(210\) 4.43444 + 1.97434i 0.306006 + 0.136242i
\(211\) 4.00000 + 6.92820i 0.275371 + 0.476957i 0.970229 0.242190i \(-0.0778659\pi\)
−0.694857 + 0.719148i \(0.744533\pi\)
\(212\) 10.2812 17.8075i 0.706112 1.22302i
\(213\) −0.0729490 + 0.0530006i −0.00499838 + 0.00363154i
\(214\) 0.659039 0.140083i 0.0450510 0.00957588i
\(215\) −3.73607 11.4984i −0.254798 0.784187i
\(216\) −11.1803 −0.760726
\(217\) 0 0
\(218\) 5.20163 0.352299
\(219\) 2.64590 + 8.14324i 0.178793 + 0.550269i
\(220\) −3.16535 + 0.672816i −0.213408 + 0.0453613i
\(221\) −0.927051 + 0.673542i −0.0623602 + 0.0453073i
\(222\) −0.0729490 + 0.126351i −0.00489602 + 0.00848015i
\(223\) 0.354102 + 0.613323i 0.0237124 + 0.0410711i 0.877638 0.479324i \(-0.159118\pi\)
−0.853926 + 0.520395i \(0.825785\pi\)
\(224\) −15.3970 6.85518i −1.02875 0.458031i
\(225\) 3.00000 + 2.17963i 0.200000 + 0.145309i
\(226\) 1.04683 0.466079i 0.0696341 0.0310031i
\(227\) 20.2894 + 4.31264i 1.34665 + 0.286240i 0.824137 0.566390i \(-0.191660\pi\)
0.522515 + 0.852630i \(0.324994\pi\)
\(228\) 0.845653 + 8.04585i 0.0560047 + 0.532850i
\(229\) 4.84187 5.37745i 0.319960 0.355352i −0.561612 0.827401i \(-0.689819\pi\)
0.881572 + 0.472049i \(0.156485\pi\)
\(230\) 5.92455 + 6.57988i 0.390653 + 0.433864i
\(231\) −0.239558 + 2.27924i −0.0157618 + 0.149963i
\(232\) 5.95492 18.3273i 0.390959 1.20325i
\(233\) 5.80902 17.8783i 0.380561 1.17125i −0.559088 0.829108i \(-0.688849\pi\)
0.939649 0.342139i \(-0.111151\pi\)
\(234\) 0.627171 5.96713i 0.0409994 0.390084i
\(235\) 5.92455 + 6.57988i 0.386475 + 0.429224i
\(236\) −10.2553 + 11.3896i −0.667560 + 0.741401i
\(237\) 0 0
\(238\) −0.428129 0.0910017i −0.0277515 0.00589877i
\(239\) 12.2565 5.45694i 0.792807 0.352980i 0.0299531 0.999551i \(-0.490464\pi\)
0.762854 + 0.646571i \(0.223798\pi\)
\(240\) 3.92705 + 2.85317i 0.253490 + 0.184171i
\(241\) 7.79059 + 3.46859i 0.501836 + 0.223432i 0.642012 0.766695i \(-0.278100\pi\)
−0.140176 + 0.990127i \(0.544767\pi\)
\(242\) −3.21885 5.57521i −0.206915 0.358388i
\(243\) −8.00000 + 13.8564i −0.513200 + 0.888889i
\(244\) 9.09017 6.60440i 0.581938 0.422803i
\(245\) 5.12165 1.08864i 0.327210 0.0695506i
\(246\) −1.23607 3.80423i −0.0788088 0.242549i
\(247\) −24.2705 −1.54430
\(248\) 0 0
\(249\) 4.09017 0.259204
\(250\) −1.57295 4.84104i −0.0994820 0.306174i
\(251\) 0.923637 0.196325i 0.0582995 0.0123919i −0.178670 0.983909i \(-0.557179\pi\)
0.236969 + 0.971517i \(0.423846\pi\)
\(252\) −7.85410 + 5.70634i −0.494762 + 0.359466i
\(253\) −2.09017 + 3.62028i −0.131408 + 0.227605i
\(254\) −3.16312 5.47868i −0.198472 0.343763i
\(255\) 0.564602 + 0.251377i 0.0353568 + 0.0157418i
\(256\) 5.30902 + 3.85723i 0.331814 + 0.241077i
\(257\) 1.29395 0.576105i 0.0807146 0.0359364i −0.365982 0.930622i \(-0.619267\pi\)
0.446697 + 0.894685i \(0.352600\pi\)
\(258\) 2.79173 + 0.593401i 0.173806 + 0.0369435i
\(259\) 0.0740275 + 0.704324i 0.00459984 + 0.0437646i
\(260\) −13.7589 + 15.2808i −0.853289 + 0.947673i
\(261\) −11.5332 12.8089i −0.713886 0.792851i
\(262\) 0.00582517 0.0554228i 0.000359880 0.00342403i
\(263\) 3.33688 10.2699i 0.205761 0.633267i −0.793920 0.608022i \(-0.791963\pi\)
0.999681 0.0252452i \(-0.00803665\pi\)
\(264\) 0.527864 1.62460i 0.0324878 0.0999871i
\(265\) 3.47772 33.0883i 0.213634 2.03260i
\(266\) −6.20318 6.88933i −0.380341 0.422412i
\(267\) 4.27037 4.74273i 0.261342 0.290250i
\(268\) −0.716449 6.81655i −0.0437641 0.416387i
\(269\) −1.35177 0.287327i −0.0824187 0.0175186i 0.166518 0.986038i \(-0.446748\pi\)
−0.248936 + 0.968520i \(0.580081\pi\)
\(270\) −7.39074 + 3.29057i −0.449786 + 0.200258i
\(271\) 7.73607 + 5.62058i 0.469933 + 0.341426i 0.797415 0.603431i \(-0.206200\pi\)
−0.327482 + 0.944857i \(0.606200\pi\)
\(272\) −0.399853 0.178026i −0.0242447 0.0107944i
\(273\) 7.28115 + 12.6113i 0.440675 + 0.763272i
\(274\) 2.00000 3.46410i 0.120824 0.209274i
\(275\) −1.14590 + 0.832544i −0.0691003 + 0.0502043i
\(276\) 8.66062 1.84087i 0.521308 0.110807i
\(277\) −4.11803 12.6740i −0.247429 0.761507i −0.995228 0.0975818i \(-0.968889\pi\)
0.747799 0.663925i \(-0.231111\pi\)
\(278\) 3.61803 0.216995
\(279\) 0 0
\(280\) −17.5623 −1.04955
\(281\) 5.88197 + 18.1028i 0.350889 + 1.07992i 0.958355 + 0.285579i \(0.0921859\pi\)
−0.607466 + 0.794345i \(0.707814\pi\)
\(282\) −2.04449 + 0.434571i −0.121748 + 0.0258783i
\(283\) −5.30902 + 3.85723i −0.315588 + 0.229288i −0.734291 0.678835i \(-0.762485\pi\)
0.418702 + 0.908124i \(0.362485\pi\)
\(284\) 0.0729490 0.126351i 0.00432873 0.00749758i
\(285\) 6.54508 + 11.3364i 0.387697 + 0.671512i
\(286\) 2.09366 + 0.932157i 0.123801 + 0.0551196i
\(287\) −15.7082 11.4127i −0.927226 0.673669i
\(288\) 10.2647 4.57012i 0.604851 0.269297i
\(289\) 16.5740 + 3.52291i 0.974941 + 0.207230i
\(290\) −1.45757 13.8679i −0.0855917 0.814350i
\(291\) −3.54090 + 3.93257i −0.207571 + 0.230531i
\(292\) −9.27020 10.2956i −0.542498 0.602505i
\(293\) 0.860904 8.19095i 0.0502945 0.478520i −0.940165 0.340719i \(-0.889330\pi\)
0.990460 0.137802i \(-0.0440037\pi\)
\(294\) −0.381966 + 1.17557i −0.0222767 + 0.0685607i
\(295\) −7.66312 + 23.5847i −0.446164 + 1.37315i
\(296\) 0.0551768 0.524972i 0.00320709 0.0305134i
\(297\) −2.55585 2.83856i −0.148306 0.164710i
\(298\) 7.04452 7.82373i 0.408078 0.453216i
\(299\) 2.77652 + 26.4168i 0.160570 + 1.52772i
\(300\) 2.93444 + 0.623735i 0.169420 + 0.0360114i
\(301\) 12.6564 5.63497i 0.729500 0.324794i
\(302\) 9.75329 + 7.08618i 0.561239 + 0.407764i
\(303\) 4.35207 + 1.93767i 0.250020 + 0.111316i
\(304\) −4.63525 8.02850i −0.265850 0.460466i
\(305\) 9.09017 15.7446i 0.520502 0.901535i
\(306\) 0.236068 0.171513i 0.0134951 0.00980477i
\(307\) −5.95709 + 1.26622i −0.339989 + 0.0722669i −0.374742 0.927129i \(-0.622269\pi\)
0.0347534 + 0.999396i \(0.488935\pi\)
\(308\) −1.14590 3.52671i −0.0652936 0.200953i
\(309\) −0.145898 −0.00829985
\(310\) 0 0
\(311\) 16.4721 0.934049 0.467025 0.884244i \(-0.345326\pi\)
0.467025 + 0.884244i \(0.345326\pi\)
\(312\) −3.35410 10.3229i −0.189889 0.584417i
\(313\) 1.20906 0.256993i 0.0683399 0.0145261i −0.173615 0.984814i \(-0.555545\pi\)
0.241955 + 0.970288i \(0.422211\pi\)
\(314\) 4.85410 3.52671i 0.273933 0.199024i
\(315\) −7.85410 + 13.6037i −0.442529 + 0.766482i
\(316\) 0 0
\(317\) 23.6504 + 10.5298i 1.32834 + 0.591414i 0.943439 0.331546i \(-0.107570\pi\)
0.384898 + 0.922959i \(0.374237\pi\)
\(318\) 6.35410 + 4.61653i 0.356320 + 0.258882i
\(319\) 6.01441 2.67779i 0.336742 0.149927i
\(320\) −0.604528 0.128496i −0.0337942 0.00718317i
\(321\) −0.113954 1.08420i −0.00636028 0.0605140i
\(322\) −6.78893 + 7.53987i −0.378332 + 0.420181i
\(323\) −0.789802 0.877163i −0.0439457 0.0488067i
\(324\) 0.169131 1.60917i 0.00939614 0.0893983i
\(325\) −2.78115 + 8.55951i −0.154271 + 0.474796i
\(326\) 2.42705 7.46969i 0.134422 0.413708i
\(327\) 0.879754 8.37030i 0.0486505 0.462879i
\(328\) 9.68375 + 10.7549i 0.534696 + 0.593840i
\(329\) −6.78893 + 7.53987i −0.374286 + 0.415687i
\(330\) −0.129204 1.22930i −0.00711246 0.0676706i
\(331\) 11.0242 + 2.34327i 0.605946 + 0.128798i 0.500660 0.865644i \(-0.333091\pi\)
0.105286 + 0.994442i \(0.466424\pi\)
\(332\) −6.04587 + 2.69180i −0.331810 + 0.147732i
\(333\) −0.381966 0.277515i −0.0209316 0.0152077i
\(334\) −5.21470 2.32174i −0.285336 0.127040i
\(335\) −5.54508 9.60437i −0.302960 0.524743i
\(336\) −2.78115 + 4.81710i −0.151724 + 0.262794i
\(337\) 15.3541 11.1554i 0.836391 0.607674i −0.0849690 0.996384i \(-0.527079\pi\)
0.921360 + 0.388710i \(0.127079\pi\)
\(338\) 6.38521 1.35722i 0.347310 0.0738230i
\(339\) −0.572949 1.76336i −0.0311183 0.0957723i
\(340\) −1.00000 −0.0542326
\(341\) 0 0
\(342\) 6.18034 0.334195
\(343\) −4.63525 14.2658i −0.250280 0.770283i
\(344\) −10.1006 + 2.14695i −0.544587 + 0.115756i
\(345\) 11.5902 8.42075i 0.623994 0.453358i
\(346\) 0.281153 0.486971i 0.0151149 0.0261797i
\(347\) 4.06231 + 7.03612i 0.218076 + 0.377719i 0.954220 0.299107i \(-0.0966886\pi\)
−0.736144 + 0.676825i \(0.763355\pi\)
\(348\) −12.7387 5.67165i −0.682867 0.304032i
\(349\) 13.5172 + 9.82084i 0.723560 + 0.525697i 0.887520 0.460770i \(-0.152427\pi\)
−0.163959 + 0.986467i \(0.552427\pi\)
\(350\) −3.14049 + 1.39824i −0.167866 + 0.0747389i
\(351\) −23.7401 5.04612i −1.26715 0.269342i
\(352\) 0.448615 + 4.26829i 0.0239113 + 0.227500i
\(353\) 21.6678 24.0645i 1.15326 1.28082i 0.199619 0.979874i \(-0.436030\pi\)
0.953640 0.300950i \(-0.0973037\pi\)
\(354\) −3.91716 4.35045i −0.208195 0.231224i
\(355\) 0.0246758 0.234775i 0.00130966 0.0124606i
\(356\) −3.19098 + 9.82084i −0.169122 + 0.520503i
\(357\) −0.218847 + 0.673542i −0.0115826 + 0.0356476i
\(358\) −1.27902 + 12.1690i −0.0675982 + 0.643154i
\(359\) −16.9466 18.8211i −0.894405 0.993338i 0.105594 0.994409i \(-0.466326\pi\)
−0.999999 + 0.00107162i \(0.999659\pi\)
\(360\) 7.83432 8.70089i 0.412905 0.458577i
\(361\) −0.627171 5.96713i −0.0330090 0.314060i
\(362\) −10.2770 2.18444i −0.540146 0.114812i
\(363\) −9.51586 + 4.23673i −0.499453 + 0.222371i
\(364\) −19.0623 13.8496i −0.999136 0.725915i
\(365\) −20.4784 9.11757i −1.07189 0.477236i
\(366\) 2.14590 + 3.71680i 0.112168 + 0.194280i
\(367\) −18.1353 + 31.4112i −0.946653 + 1.63965i −0.194245 + 0.980953i \(0.562226\pi\)
−0.752408 + 0.658697i \(0.771108\pi\)
\(368\) −8.20820 + 5.96361i −0.427882 + 0.310875i
\(369\) 12.6614 2.69127i 0.659127 0.140102i
\(370\) −0.118034 0.363271i −0.00613629 0.0188856i
\(371\) 38.1246 1.97933
\(372\) 0 0
\(373\) −0.347524 −0.0179941 −0.00899706 0.999960i \(-0.502864\pi\)
−0.00899706 + 0.999960i \(0.502864\pi\)
\(374\) 0.0344419 + 0.106001i 0.00178095 + 0.00548119i
\(375\) −8.05609 + 1.71237i −0.416015 + 0.0884267i
\(376\) 6.11803 4.44501i 0.315514 0.229234i
\(377\) 20.9164 36.2283i 1.07725 1.86585i
\(378\) −4.63525 8.02850i −0.238412 0.412941i
\(379\) −16.8242 7.49063i −0.864202 0.384768i −0.0737395 0.997278i \(-0.523493\pi\)
−0.790463 + 0.612510i \(0.790160\pi\)
\(380\) −17.1353 12.4495i −0.879020 0.638645i
\(381\) −9.35111 + 4.16338i −0.479072 + 0.213297i
\(382\) −9.72697 2.06753i −0.497675 0.105784i
\(383\) −1.76173 16.7618i −0.0900204 0.856487i −0.942608 0.333902i \(-0.891635\pi\)
0.852587 0.522585i \(-0.175032\pi\)
\(384\) 7.61602 8.45845i 0.388653 0.431643i
\(385\) −4.01478 4.45887i −0.204612 0.227245i
\(386\) −0.153880 + 1.46407i −0.00783229 + 0.0745193i
\(387\) −2.85410 + 8.78402i −0.145082 + 0.446517i
\(388\) 2.64590 8.14324i 0.134325 0.413410i
\(389\) −3.03853 + 28.9096i −0.154059 + 1.46578i 0.595241 + 0.803547i \(0.297056\pi\)
−0.749301 + 0.662230i \(0.769610\pi\)
\(390\) −5.25542 5.83674i −0.266119 0.295555i
\(391\) −0.864380 + 0.959992i −0.0437136 + 0.0485489i
\(392\) −0.467465 4.44764i −0.0236106 0.224640i
\(393\) −0.0881995 0.0187474i −0.00444908 0.000945680i
\(394\) 9.26874 4.12671i 0.466952 0.207901i
\(395\) 0 0
\(396\) 2.25841 + 1.00551i 0.113489 + 0.0505287i
\(397\) −8.14590 14.1091i −0.408831 0.708116i 0.585928 0.810363i \(-0.300730\pi\)
−0.994759 + 0.102247i \(0.967397\pi\)
\(398\) 8.25329 14.2951i 0.413700 0.716549i
\(399\) −12.1353 + 8.81678i −0.607523 + 0.441391i
\(400\) −3.36257 + 0.714737i −0.168129 + 0.0357368i
\(401\) 9.21885 + 28.3727i 0.460367 + 1.41686i 0.864717 + 0.502260i \(0.167498\pi\)
−0.404349 + 0.914605i \(0.632502\pi\)
\(402\) 2.61803 0.130576
\(403\) 0 0
\(404\) −7.70820 −0.383497
\(405\) −0.809017 2.48990i −0.0402004 0.123724i
\(406\) 15.6295 3.32216i 0.775681 0.164876i
\(407\) 0.145898 0.106001i 0.00723190 0.00525428i
\(408\) 0.263932 0.457144i 0.0130666 0.0226320i
\(409\) −3.09017 5.35233i −0.152799 0.264656i 0.779456 0.626457i \(-0.215495\pi\)
−0.932255 + 0.361801i \(0.882162\pi\)
\(410\) 9.56677 + 4.25940i 0.472469 + 0.210357i
\(411\) −5.23607 3.80423i −0.258276 0.187649i
\(412\) 0.215659 0.0960175i 0.0106247 0.00473044i
\(413\) −27.7954 5.90810i −1.36772 0.290719i
\(414\) −0.707023 6.72688i −0.0347483 0.330608i
\(415\) −7.16519 + 7.95775i −0.351725 + 0.390630i
\(416\) 18.2475 + 20.2659i 0.894659 + 0.993619i
\(417\) 0.611920 5.82203i 0.0299659 0.285106i
\(418\) −0.729490 + 2.24514i −0.0356805 + 0.109813i
\(419\) 1.38197 4.25325i 0.0675135 0.207785i −0.911608 0.411060i \(-0.865159\pi\)
0.979122 + 0.203275i \(0.0651586\pi\)
\(420\) −1.32837 + 12.6386i −0.0648178 + 0.616700i
\(421\) 9.87900 + 10.9717i 0.481473 + 0.534730i 0.934120 0.356960i \(-0.116187\pi\)
−0.452647 + 0.891690i \(0.649520\pi\)
\(422\) 3.30836 3.67431i 0.161049 0.178863i
\(423\) −0.707023 6.72688i −0.0343767 0.327072i
\(424\) −27.7954 5.90810i −1.34987 0.286923i
\(425\) −0.399853 + 0.178026i −0.0193957 + 0.00863554i
\(426\) 0.0450850 + 0.0327561i 0.00218437 + 0.00158704i
\(427\) 19.0317 + 8.47347i 0.921010 + 0.410060i
\(428\) 0.881966 + 1.52761i 0.0426314 + 0.0738398i
\(429\) 1.85410 3.21140i 0.0895169 0.155048i
\(430\) −6.04508 + 4.39201i −0.291520 + 0.211802i
\(431\) −28.5972 + 6.07852i −1.37748 + 0.292792i −0.836372 0.548162i \(-0.815328\pi\)
−0.541106 + 0.840954i \(0.681994\pi\)
\(432\) −2.86475 8.81678i −0.137830 0.424197i
\(433\) −0.583592 −0.0280456 −0.0140228 0.999902i \(-0.504464\pi\)
−0.0140228 + 0.999902i \(0.504464\pi\)
\(434\) 0 0
\(435\) −22.5623 −1.08178
\(436\) 4.20820 + 12.9515i 0.201536 + 0.620265i
\(437\) −26.7628 + 5.68861i −1.28024 + 0.272123i
\(438\) 4.28115 3.11044i 0.204561 0.148623i
\(439\) −20.9164 + 36.2283i −0.998286 + 1.72908i −0.448455 + 0.893805i \(0.648026\pi\)
−0.549831 + 0.835276i \(0.685308\pi\)
\(440\) 2.23607 + 3.87298i 0.106600 + 0.184637i
\(441\) −3.65418 1.62695i −0.174009 0.0774736i
\(442\) 0.572949 + 0.416272i 0.0272524 + 0.0198000i
\(443\) −37.5692 + 16.7269i −1.78497 + 0.794718i −0.805648 + 0.592395i \(0.798183\pi\)
−0.979319 + 0.202324i \(0.935151\pi\)
\(444\) −0.373619 0.0794152i −0.0177312 0.00376888i
\(445\) 1.74648 + 16.6167i 0.0827912 + 0.787706i
\(446\) 0.292875 0.325270i 0.0138680 0.0154020i
\(447\) −11.3983 12.6591i −0.539120 0.598753i
\(448\) 0.0740275 0.704324i 0.00349747 0.0332762i
\(449\) −7.43769 + 22.8909i −0.351006 + 1.08029i 0.607283 + 0.794486i \(0.292260\pi\)
−0.958289 + 0.285801i \(0.907740\pi\)
\(450\) 0.708204 2.17963i 0.0333851 0.102749i
\(451\) −0.516817 + 4.91719i −0.0243360 + 0.231541i
\(452\) 2.00739 + 2.22943i 0.0944198 + 0.104864i
\(453\) 13.0524 14.4962i 0.613258 0.681091i
\(454\) −1.34002 12.7494i −0.0628902 0.598361i
\(455\) −37.2915 7.92655i −1.74825 0.371603i
\(456\) 10.2137 4.54745i 0.478303 0.212954i
\(457\) −12.7361 9.25330i −0.595768 0.432851i 0.248606 0.968605i \(-0.420028\pi\)
−0.844374 + 0.535754i \(0.820028\pi\)
\(458\) −4.08550 1.81898i −0.190903 0.0849954i
\(459\) −0.590170 1.02220i −0.0275468 0.0477124i
\(460\) −11.5902 + 20.0748i −0.540394 + 0.935991i
\(461\) 8.69098 6.31437i 0.404779 0.294089i −0.366705 0.930337i \(-0.619514\pi\)
0.771485 + 0.636248i \(0.219514\pi\)
\(462\) 1.38546 0.294488i 0.0644572 0.0137008i
\(463\) 9.61803 + 29.6013i 0.446988 + 1.37569i 0.880289 + 0.474438i \(0.157349\pi\)
−0.433301 + 0.901249i \(0.642651\pi\)
\(464\) 15.9787 0.741793
\(465\) 0 0
\(466\) −11.6180 −0.538195
\(467\) −10.1287 31.1729i −0.468699 1.44251i −0.854270 0.519830i \(-0.825995\pi\)
0.385571 0.922678i \(-0.374005\pi\)
\(468\) 15.3649 3.26592i 0.710245 0.150967i
\(469\) 10.2812 7.46969i 0.474740 0.344918i
\(470\) 2.73607 4.73901i 0.126205 0.218594i
\(471\) −4.85410 8.40755i −0.223665 0.387400i
\(472\) 19.3492 + 8.61482i 0.890619 + 0.396529i
\(473\) −2.85410 2.07363i −0.131232 0.0953454i
\(474\) 0 0
\(475\) −9.06793 1.92745i −0.416065 0.0884374i
\(476\) −0.119779 1.13962i −0.00549006 0.0522344i
\(477\) −17.0069 + 18.8881i −0.778692 + 0.864825i
\(478\) −5.54829 6.16201i −0.253773 0.281844i
\(479\) 0.934931 8.89527i 0.0427181 0.406435i −0.952179 0.305541i \(-0.901163\pi\)
0.994897 0.100895i \(-0.0321705\pi\)
\(480\) 4.54508 13.9883i 0.207454 0.638477i
\(481\) 0.354102 1.08981i 0.0161457 0.0496912i
\(482\) 0.550918 5.24164i 0.0250936 0.238750i
\(483\) 10.9847 + 12.1998i 0.499822 + 0.555109i
\(484\) 11.2776 12.5250i 0.512618 0.569320i
\(485\) −1.44815 13.7782i −0.0657570 0.625636i
\(486\) 9.67246 + 2.05594i 0.438751 + 0.0932595i
\(487\) −20.9412 + 9.32362i −0.948936 + 0.422493i −0.822045 0.569423i \(-0.807167\pi\)
−0.126891 + 0.991917i \(0.540500\pi\)
\(488\) −12.5623 9.12705i −0.568669 0.413162i
\(489\) −11.6095 5.16889i −0.525001 0.233745i
\(490\) −1.61803 2.80252i −0.0730953 0.126605i
\(491\) −13.7984 + 23.8995i −0.622712 + 1.07857i 0.366267 + 0.930510i \(0.380636\pi\)
−0.988979 + 0.148059i \(0.952698\pi\)
\(492\) 8.47214 6.15537i 0.381953 0.277505i
\(493\) 1.98998 0.422984i 0.0896244 0.0190503i
\(494\) 4.63525 + 14.2658i 0.208550 + 0.641851i
\(495\) 4.00000 0.179787
\(496\) 0 0
\(497\) 0.270510 0.0121340
\(498\) −0.781153 2.40414i −0.0350043 0.107732i
\(499\) 4.05530 0.861981i 0.181540 0.0385876i −0.116244 0.993221i \(-0.537086\pi\)
0.297785 + 0.954633i \(0.403752\pi\)
\(500\) 10.7812 7.83297i 0.482148 0.350301i
\(501\) −4.61803 + 7.99867i −0.206319 + 0.357354i
\(502\) −0.291796 0.505406i −0.0130235 0.0225574i
\(503\) 12.0094 + 5.34692i 0.535472 + 0.238407i 0.656613 0.754228i \(-0.271989\pi\)
−0.121141 + 0.992635i \(0.538655\pi\)
\(504\) 10.8541 + 7.88597i 0.483480 + 0.351269i
\(505\) −11.3939 + 5.07287i −0.507020 + 0.225740i
\(506\) 2.52713 + 0.537159i 0.112345 + 0.0238796i
\(507\) −1.10406 10.5044i −0.0490331 0.466519i
\(508\) 11.0823 12.3082i 0.491700 0.546088i
\(509\) 1.27793 + 1.41928i 0.0566431 + 0.0629085i 0.770800 0.637077i \(-0.219857\pi\)
−0.714157 + 0.699985i \(0.753190\pi\)
\(510\) 0.0399263 0.379874i 0.00176797 0.0168211i
\(511\) 7.93769 24.4297i 0.351143 1.08071i
\(512\) −5.78115 + 17.7926i −0.255493 + 0.786327i
\(513\) 2.61321 24.8630i 0.115376 1.09773i
\(514\) −0.585749 0.650540i −0.0258363 0.0286941i
\(515\) 0.255585 0.283856i 0.0112624 0.0125082i
\(516\) 0.781051 + 7.43120i 0.0343838 + 0.327140i
\(517\) 2.52713 + 0.537159i 0.111143 + 0.0236242i
\(518\) 0.399853 0.178026i 0.0175686 0.00782202i
\(519\) −0.736068 0.534785i −0.0323098 0.0234744i
\(520\) 25.9597 + 11.5580i 1.13841 + 0.506852i
\(521\) −15.5344 26.9064i −0.680576 1.17879i −0.974805 0.223058i \(-0.928396\pi\)
0.294229 0.955735i \(-0.404937\pi\)
\(522\) −5.32624 + 9.22531i −0.233123 + 0.403781i
\(523\) 27.6074 20.0579i 1.20719 0.877073i 0.212215 0.977223i \(-0.431932\pi\)
0.994972 + 0.100150i \(0.0319324\pi\)
\(524\) 0.142710 0.0303339i 0.00623431 0.00132514i
\(525\) 1.71885 + 5.29007i 0.0750166 + 0.230877i
\(526\) −6.67376 −0.290990
\(527\) 0 0
\(528\) 1.41641 0.0616412
\(529\) 2.14590 + 6.60440i 0.0932999 + 0.287148i
\(530\) −20.1130 + 4.27514i −0.873652 + 0.185700i
\(531\) 15.3262 11.1352i 0.665102 0.483225i
\(532\) 12.1353 21.0189i 0.526130 0.911284i
\(533\) 15.7082 + 27.2074i 0.680398 + 1.17848i
\(534\) −3.60327 1.60428i −0.155929 0.0694240i
\(535\) 2.30902 + 1.67760i 0.0998275 + 0.0725289i
\(536\) −8.65323 + 3.85266i −0.373762 + 0.166410i
\(537\) 19.3657 + 4.11631i 0.835693 + 0.177632i
\(538\) 0.0892780 + 0.849423i 0.00384905 + 0.0366212i
\(539\) 1.02234 1.13542i 0.0440353 0.0489062i
\(540\) −14.1724 15.7401i −0.609884 0.677344i
\(541\) −2.29963 + 21.8795i −0.0988687 + 0.940672i 0.826841 + 0.562436i \(0.190136\pi\)
−0.925709 + 0.378236i \(0.876531\pi\)
\(542\) 1.82624 5.62058i 0.0784436 0.241425i
\(543\) −5.25329 + 16.1680i −0.225440 + 0.693834i
\(544\) −0.138630 + 1.31897i −0.00594370 + 0.0565505i
\(545\) 14.7439 + 16.3748i 0.631560 + 0.701419i
\(546\) 6.02218 6.68830i 0.257725 0.286233i
\(547\) 2.47818 + 23.5783i 0.105959 + 1.00814i 0.910295 + 0.413961i \(0.135855\pi\)
−0.804335 + 0.594176i \(0.797478\pi\)
\(548\) 10.2433 + 2.17728i 0.437572 + 0.0930088i
\(549\) −12.6878 + 5.64898i −0.541503 + 0.241093i
\(550\) 0.708204 + 0.514540i 0.0301979 + 0.0219401i
\(551\) 39.3648 + 17.5264i 1.67700 + 0.746648i
\(552\) −6.11803 10.5967i −0.260401 0.451027i
\(553\) 0 0
\(554\) −6.66312 + 4.84104i −0.283089 + 0.205676i
\(555\) −0.604528 + 0.128496i −0.0256608 + 0.00545437i
\(556\) 2.92705 + 9.00854i 0.124135 + 0.382047i
\(557\) −35.8885 −1.52065 −0.760323 0.649545i \(-0.774959\pi\)
−0.760323 + 0.649545i \(0.774959\pi\)
\(558\) 0 0
\(559\) −22.4164 −0.948113
\(560\) −4.50000 13.8496i −0.190160 0.585251i
\(561\) 0.176399 0.0374948i 0.00744757 0.00158303i
\(562\) 9.51722 6.91467i 0.401460 0.291678i
\(563\) 4.28115 7.41517i 0.180429 0.312512i −0.761598 0.648050i \(-0.775585\pi\)
0.942027 + 0.335538i \(0.108918\pi\)
\(564\) −2.73607 4.73901i −0.115209 0.199548i
\(565\) 4.43444 + 1.97434i 0.186558 + 0.0830612i
\(566\) 3.28115 + 2.38390i 0.137917 + 0.100203i
\(567\) 2.74064 1.22021i 0.115096 0.0512440i
\(568\) −0.197220 0.0419204i −0.00827517 0.00175894i
\(569\) 1.62310 + 15.4428i 0.0680440 + 0.647396i 0.974391 + 0.224861i \(0.0721929\pi\)
−0.906347 + 0.422535i \(0.861140\pi\)
\(570\) 5.41338 6.01217i 0.226742 0.251822i
\(571\) −4.68391 5.20201i −0.196016 0.217698i 0.637122 0.770763i \(-0.280125\pi\)
−0.833138 + 0.553065i \(0.813458\pi\)
\(572\) −0.627171 + 5.96713i −0.0262233 + 0.249498i
\(573\) −4.97214 + 15.3027i −0.207714 + 0.639278i
\(574\) −3.70820 + 11.4127i −0.154777 + 0.476356i
\(575\) −1.06054 + 10.0903i −0.0442274 + 0.420795i
\(576\) 0.315921 + 0.350865i 0.0131634 + 0.0146194i
\(577\) 26.0819 28.9668i 1.08580 1.20590i 0.108490 0.994098i \(-0.465398\pi\)
0.977311 0.211807i \(-0.0679349\pi\)
\(578\) −1.09464 10.4148i −0.0455309 0.433197i
\(579\) 2.32991 + 0.495239i 0.0968279 + 0.0205814i
\(580\) 33.3504 14.8486i 1.38480 0.616553i
\(581\) −9.92705 7.21242i −0.411843 0.299222i
\(582\) 2.98776 + 1.33024i 0.123847 + 0.0551401i
\(583\) −4.85410 8.40755i −0.201036 0.348205i
\(584\) −9.57295 + 16.5808i −0.396131 + 0.686120i
\(585\) 20.5623 14.9394i 0.850147 0.617668i
\(586\) −4.97894 + 1.05831i −0.205678 + 0.0437182i
\(587\) −11.1287 34.2505i −0.459330 1.41367i −0.865976 0.500086i \(-0.833302\pi\)
0.406646 0.913586i \(-0.366698\pi\)
\(588\) −3.23607 −0.133453
\(589\) 0 0
\(590\) 15.3262 0.630971
\(591\) −5.07295 15.6129i −0.208673 0.642230i
\(592\) 0.428129 0.0910017i 0.0175960 0.00374015i
\(593\) −4.94427 + 3.59222i −0.203037 + 0.147515i −0.684658 0.728865i \(-0.740048\pi\)
0.481621 + 0.876380i \(0.340048\pi\)
\(594\) −1.18034 + 2.04441i −0.0484299 + 0.0838831i
\(595\) −0.927051 1.60570i −0.0380054 0.0658273i
\(596\) 25.1794 + 11.2106i 1.03139 + 0.459204i
\(597\) −21.6074 15.6987i −0.884332 0.642505i
\(598\) 14.9971 6.67715i 0.613278 0.273049i
\(599\) −29.1472 6.19543i −1.19092 0.253138i −0.430514 0.902584i \(-0.641668\pi\)
−0.760408 + 0.649445i \(0.775001\pi\)
\(600\) −0.433364 4.12319i −0.0176920 0.168328i
\(601\) −14.7209 + 16.3492i −0.600477 + 0.666897i −0.964374 0.264542i \(-0.914779\pi\)
0.363897 + 0.931439i \(0.381446\pi\)
\(602\) −5.72930 6.36303i −0.233509 0.259338i
\(603\) −0.885579 + 8.42572i −0.0360636 + 0.343122i
\(604\) −9.75329 + 30.0175i −0.396856 + 1.22140i
\(605\) 8.42705 25.9358i 0.342608 1.05444i
\(606\) 0.307760 2.92814i 0.0125019 0.118948i
\(607\) −17.0069 18.8881i −0.690289 0.766643i 0.291510 0.956568i \(-0.405842\pi\)
−0.981799 + 0.189925i \(0.939176\pi\)
\(608\) −18.7960 + 20.8751i −0.762278 + 0.846596i
\(609\) −2.70249 25.7125i −0.109510 1.04192i
\(610\) −10.9905 2.33611i −0.444994 0.0945863i
\(611\) 14.9971 6.67715i 0.606719 0.270129i
\(612\) 0.618034 + 0.449028i 0.0249825 + 0.0181509i
\(613\) −22.8895 10.1911i −0.924500 0.411614i −0.111425 0.993773i \(-0.535541\pi\)
−0.813075 + 0.582159i \(0.802208\pi\)
\(614\) 1.88197 + 3.25966i 0.0759500 + 0.131549i
\(615\) 8.47214 14.6742i 0.341629 0.591720i
\(616\) −4.14590 + 3.01217i −0.167043 + 0.121364i
\(617\) 13.9250 2.95984i 0.560598 0.119159i 0.0811069 0.996705i \(-0.474154\pi\)
0.479491 + 0.877547i \(0.340821\pi\)
\(618\) 0.0278640 + 0.0857567i 0.00112086 + 0.00344964i
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 0 0
\(621\) −27.3607 −1.09795
\(622\) −3.14590 9.68208i −0.126139 0.388216i
\(623\) −18.7275 + 3.98066i −0.750302 + 0.159482i
\(624\) 7.28115 5.29007i 0.291479 0.211772i
\(625\) 15.4164 26.7020i 0.616656 1.06808i
\(626\) −0.381966 0.661585i −0.0152664 0.0264422i
\(627\) 3.48943 + 1.55360i 0.139355 + 0.0620446i
\(628\) 12.7082 + 9.23305i 0.507113 + 0.368439i
\(629\) 0.0509101 0.0226667i 0.00202992 0.000903779i
\(630\) 9.49606 + 2.01845i 0.378332 + 0.0804169i
\(631\) −0.912480 8.68167i −0.0363253 0.345612i −0.997556 0.0698675i \(-0.977742\pi\)
0.961231 0.275744i \(-0.0889243\pi\)
\(632\) 0 0
\(633\) −5.35304 5.94516i −0.212764 0.236299i
\(634\) 1.67246 15.9124i 0.0664217 0.631960i
\(635\) 8.28115 25.4868i 0.328628 1.01141i
\(636\) −6.35410 + 19.5559i −0.251957 + 0.775442i
\(637\) 1.01478 9.65502i 0.0402072 0.382546i
\(638\) −2.72261 3.02377i −0.107789 0.119712i
\(639\) −0.120671 + 0.134019i −0.00477367 + 0.00530170i
\(640\) 3.11478 + 29.6351i 0.123122 + 1.17143i
\(641\) −40.1923 8.54313i −1.58750 0.337433i −0.672250 0.740324i \(-0.734672\pi\)
−0.915248 + 0.402891i \(0.868005\pi\)
\(642\) −0.615512 + 0.274044i −0.0242923 + 0.0108156i
\(643\) 6.59017 + 4.78804i 0.259891 + 0.188822i 0.710099 0.704102i \(-0.248650\pi\)
−0.450208 + 0.892924i \(0.648650\pi\)
\(644\) −24.2659 10.8039i −0.956209 0.425732i
\(645\) 6.04508 + 10.4704i 0.238025 + 0.412271i
\(646\) −0.364745 + 0.631757i −0.0143507 + 0.0248561i
\(647\) −24.1803 + 17.5680i −0.950627 + 0.690671i −0.950955 0.309329i \(-0.899896\pi\)
0.000327889 1.00000i \(0.499896\pi\)
\(648\) −2.18720 + 0.464905i −0.0859215 + 0.0182632i
\(649\) 2.23607 + 6.88191i 0.0877733 + 0.270139i
\(650\) 5.56231 0.218172
\(651\) 0 0
\(652\) 20.5623 0.805282
\(653\) 12.2533 + 37.7117i 0.479508 + 1.47577i 0.839780 + 0.542927i \(0.182684\pi\)
−0.360272 + 0.932847i \(0.617316\pi\)
\(654\) −5.08796 + 1.08148i −0.198955 + 0.0422892i
\(655\) 0.190983 0.138757i 0.00746232 0.00542170i
\(656\) −6.00000 + 10.3923i −0.234261 + 0.405751i
\(657\) 8.56231 + 14.8303i 0.334047 + 0.578587i
\(658\) 5.72840 + 2.55045i 0.223316 + 0.0994267i
\(659\) −18.3541 13.3350i −0.714974 0.519459i 0.169800 0.985478i \(-0.445688\pi\)
−0.884775 + 0.466019i \(0.845688\pi\)
\(660\) 2.95630 1.31623i 0.115074 0.0512341i
\(661\) 16.2549 + 3.45508i 0.632242 + 0.134387i 0.512875 0.858463i \(-0.328580\pi\)
0.119367 + 0.992850i \(0.461914\pi\)
\(662\) −0.728099 6.92740i −0.0282984 0.269241i
\(663\) 0.766755 0.851568i 0.0297783 0.0330722i
\(664\) 6.11980 + 6.79673i 0.237494 + 0.263764i
\(665\) 4.10489 39.0554i 0.159181 1.51450i
\(666\) −0.0901699 + 0.277515i −0.00349401 + 0.0107535i
\(667\) 14.5729 44.8509i 0.564267 1.73663i
\(668\) 1.56210 14.8624i 0.0604395 0.575044i
\(669\) −0.473881 0.526298i −0.0183213 0.0203479i
\(670\) −4.58629 + 5.09359i −0.177184 + 0.196783i
\(671\) −0.554518 5.27589i −0.0214069 0.203673i
\(672\) 16.4858 + 3.50416i 0.635954 + 0.135176i
\(673\) 4.03459 1.79631i 0.155522 0.0692429i −0.327499 0.944851i \(-0.606206\pi\)
0.483021 + 0.875609i \(0.339539\pi\)
\(674\) −9.48936 6.89442i −0.365516 0.265563i
\(675\) −8.46903 3.77066i −0.325973 0.145133i
\(676\) 8.54508 + 14.8005i 0.328657 + 0.569251i
\(677\) 14.3262 24.8138i 0.550602 0.953671i −0.447629 0.894219i \(-0.647732\pi\)
0.998231 0.0594514i \(-0.0189351\pi\)
\(678\) −0.927051 + 0.673542i −0.0356032 + 0.0258672i
\(679\) 15.5285 3.30068i 0.595928 0.126668i
\(680\) 0.427051 + 1.31433i 0.0163767 + 0.0504022i
\(681\) −20.7426 −0.794860
\(682\) 0 0
\(683\) 10.0557 0.384772 0.192386 0.981319i \(-0.438377\pi\)
0.192386 + 0.981319i \(0.438377\pi\)
\(684\) 5.00000 + 15.3884i 0.191180 + 0.588391i
\(685\) 16.5740 3.52291i 0.633260 0.134604i
\(686\) −7.50000 + 5.44907i −0.286351 + 0.208046i
\(687\) −3.61803 + 6.26662i −0.138037 + 0.239086i
\(688\) −4.28115 7.41517i −0.163217 0.282701i
\(689\) −56.3538 25.0903i −2.14691 0.955865i
\(690\) −7.16312 5.20431i −0.272695 0.198125i
\(691\) 3.50145 1.55895i 0.133201 0.0593051i −0.339054 0.940767i \(-0.610107\pi\)
0.472255 + 0.881462i \(0.343440\pi\)
\(692\) 1.43997 + 0.306074i 0.0547393 + 0.0116352i
\(693\) 0.479116 + 4.55848i 0.0182001 + 0.173162i
\(694\) 3.35990 3.73154i 0.127540 0.141647i
\(695\) 10.2553 + 11.3896i 0.389004 + 0.432033i
\(696\) −2.01432 + 19.1649i −0.0763525 + 0.726445i
\(697\) −0.472136 + 1.45309i −0.0178834 + 0.0550395i
\(698\) 3.19098 9.82084i 0.120780 0.371724i
\(699\) −1.96497 + 18.6954i −0.0743218 + 0.707125i
\(700\) −6.02218 6.68830i −0.227617 0.252794i
\(701\) −20.0970 + 22.3199i −0.759052 + 0.843013i −0.991569 0.129580i \(-0.958637\pi\)
0.232517 + 0.972592i \(0.425304\pi\)
\(702\) 1.56793 + 14.9178i 0.0591776 + 0.563037i
\(703\) 1.15455 + 0.245406i 0.0435446 + 0.00925568i
\(704\) −0.164749 + 0.0733508i −0.00620920 + 0.00276451i
\(705\) −7.16312 5.20431i −0.269779 0.196006i
\(706\) −18.2829 8.14008i −0.688087 0.306356i
\(707\) −7.14590 12.3771i −0.268749 0.465487i
\(708\) 7.66312 13.2729i 0.287998 0.498827i
\(709\) 3.35410 2.43690i 0.125966 0.0915196i −0.523018 0.852321i \(-0.675194\pi\)
0.648984 + 0.760802i \(0.275194\pi\)
\(710\) −0.142710 + 0.0303339i −0.00535580 + 0.00113841i
\(711\) 0 0
\(712\) 14.2705 0.534810
\(713\) 0 0
\(714\) 0.437694 0.0163803
\(715\) 3.00000 + 9.23305i 0.112194 + 0.345297i
\(716\) −31.3344 + 6.66033i −1.17102 + 0.248908i
\(717\) −10.8541 + 7.88597i −0.405354 + 0.294507i
\(718\) −7.82624 + 13.5554i −0.292073 + 0.505885i
\(719\) −20.6910 35.8378i −0.771643 1.33653i −0.936662 0.350235i \(-0.886102\pi\)
0.165018 0.986290i \(-0.447232\pi\)
\(720\) 8.86889 + 3.94868i 0.330524 + 0.147159i
\(721\) 0.354102 + 0.257270i 0.0131874 + 0.00958124i
\(722\) −3.38761 + 1.50826i −0.126074 + 0.0561317i
\(723\) −8.34151 1.77304i −0.310224 0.0659402i
\(724\) −2.87522 27.3559i −0.106857 1.01667i
\(725\) 10.6918 11.8745i 0.397085 0.441008i
\(726\) 4.30766 + 4.78414i 0.159872 + 0.177556i
\(727\) 2.49121 23.7023i 0.0923938 0.879068i −0.845926 0.533300i \(-0.820952\pi\)
0.938320 0.345768i \(-0.112382\pi\)
\(728\) −10.0623 + 30.9686i −0.372934 + 1.14777i
\(729\) 4.01722 12.3637i 0.148786 0.457916i
\(730\) −1.44815 + 13.7782i −0.0535984 + 0.509954i
\(731\) −0.729466 0.810154i −0.0269803 0.0299646i
\(732\) −7.51840 + 8.35003i −0.277888 + 0.308626i
\(733\) −2.92097 27.7912i −0.107889 1.02649i −0.905797 0.423712i \(-0.860727\pi\)
0.797908 0.602779i \(-0.205940\pi\)
\(734\) 21.9266 + 4.66063i 0.809324 + 0.172027i
\(735\) −4.78339 + 2.12970i −0.176438 + 0.0785552i
\(736\) 24.8713 + 18.0701i 0.916769 + 0.666072i
\(737\) −2.95630 1.31623i −0.108897 0.0484839i
\(738\) −4.00000 6.92820i −0.147242 0.255031i
\(739\) 10.8541 18.7999i 0.399275 0.691564i −0.594362 0.804198i \(-0.702595\pi\)
0.993637 + 0.112634i \(0.0359287\pi\)
\(740\) 0.809017 0.587785i 0.0297401 0.0216074i
\(741\) 23.7401 5.04612i 0.872116 0.185374i
\(742\) −7.28115 22.4091i −0.267300 0.822663i
\(743\) 3.43769 0.126117 0.0630584 0.998010i \(-0.479915\pi\)
0.0630584 + 0.998010i \(0.479915\pi\)
\(744\) 0 0
\(745\) 44.5967 1.63390
\(746\) 0.0663712 + 0.204270i 0.00243002 + 0.00747884i
\(747\) 8.00158 1.70079i 0.292762 0.0622286i
\(748\) −0.236068 + 0.171513i −0.00863150 + 0.00627115i
\(749\) −1.63525 + 2.83234i −0.0597509 + 0.103492i
\(750\) 2.54508 + 4.40822i 0.0929334 + 0.160965i
\(751\) −36.3891 16.2015i −1.32786 0.591200i −0.384544 0.923106i \(-0.625641\pi\)
−0.943312 + 0.331907i \(0.892308\pi\)
\(752\) 5.07295 + 3.68571i 0.184991 + 0.134404i
\(753\) −0.862635 + 0.384070i −0.0314362 + 0.0139963i
\(754\) −25.2891 5.37537i −0.920976 0.195759i
\(755\) 5.33815 + 50.7891i 0.194275 + 1.84841i
\(756\) 16.2401 18.0365i 0.590648 0.655981i
\(757\) −28.8560 32.0478i −1.04879 1.16480i −0.985996 0.166772i \(-0.946666\pi\)
−0.0627935 0.998027i \(-0.520001\pi\)
\(758\) −1.18974 + 11.3196i −0.0432133 + 0.411147i
\(759\) 1.29180 3.97574i 0.0468892 0.144310i
\(760\) −9.04508 + 27.8379i −0.328100 + 1.00979i
\(761\) 0.366537 3.48737i 0.0132870 0.126417i −0.985868 0.167526i \(-0.946422\pi\)
0.999155 + 0.0411086i \(0.0130890\pi\)
\(762\) 4.23308 + 4.70131i 0.153348 + 0.170311i
\(763\) −16.8950 + 18.7638i −0.611641 + 0.679296i
\(764\) −2.72134 25.8918i −0.0984546 0.936733i
\(765\) 1.20906 + 0.256993i 0.0437135 + 0.00929160i
\(766\) −9.51586 + 4.23673i −0.343822 + 0.153079i
\(767\) 37.1976 + 27.0256i 1.34313 + 0.975838i
\(768\) −5.99496 2.66913i −0.216325 0.0963139i
\(769\) 26.8713 + 46.5425i 0.969005 + 1.67837i 0.698447 + 0.715662i \(0.253875\pi\)
0.270557 + 0.962704i \(0.412792\pi\)
\(770\) −1.85410 + 3.21140i −0.0668172 + 0.115731i
\(771\) −1.14590 + 0.832544i −0.0412685 + 0.0299833i
\(772\) −3.76988 + 0.801313i −0.135681 + 0.0288399i
\(773\) 5.89919 + 18.1558i 0.212179 + 0.653020i 0.999342 + 0.0362746i \(0.0115491\pi\)
−0.787163 + 0.616745i \(0.788451\pi\)
\(774\) 5.70820 0.205177
\(775\) 0 0
\(776\) −11.8328 −0.424773
\(777\) −0.218847 0.673542i −0.00785109 0.0241632i
\(778\) 17.5730 3.73525i 0.630021 0.133915i
\(779\) −26.1803 + 19.0211i −0.938008 + 0.681503i
\(780\) 10.2812 17.8075i 0.368124 0.637610i
\(781\) −0.0344419 0.0596550i −0.00123243 0.00213463i
\(782\) 0.729351 + 0.324728i 0.0260815 + 0.0116122i
\(783\) 34.8607 + 25.3278i 1.24582 + 0.905141i
\(784\) 3.38761 1.50826i 0.120986 0.0538665i
\(785\) 24.8610 + 5.28437i 0.887327 + 0.188607i
\(786\) 0.00582517 + 0.0554228i 0.000207777 + 0.00197687i
\(787\) −20.9383 + 23.2543i −0.746370 + 0.828928i −0.990019 0.140936i \(-0.954989\pi\)
0.243649 + 0.969863i \(0.421656\pi\)
\(788\) 17.7737 + 19.7396i 0.633160 + 0.703196i
\(789\) −1.12874 + 10.7392i −0.0401841 + 0.382326i
\(790\) 0 0
\(791\) −1.71885 + 5.29007i −0.0611152 + 0.188093i
\(792\) 0.357112 3.39769i 0.0126894 0.120732i
\(793\) −22.5552 25.0501i −0.800958 0.889554i
\(794\) −6.73740 + 7.48264i −0.239101 + 0.265549i
\(795\) 3.47772 + 33.0883i 0.123342 + 1.17352i
\(796\) 42.2704 + 8.98486i 1.49824 + 0.318460i
\(797\) −8.27282 + 3.68330i −0.293038 + 0.130469i −0.547990 0.836485i \(-0.684607\pi\)
0.254952 + 0.966954i \(0.417940\pi\)
\(798\) 7.50000 + 5.44907i 0.265497 + 0.192895i
\(799\) 0.729351 + 0.324728i 0.0258026 + 0.0114880i
\(800\) 5.20820 + 9.02087i 0.184138 + 0.318936i
\(801\) 6.38197 11.0539i 0.225496 0.390570i
\(802\) 14.9164 10.8374i 0.526717 0.382682i
\(803\) −6.39808 + 1.35995i −0.225783 + 0.0479918i
\(804\) 2.11803 + 6.51864i 0.0746973 + 0.229895i
\(805\) −42.9787 −1.51480
\(806\) 0 0
\(807\) 1.38197 0.0486475
\(808\) 3.29180 + 10.1311i 0.115805 + 0.356411i
\(809\) 53.6009 11.3932i 1.88451 0.400564i 0.886448 0.462829i \(-0.153166\pi\)
0.998060 + 0.0622647i \(0.0198323\pi\)
\(810\) −1.30902 + 0.951057i −0.0459942 + 0.0334167i
\(811\) −21.3885 + 37.0460i −0.751053 + 1.30086i 0.196259 + 0.980552i \(0.437121\pi\)
−0.947313 + 0.320311i \(0.896213\pi\)
\(812\) 20.9164 + 36.2283i 0.734022 + 1.27136i
\(813\) −8.73560 3.88934i −0.306371 0.136405i
\(814\) −0.0901699 0.0655123i −0.00316045 0.00229620i
\(815\) 30.3941 13.5323i 1.06466 0.474017i
\(816\) 0.428129 + 0.0910017i 0.0149875 + 0.00318570i
\(817\) −2.41358 22.9637i −0.0844405 0.803397i
\(818\) −2.55585 + 2.83856i −0.0893633 + 0.0992479i
\(819\) 19.4882 + 21.6438i 0.680972 + 0.756296i
\(820\) −2.86579 + 27.2662i −0.100078 + 0.952178i
\(821\) 10.0344 30.8828i 0.350204 1.07782i −0.608534 0.793528i \(-0.708242\pi\)
0.958738 0.284290i \(-0.0917580\pi\)
\(822\) −1.23607 + 3.80423i −0.0431128 + 0.132688i
\(823\) −0.640196 + 6.09106i −0.0223158 + 0.212321i 0.977682 + 0.210092i \(0.0673763\pi\)
−0.999998 + 0.00222928i \(0.999290\pi\)
\(824\) −0.218296 0.242442i −0.00760469 0.00844587i
\(825\) 0.947762 1.05260i 0.0329968 0.0366467i
\(826\) 1.83576 + 17.4661i 0.0638743 + 0.607723i
\(827\) 2.61533 + 0.555906i 0.0909441 + 0.0193308i 0.253159 0.967425i \(-0.418530\pi\)
−0.162215 + 0.986755i \(0.551864\pi\)
\(828\) 16.1772 7.20258i 0.562198 0.250307i
\(829\) −17.5623 12.7598i −0.609964 0.443165i 0.239438 0.970912i \(-0.423037\pi\)
−0.849402 + 0.527747i \(0.823037\pi\)
\(830\) 6.04587 + 2.69180i 0.209855 + 0.0934336i
\(831\) 6.66312 + 11.5409i 0.231141 + 0.400348i
\(832\) −0.572949 + 0.992377i −0.0198634 + 0.0344045i
\(833\) 0.381966 0.277515i 0.0132343 0.00961531i
\(834\) −3.53897 + 0.752232i −0.122545 + 0.0260476i
\(835\) −7.47214 22.9969i −0.258584 0.795839i
\(836\) −6.18034 −0.213752
\(837\) 0 0
\(838\) −2.76393 −0.0954784
\(839\) 3.45492 + 10.6331i 0.119277 + 0.367097i 0.992815 0.119659i \(-0.0381802\pi\)
−0.873538 + 0.486756i \(0.838180\pi\)
\(840\) 17.1785 3.65141i 0.592716 0.125986i
\(841\) −36.6246 + 26.6093i −1.26292 + 0.917563i
\(842\) 4.56231 7.90215i 0.157227 0.272326i
\(843\) −9.51722 16.4843i −0.327791 0.567750i
\(844\) 11.8252 + 5.26491i 0.407040 + 0.181226i
\(845\) 22.3713 + 16.2537i 0.769597 + 0.559145i
\(846\) −3.81893 + 1.70030i −0.131298 + 0.0584574i
\(847\) 30.5664 + 6.49708i 1.05027 + 0.223242i
\(848\) −2.46293 23.4332i −0.0845774 0.804700i
\(849\) 4.39104 4.87674i 0.150700 0.167369i
\(850\) 0.181006 + 0.201028i 0.00620847 + 0.00689520i
\(851\) 0.135029 1.28472i 0.00462875 0.0440396i
\(852\) −0.0450850 + 0.138757i −0.00154459 + 0.00475375i
\(853\) 1.23607 3.80423i 0.0423222 0.130254i −0.927663 0.373419i \(-0.878185\pi\)
0.969985 + 0.243164i \(0.0781855\pi\)
\(854\) 1.34584 12.8049i 0.0460539 0.438173i
\(855\) 17.5181 + 19.4558i 0.599105 + 0.665374i
\(856\) 1.63114 1.81156i 0.0557511 0.0619178i
\(857\) 0.855078 + 8.13553i 0.0292089 + 0.277904i 0.999371 + 0.0354490i \(0.0112861\pi\)
−0.970163 + 0.242455i \(0.922047\pi\)
\(858\) −2.24171 0.476491i −0.0765309 0.0162671i
\(859\) −39.5490 + 17.6084i −1.34940 + 0.600789i −0.948920 0.315518i \(-0.897822\pi\)
−0.400476 + 0.916307i \(0.631155\pi\)
\(860\) −15.8262 11.4984i −0.539670 0.392093i
\(861\) 17.7378 + 7.89736i 0.604502 + 0.269141i
\(862\) 9.03444 + 15.6481i 0.307714 + 0.532977i
\(863\) 1.24671 2.15937i 0.0424385 0.0735057i −0.844026 0.536302i \(-0.819821\pi\)
0.886464 + 0.462797i \(0.153154\pi\)
\(864\) −22.7254 + 16.5110i −0.773135 + 0.561715i
\(865\) 2.32991 0.495239i 0.0792195 0.0168386i
\(866\) 0.111456 + 0.343027i 0.00378744 + 0.0116565i
\(867\) −16.9443 −0.575458
\(868\) 0 0
\(869\) 0 0
\(870\) 4.30902 + 13.2618i 0.146089 + 0.449617i
\(871\) −20.1130 + 4.27514i −0.681502 + 0.144858i
\(872\) 15.2254 11.0619i 0.515598 0.374604i
\(873\) −5.29180 + 9.16566i −0.179100 + 0.310211i
\(874\) 8.45492 + 14.6443i 0.285992 + 0.495352i
\(875\) 22.5721 + 10.0497i 0.763075 + 0.339743i
\(876\) 11.2082 + 8.14324i 0.378690 + 0.275134i
\(877\) 14.8833 6.62647i 0.502573 0.223760i −0.139760 0.990185i \(-0.544633\pi\)
0.642333 + 0.766425i \(0.277966\pi\)
\(878\) 25.2891 + 5.37537i 0.853467 + 0.181410i
\(879\) 0.860904 + 8.19095i 0.0290376 + 0.276274i
\(880\) −2.48127 + 2.75573i −0.0836437 + 0.0928957i
\(881\) 10.2783 + 11.4152i 0.346285 + 0.384588i 0.890977 0.454048i \(-0.150020\pi\)
−0.544693 + 0.838636i \(0.683354\pi\)
\(882\) −0.258409 + 2.45859i −0.00870107 + 0.0827851i
\(883\) 0.309017 0.951057i 0.0103992 0.0320056i −0.945722 0.324976i \(-0.894644\pi\)
0.956121 + 0.292970i \(0.0946438\pi\)
\(884\) −0.572949 + 1.76336i −0.0192704 + 0.0593081i
\(885\) 2.59214 24.6625i 0.0871337 0.829022i
\(886\) 17.0069 + 18.8881i 0.571358 + 0.634557i
\(887\) 26.1652 29.0594i 0.878543 0.975720i −0.121315 0.992614i \(-0.538711\pi\)
0.999857 + 0.0168938i \(0.00537771\pi\)
\(888\) 0.0551768 + 0.524972i 0.00185161 + 0.0176169i
\(889\) 30.0372 + 6.38459i 1.00741 + 0.214132i
\(890\) 9.43349 4.20006i 0.316211 0.140786i
\(891\) −0.618034 0.449028i −0.0207049 0.0150430i
\(892\) 1.04683 + 0.466079i 0.0350505 + 0.0156055i
\(893\) 8.45492 + 14.6443i 0.282933 + 0.490054i
\(894\) −5.26393 + 9.11740i −0.176052 + 0.304931i
\(895\) −41.9336 + 30.4666i −1.40169 + 1.01838i
\(896\) −33.3997 + 7.09933i −1.11581 + 0.237172i
\(897\) −8.20820 25.2623i −0.274064 0.843482i
\(898\) 14.8754 0.496398
\(899\) 0 0
\(900\) 6.00000 0.200000
\(901\) −0.927051 2.85317i −0.0308845 0.0950529i
\(902\) 2.98895 0.635322i 0.0995213 0.0211539i
\(903\) −11.2082 + 8.14324i −0.372986 + 0.270990i
\(904\) 2.07295 3.59045i 0.0689453 0.119417i
\(905\) −22.2533 38.5438i −0.739724 1.28124i
\(906\) −11.0135 4.90351i −0.365898 0.162908i
\(907\) −42.8156 31.1074i −1.42167 1.03290i −0.991493 0.130157i \(-0.958452\pi\)
−0.430175 0.902745i \(-0.641548\pi\)
\(908\) 30.6607 13.6510i 1.01751 0.453025i
\(909\) 9.31966 + 1.98095i 0.309114 + 0.0657041i
\(910\) 2.46293 + 23.4332i 0.0816454 + 0.776804i
\(911\) −5.47372 + 6.07918i −0.181352 + 0.201412i −0.826966 0.562252i \(-0.809935\pi\)
0.645614 + 0.763664i \(0.276602\pi\)
\(912\) 6.20318 + 6.88933i 0.205408 + 0.228129i
\(913\) −0.326611 + 3.10749i −0.0108092 + 0.102843i
\(914\) −3.00658 + 9.25330i −0.0994488 + 0.306072i
\(915\) −5.61803 + 17.2905i −0.185726 + 0.571607i
\(916\) 1.22384 11.6441i 0.0404368 0.384731i
\(917\) 0.181006 + 0.201028i 0.00597736 + 0.00663853i
\(918\) −0.488124 + 0.542117i −0.0161105 + 0.0178925i
\(919\) −1.03226 9.82129i −0.0340511 0.323974i −0.998267 0.0588546i \(-0.981255\pi\)
0.964215 0.265120i \(-0.0854115\pi\)
\(920\) 31.3344 + 6.66033i 1.03306 + 0.219585i
\(921\) 5.56365 2.47710i 0.183328 0.0816231i
\(922\) −5.37132 3.90249i −0.176895 0.128522i
\(923\) −0.399853 0.178026i −0.0131613 0.00585980i
\(924\) 1.85410 + 3.21140i 0.0609955 + 0.105647i
\(925\) 0.218847 0.379054i 0.00719565 0.0124632i
\(926\) 15.5623 11.3067i 0.511409 0.371560i
\(927\) −0.285420 + 0.0606678i −0.00937441 + 0.00199259i
\(928\) −14.9615 46.0467i −0.491135 1.51156i
\(929\) −33.5410 −1.10045 −0.550223 0.835018i \(-0.685457\pi\)
−0.550223 + 0.835018i \(0.685457\pi\)
\(930\) 0 0
\(931\) 10.0000 0.327737
\(932\) −9.39919 28.9277i −0.307881 0.947559i
\(933\) −16.1122 + 3.42475i −0.527489 + 0.112121i
\(934\) −16.3885 + 11.9070i −0.536250 + 0.389608i
\(935\) −0.236068 + 0.408882i −0.00772025 + 0.0133719i
\(936\) −10.8541 18.7999i −0.354777 0.614493i
\(937\) 36.9852 + 16.4669i 1.20825 + 0.537949i 0.909229 0.416297i \(-0.136672\pi\)
0.299024 + 0.954246i \(0.403339\pi\)
\(938\) −6.35410 4.61653i −0.207469 0.150735i
\(939\) −1.12920 + 0.502754i −0.0368502 + 0.0164068i
\(940\) 14.0132 + 2.97859i 0.457059 + 0.0971510i
\(941\) 2.98780 + 28.4270i 0.0973995 + 0.926694i 0.928690 + 0.370856i \(0.120936\pi\)
−0.831291 + 0.555838i \(0.812398\pi\)
\(942\) −4.01478 + 4.45887i −0.130809 + 0.145278i
\(943\) 23.6982 + 26.3195i 0.771720 + 0.857082i
\(944\) −1.83576 + 17.4661i −0.0597489 + 0.568473i
\(945\) 12.1353 37.3485i 0.394760 1.21495i
\(946\) −0.673762 + 2.07363i −0.0219059 + 0.0674194i
\(947\) 2.30683 21.9480i 0.0749618 0.713214i −0.890908 0.454184i \(-0.849931\pi\)
0.965869 0.259029i \(-0.0834026\pi\)
\(948\) 0 0
\(949\) −27.8106 + 30.8868i −0.902771 + 1.00263i
\(950\) 0.598895 + 5.69810i 0.0194307 + 0.184871i
\(951\) −25.3228 5.38253i −0.821149 0.174541i
\(952\) −1.44668 + 0.644105i −0.0468873 + 0.0208756i
\(953\) 34.1525 + 24.8132i 1.10631 + 0.803779i 0.982078 0.188474i \(-0.0603542\pi\)
0.124229 + 0.992254i \(0.460354\pi\)
\(954\) 14.3502 + 6.38910i 0.464604 + 0.206855i
\(955\) −21.0623 36.4810i −0.681560 1.18050i
\(956\) 10.8541 18.7999i 0.351047 0.608031i
\(957\) −5.32624 + 3.86974i −0.172173 + 0.125091i
\(958\) −5.40707 + 1.14931i −0.174694 + 0.0371324i
\(959\) 6.00000 + 18.4661i 0.193750 + 0.596302i
\(960\) 0.618034 0.0199470
\(961\) 0 0
\(962\) −0.708204 −0.0228334
\(963\) −0.673762 2.07363i −0.0217117 0.0668217i
\(964\) 13.4968 2.86884i 0.434704 0.0923992i
\(965\) −5.04508 + 3.66547i −0.162407 + 0.117996i
\(966\) 5.07295 8.78661i 0.163219 0.282704i
\(967\) 21.8262 + 37.8042i 0.701884 + 1.21570i 0.967804 + 0.251704i \(0.0809911\pi\)
−0.265920 + 0.963995i \(0.585676\pi\)
\(968\) −21.2781 9.47363i −0.683905 0.304494i
\(969\) 0.954915 + 0.693786i 0.0306763 + 0.0222876i
\(970\) −7.82206 + 3.48260i −0.251151 + 0.111820i
\(971\) 20.1130 + 4.27514i 0.645456 + 0.137196i 0.518997 0.854776i \(-0.326306\pi\)
0.126459 + 0.991972i \(0.459639\pi\)
\(972\) 2.70609 + 25.7467i 0.0867979 + 0.825827i
\(973\) −11.7515 + 13.0513i −0.376735 + 0.418407i
\(974\) 9.47970 + 10.5283i 0.303749 + 0.337348i
\(975\) 0.940756 8.95070i 0.0301283 0.286652i
\(976\) 3.97871 12.2452i 0.127356 0.391960i
\(977\) −1.87539 + 5.77185i −0.0599990 + 0.184658i −0.976564 0.215228i \(-0.930950\pi\)
0.916565 + 0.399886i \(0.130950\pi\)
\(978\) −0.820977 + 7.81108i −0.0262520 + 0.249771i
\(979\) 3.26227 + 3.62312i 0.104263 + 0.115795i
\(980\) 5.66897 6.29602i 0.181088 0.201119i
\(981\) −1.75951 16.7406i −0.0561768 0.534486i
\(982\) 16.6830 + 3.54609i 0.532377 + 0.113160i
\(983\) −19.2159 + 8.55548i −0.612893 + 0.272877i −0.689616 0.724175i \(-0.742221\pi\)
0.0767236 + 0.997052i \(0.475554\pi\)
\(984\) −11.7082 8.50651i −0.373244 0.271178i
\(985\) 39.2630 + 17.4810i 1.25102 + 0.556992i
\(986\) −0.628677 1.08890i −0.0200212 0.0346777i
\(987\) 5.07295 8.78661i 0.161474 0.279681i
\(988\) −31.7705 + 23.0826i −1.01075 + 0.734356i
\(989\) −24.7183 + 5.25403i −0.785996 + 0.167069i
\(990\) −0.763932 2.35114i −0.0242794 0.0747242i
\(991\) 17.2705 0.548616 0.274308 0.961642i \(-0.411551\pi\)
0.274308 + 0.961642i \(0.411551\pi\)
\(992\) 0 0
\(993\) −11.2705 −0.357659
\(994\) −0.0516628 0.159002i −0.00163864 0.00504323i
\(995\) 68.3950 14.5378i 2.16827 0.460879i
\(996\) 5.35410 3.88998i 0.169651 0.123259i
\(997\) 13.6246 23.5985i 0.431496 0.747373i −0.565507 0.824744i \(-0.691319\pi\)
0.997002 + 0.0773712i \(0.0246526\pi\)
\(998\) −1.28115 2.21902i −0.0405542 0.0702419i
\(999\) 1.07829 + 0.480087i 0.0341157 + 0.0151893i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.c.844.1 8
31.2 even 5 961.2.g.g.338.1 8
31.3 odd 30 961.2.a.d.1.1 2
31.4 even 5 961.2.g.g.732.1 8
31.5 even 3 inner 961.2.g.c.547.1 8
31.6 odd 6 31.2.d.a.4.1 4
31.7 even 15 961.2.d.e.374.1 4
31.8 even 5 inner 961.2.g.c.448.1 8
31.9 even 15 inner 961.2.g.c.846.1 8
31.10 even 15 961.2.g.g.235.1 8
31.11 odd 30 961.2.g.f.816.1 8
31.12 odd 30 961.2.d.f.388.1 4
31.13 odd 30 961.2.c.f.439.1 4
31.14 even 15 961.2.d.b.628.1 4
31.15 odd 10 961.2.c.f.521.1 4
31.16 even 5 961.2.c.d.521.1 4
31.17 odd 30 31.2.d.a.8.1 yes 4
31.18 even 15 961.2.c.d.439.1 4
31.19 even 15 961.2.d.e.388.1 4
31.20 even 15 961.2.g.g.816.1 8
31.21 odd 30 961.2.g.f.235.1 8
31.22 odd 30 961.2.g.b.846.1 8
31.23 odd 10 961.2.g.b.448.1 8
31.24 odd 30 961.2.d.f.374.1 4
31.25 even 3 961.2.d.b.531.1 4
31.26 odd 6 961.2.g.b.547.1 8
31.27 odd 10 961.2.g.f.732.1 8
31.28 even 15 961.2.a.e.1.1 2
31.29 odd 10 961.2.g.f.338.1 8
31.30 odd 2 961.2.g.b.844.1 8
93.17 even 30 279.2.i.a.163.1 4
93.59 odd 30 8649.2.a.f.1.2 2
93.65 even 30 8649.2.a.g.1.2 2
93.68 even 6 279.2.i.a.190.1 4
124.79 even 30 496.2.n.b.225.1 4
124.99 even 6 496.2.n.b.97.1 4
155.17 even 60 775.2.bf.a.349.1 8
155.37 even 12 775.2.bf.a.624.2 8
155.48 even 60 775.2.bf.a.349.2 8
155.68 even 12 775.2.bf.a.624.1 8
155.79 odd 30 775.2.k.c.101.1 4
155.99 odd 6 775.2.k.c.376.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.4.1 4 31.6 odd 6
31.2.d.a.8.1 yes 4 31.17 odd 30
279.2.i.a.163.1 4 93.17 even 30
279.2.i.a.190.1 4 93.68 even 6
496.2.n.b.97.1 4 124.99 even 6
496.2.n.b.225.1 4 124.79 even 30
775.2.k.c.101.1 4 155.79 odd 30
775.2.k.c.376.1 4 155.99 odd 6
775.2.bf.a.349.1 8 155.17 even 60
775.2.bf.a.349.2 8 155.48 even 60
775.2.bf.a.624.1 8 155.68 even 12
775.2.bf.a.624.2 8 155.37 even 12
961.2.a.d.1.1 2 31.3 odd 30
961.2.a.e.1.1 2 31.28 even 15
961.2.c.d.439.1 4 31.18 even 15
961.2.c.d.521.1 4 31.16 even 5
961.2.c.f.439.1 4 31.13 odd 30
961.2.c.f.521.1 4 31.15 odd 10
961.2.d.b.531.1 4 31.25 even 3
961.2.d.b.628.1 4 31.14 even 15
961.2.d.e.374.1 4 31.7 even 15
961.2.d.e.388.1 4 31.19 even 15
961.2.d.f.374.1 4 31.24 odd 30
961.2.d.f.388.1 4 31.12 odd 30
961.2.g.b.448.1 8 31.23 odd 10
961.2.g.b.547.1 8 31.26 odd 6
961.2.g.b.844.1 8 31.30 odd 2
961.2.g.b.846.1 8 31.22 odd 30
961.2.g.c.448.1 8 31.8 even 5 inner
961.2.g.c.547.1 8 31.5 even 3 inner
961.2.g.c.844.1 8 1.1 even 1 trivial
961.2.g.c.846.1 8 31.9 even 15 inner
961.2.g.f.235.1 8 31.21 odd 30
961.2.g.f.338.1 8 31.29 odd 10
961.2.g.f.732.1 8 31.27 odd 10
961.2.g.f.816.1 8 31.11 odd 30
961.2.g.g.235.1 8 31.10 even 15
961.2.g.g.338.1 8 31.2 even 5
961.2.g.g.732.1 8 31.4 even 5
961.2.g.g.816.1 8 31.20 even 15
8649.2.a.f.1.2 2 93.59 odd 30
8649.2.a.g.1.2 2 93.65 even 30