Properties

Label 496.2.n.b.97.1
Level $496$
Weight $2$
Character 496.97
Analytic conductor $3.961$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [496,2,Mod(33,496)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(496, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("496.33");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 496 = 2^{4} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 496.n (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.96057994026\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 97.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 496.97
Dual form 496.2.n.b.225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 - 0.951057i) q^{3} -2.61803 q^{5} +(2.42705 - 1.76336i) q^{7} +(1.61803 + 1.17557i) q^{9} +(-0.618034 + 0.449028i) q^{11} +(1.50000 - 4.61653i) q^{13} +(-0.809017 + 2.48990i) q^{15} +(-0.190983 - 0.138757i) q^{17} +(-1.54508 - 4.75528i) q^{19} +(-0.927051 - 2.85317i) q^{21} +(-4.42705 - 3.21644i) q^{23} +1.85410 q^{25} +(4.04508 - 2.93893i) q^{27} +(-2.66312 - 8.19624i) q^{29} +(5.54508 - 0.502029i) q^{31} +(0.236068 + 0.726543i) q^{33} +(-6.35410 + 4.61653i) q^{35} +0.236068 q^{37} +(-3.92705 - 2.85317i) q^{39} +(2.00000 + 6.15537i) q^{41} +(1.42705 + 4.39201i) q^{43} +(-4.23607 - 3.07768i) q^{45} +(1.04508 - 3.21644i) q^{47} +(0.618034 - 1.90211i) q^{49} +(-0.190983 + 0.138757i) q^{51} +(10.2812 + 7.46969i) q^{53} +(1.61803 - 1.17557i) q^{55} -5.00000 q^{57} +(-2.92705 + 9.00854i) q^{59} -6.94427 q^{61} +6.00000 q^{63} +(-3.92705 + 12.0862i) q^{65} +4.23607 q^{67} +(-4.42705 + 3.21644i) q^{69} +(0.0729490 + 0.0530006i) q^{71} +(6.92705 - 5.03280i) q^{73} +(0.572949 - 1.76336i) q^{75} +(-0.708204 + 2.17963i) q^{77} +(0.309017 + 0.951057i) q^{81} +(1.26393 + 3.88998i) q^{83} +(0.500000 + 0.363271i) q^{85} -8.61803 q^{87} +(5.16312 - 3.75123i) q^{89} +(-4.50000 - 13.8496i) q^{91} +(1.23607 - 5.42882i) q^{93} +(4.04508 + 12.4495i) q^{95} +(4.28115 - 3.11044i) q^{97} -1.52786 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} - 6 q^{5} + 3 q^{7} + 2 q^{9} + 2 q^{11} + 6 q^{13} - q^{15} - 3 q^{17} + 5 q^{19} + 3 q^{21} - 11 q^{23} - 6 q^{25} + 5 q^{27} + 5 q^{29} + 11 q^{31} - 8 q^{33} - 12 q^{35} - 8 q^{37} - 9 q^{39}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/496\mathbb{Z}\right)^\times\).

\(n\) \(63\) \(65\) \(373\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.309017 0.951057i 0.178411 0.549093i −0.821362 0.570408i \(-0.806785\pi\)
0.999773 + 0.0213149i \(0.00678525\pi\)
\(4\) 0 0
\(5\) −2.61803 −1.17082 −0.585410 0.810737i \(-0.699067\pi\)
−0.585410 + 0.810737i \(0.699067\pi\)
\(6\) 0 0
\(7\) 2.42705 1.76336i 0.917339 0.666486i −0.0255212 0.999674i \(-0.508125\pi\)
0.942860 + 0.333188i \(0.108125\pi\)
\(8\) 0 0
\(9\) 1.61803 + 1.17557i 0.539345 + 0.391857i
\(10\) 0 0
\(11\) −0.618034 + 0.449028i −0.186344 + 0.135387i −0.677046 0.735940i \(-0.736740\pi\)
0.490702 + 0.871327i \(0.336740\pi\)
\(12\) 0 0
\(13\) 1.50000 4.61653i 0.416025 1.28039i −0.495306 0.868719i \(-0.664944\pi\)
0.911331 0.411675i \(-0.135056\pi\)
\(14\) 0 0
\(15\) −0.809017 + 2.48990i −0.208887 + 0.642889i
\(16\) 0 0
\(17\) −0.190983 0.138757i −0.0463202 0.0336536i 0.564384 0.825512i \(-0.309114\pi\)
−0.610704 + 0.791859i \(0.709114\pi\)
\(18\) 0 0
\(19\) −1.54508 4.75528i −0.354467 1.09094i −0.956318 0.292328i \(-0.905570\pi\)
0.601851 0.798608i \(-0.294430\pi\)
\(20\) 0 0
\(21\) −0.927051 2.85317i −0.202299 0.622613i
\(22\) 0 0
\(23\) −4.42705 3.21644i −0.923104 0.670674i 0.0211907 0.999775i \(-0.493254\pi\)
−0.944295 + 0.329101i \(0.893254\pi\)
\(24\) 0 0
\(25\) 1.85410 0.370820
\(26\) 0 0
\(27\) 4.04508 2.93893i 0.778477 0.565597i
\(28\) 0 0
\(29\) −2.66312 8.19624i −0.494529 1.52200i −0.817690 0.575659i \(-0.804746\pi\)
0.323161 0.946344i \(-0.395254\pi\)
\(30\) 0 0
\(31\) 5.54508 0.502029i 0.995927 0.0901670i
\(32\) 0 0
\(33\) 0.236068 + 0.726543i 0.0410942 + 0.126475i
\(34\) 0 0
\(35\) −6.35410 + 4.61653i −1.07404 + 0.780335i
\(36\) 0 0
\(37\) 0.236068 0.0388093 0.0194047 0.999812i \(-0.493823\pi\)
0.0194047 + 0.999812i \(0.493823\pi\)
\(38\) 0 0
\(39\) −3.92705 2.85317i −0.628831 0.456873i
\(40\) 0 0
\(41\) 2.00000 + 6.15537i 0.312348 + 0.961307i 0.976833 + 0.214005i \(0.0686510\pi\)
−0.664485 + 0.747302i \(0.731349\pi\)
\(42\) 0 0
\(43\) 1.42705 + 4.39201i 0.217623 + 0.669775i 0.998957 + 0.0456620i \(0.0145397\pi\)
−0.781334 + 0.624113i \(0.785460\pi\)
\(44\) 0 0
\(45\) −4.23607 3.07768i −0.631476 0.458794i
\(46\) 0 0
\(47\) 1.04508 3.21644i 0.152441 0.469166i −0.845451 0.534052i \(-0.820668\pi\)
0.997893 + 0.0648863i \(0.0206685\pi\)
\(48\) 0 0
\(49\) 0.618034 1.90211i 0.0882906 0.271730i
\(50\) 0 0
\(51\) −0.190983 + 0.138757i −0.0267430 + 0.0194299i
\(52\) 0 0
\(53\) 10.2812 + 7.46969i 1.41222 + 1.02604i 0.992994 + 0.118162i \(0.0377001\pi\)
0.419231 + 0.907880i \(0.362300\pi\)
\(54\) 0 0
\(55\) 1.61803 1.17557i 0.218176 0.158514i
\(56\) 0 0
\(57\) −5.00000 −0.662266
\(58\) 0 0
\(59\) −2.92705 + 9.00854i −0.381070 + 1.17281i 0.558222 + 0.829692i \(0.311484\pi\)
−0.939292 + 0.343120i \(0.888516\pi\)
\(60\) 0 0
\(61\) −6.94427 −0.889123 −0.444561 0.895748i \(-0.646640\pi\)
−0.444561 + 0.895748i \(0.646640\pi\)
\(62\) 0 0
\(63\) 6.00000 0.755929
\(64\) 0 0
\(65\) −3.92705 + 12.0862i −0.487091 + 1.49911i
\(66\) 0 0
\(67\) 4.23607 0.517518 0.258759 0.965942i \(-0.416686\pi\)
0.258759 + 0.965942i \(0.416686\pi\)
\(68\) 0 0
\(69\) −4.42705 + 3.21644i −0.532954 + 0.387214i
\(70\) 0 0
\(71\) 0.0729490 + 0.0530006i 0.00865746 + 0.00629001i 0.592106 0.805860i \(-0.298297\pi\)
−0.583448 + 0.812150i \(0.698297\pi\)
\(72\) 0 0
\(73\) 6.92705 5.03280i 0.810750 0.589044i −0.103298 0.994650i \(-0.532940\pi\)
0.914048 + 0.405606i \(0.132940\pi\)
\(74\) 0 0
\(75\) 0.572949 1.76336i 0.0661585 0.203615i
\(76\) 0 0
\(77\) −0.708204 + 2.17963i −0.0807073 + 0.248392i
\(78\) 0 0
\(79\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(80\) 0 0
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 0 0
\(83\) 1.26393 + 3.88998i 0.138735 + 0.426981i 0.996152 0.0876401i \(-0.0279326\pi\)
−0.857418 + 0.514621i \(0.827933\pi\)
\(84\) 0 0
\(85\) 0.500000 + 0.363271i 0.0542326 + 0.0394023i
\(86\) 0 0
\(87\) −8.61803 −0.923950
\(88\) 0 0
\(89\) 5.16312 3.75123i 0.547290 0.397629i −0.279496 0.960147i \(-0.590167\pi\)
0.826785 + 0.562518i \(0.190167\pi\)
\(90\) 0 0
\(91\) −4.50000 13.8496i −0.471728 1.45183i
\(92\) 0 0
\(93\) 1.23607 5.42882i 0.128174 0.562943i
\(94\) 0 0
\(95\) 4.04508 + 12.4495i 0.415017 + 1.27729i
\(96\) 0 0
\(97\) 4.28115 3.11044i 0.434685 0.315817i −0.348834 0.937184i \(-0.613422\pi\)
0.783520 + 0.621367i \(0.213422\pi\)
\(98\) 0 0
\(99\) −1.52786 −0.153556
\(100\) 0 0
\(101\) −3.85410 2.80017i −0.383497 0.278627i 0.379288 0.925279i \(-0.376169\pi\)
−0.762786 + 0.646651i \(0.776169\pi\)
\(102\) 0 0
\(103\) 0.0450850 + 0.138757i 0.00444235 + 0.0136722i 0.953253 0.302173i \(-0.0977120\pi\)
−0.948811 + 0.315845i \(0.897712\pi\)
\(104\) 0 0
\(105\) 2.42705 + 7.46969i 0.236856 + 0.728968i
\(106\) 0 0
\(107\) 0.881966 + 0.640786i 0.0852629 + 0.0619471i 0.629600 0.776919i \(-0.283219\pi\)
−0.544337 + 0.838867i \(0.683219\pi\)
\(108\) 0 0
\(109\) −2.60081 + 8.00448i −0.249113 + 0.766690i 0.745820 + 0.666147i \(0.232058\pi\)
−0.994933 + 0.100543i \(0.967942\pi\)
\(110\) 0 0
\(111\) 0.0729490 0.224514i 0.00692401 0.0213099i
\(112\) 0 0
\(113\) 1.50000 1.08981i 0.141108 0.102521i −0.514992 0.857195i \(-0.672205\pi\)
0.656100 + 0.754674i \(0.272205\pi\)
\(114\) 0 0
\(115\) 11.5902 + 8.42075i 1.08079 + 0.785239i
\(116\) 0 0
\(117\) 7.85410 5.70634i 0.726112 0.527551i
\(118\) 0 0
\(119\) −0.708204 −0.0649209
\(120\) 0 0
\(121\) −3.21885 + 9.90659i −0.292622 + 0.900599i
\(122\) 0 0
\(123\) 6.47214 0.583573
\(124\) 0 0
\(125\) 8.23607 0.736656
\(126\) 0 0
\(127\) −3.16312 + 9.73508i −0.280681 + 0.863849i 0.706979 + 0.707235i \(0.250058\pi\)
−0.987660 + 0.156614i \(0.949942\pi\)
\(128\) 0 0
\(129\) 4.61803 0.406595
\(130\) 0 0
\(131\) 0.0729490 0.0530006i 0.00637359 0.00463068i −0.584594 0.811326i \(-0.698746\pi\)
0.590967 + 0.806695i \(0.298746\pi\)
\(132\) 0 0
\(133\) −12.1353 8.81678i −1.05226 0.764512i
\(134\) 0 0
\(135\) −10.5902 + 7.69421i −0.911457 + 0.662212i
\(136\) 0 0
\(137\) −2.00000 + 6.15537i −0.170872 + 0.525888i −0.999421 0.0340275i \(-0.989167\pi\)
0.828549 + 0.559916i \(0.189167\pi\)
\(138\) 0 0
\(139\) −1.80902 + 5.56758i −0.153439 + 0.472236i −0.997999 0.0632239i \(-0.979862\pi\)
0.844561 + 0.535460i \(0.179862\pi\)
\(140\) 0 0
\(141\) −2.73607 1.98787i −0.230418 0.167409i
\(142\) 0 0
\(143\) 1.14590 + 3.52671i 0.0958248 + 0.294918i
\(144\) 0 0
\(145\) 6.97214 + 21.4580i 0.579004 + 1.78199i
\(146\) 0 0
\(147\) −1.61803 1.17557i −0.133453 0.0969594i
\(148\) 0 0
\(149\) −17.0344 −1.39552 −0.697758 0.716334i \(-0.745819\pi\)
−0.697758 + 0.716334i \(0.745819\pi\)
\(150\) 0 0
\(151\) −15.7812 + 11.4657i −1.28425 + 0.933064i −0.999673 0.0255888i \(-0.991854\pi\)
−0.284579 + 0.958652i \(0.591854\pi\)
\(152\) 0 0
\(153\) −0.145898 0.449028i −0.0117952 0.0363018i
\(154\) 0 0
\(155\) −14.5172 + 1.31433i −1.16605 + 0.105569i
\(156\) 0 0
\(157\) 3.00000 + 9.23305i 0.239426 + 0.736878i 0.996503 + 0.0835524i \(0.0266266\pi\)
−0.757077 + 0.653325i \(0.773373\pi\)
\(158\) 0 0
\(159\) 10.2812 7.46969i 0.815348 0.592385i
\(160\) 0 0
\(161\) −16.4164 −1.29379
\(162\) 0 0
\(163\) −10.2812 7.46969i −0.805282 0.585072i 0.107177 0.994240i \(-0.465819\pi\)
−0.912459 + 0.409168i \(0.865819\pi\)
\(164\) 0 0
\(165\) −0.618034 1.90211i −0.0481139 0.148079i
\(166\) 0 0
\(167\) 2.85410 + 8.78402i 0.220857 + 0.679728i 0.998686 + 0.0512518i \(0.0163211\pi\)
−0.777829 + 0.628476i \(0.783679\pi\)
\(168\) 0 0
\(169\) −8.54508 6.20837i −0.657314 0.477567i
\(170\) 0 0
\(171\) 3.09017 9.51057i 0.236311 0.727291i
\(172\) 0 0
\(173\) 0.281153 0.865300i 0.0213757 0.0657875i −0.939800 0.341726i \(-0.888989\pi\)
0.961175 + 0.275938i \(0.0889886\pi\)
\(174\) 0 0
\(175\) 4.50000 3.26944i 0.340168 0.247147i
\(176\) 0 0
\(177\) 7.66312 + 5.56758i 0.575995 + 0.418485i
\(178\) 0 0
\(179\) 16.0172 11.6372i 1.19718 0.869805i 0.203179 0.979142i \(-0.434873\pi\)
0.994005 + 0.109337i \(0.0348728\pi\)
\(180\) 0 0
\(181\) 17.0000 1.26360 0.631800 0.775131i \(-0.282316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(182\) 0 0
\(183\) −2.14590 + 6.60440i −0.158629 + 0.488211i
\(184\) 0 0
\(185\) −0.618034 −0.0454388
\(186\) 0 0
\(187\) 0.180340 0.0131878
\(188\) 0 0
\(189\) 4.63525 14.2658i 0.337165 1.03769i
\(190\) 0 0
\(191\) 16.0902 1.16424 0.582122 0.813102i \(-0.302223\pi\)
0.582122 + 0.813102i \(0.302223\pi\)
\(192\) 0 0
\(193\) 1.92705 1.40008i 0.138712 0.100780i −0.516265 0.856429i \(-0.672678\pi\)
0.654977 + 0.755648i \(0.272678\pi\)
\(194\) 0 0
\(195\) 10.2812 + 7.46969i 0.736249 + 0.534916i
\(196\) 0 0
\(197\) −13.2812 + 9.64932i −0.946243 + 0.687486i −0.949915 0.312507i \(-0.898831\pi\)
0.00367232 + 0.999993i \(0.498831\pi\)
\(198\) 0 0
\(199\) 8.25329 25.4010i 0.585060 1.80063i −0.0139686 0.999902i \(-0.504446\pi\)
0.599029 0.800728i \(-0.295554\pi\)
\(200\) 0 0
\(201\) 1.30902 4.02874i 0.0923309 0.284165i
\(202\) 0 0
\(203\) −20.9164 15.1967i −1.46804 1.06660i
\(204\) 0 0
\(205\) −5.23607 16.1150i −0.365703 1.12552i
\(206\) 0 0
\(207\) −3.38197 10.4086i −0.235063 0.723449i
\(208\) 0 0
\(209\) 3.09017 + 2.24514i 0.213752 + 0.155300i
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 0 0
\(213\) 0.0729490 0.0530006i 0.00499838 0.00363154i
\(214\) 0 0
\(215\) −3.73607 11.4984i −0.254798 0.784187i
\(216\) 0 0
\(217\) 12.5729 10.9964i 0.853507 0.746485i
\(218\) 0 0
\(219\) −2.64590 8.14324i −0.178793 0.550269i
\(220\) 0 0
\(221\) −0.927051 + 0.673542i −0.0623602 + 0.0453073i
\(222\) 0 0
\(223\) −0.708204 −0.0474248 −0.0237124 0.999719i \(-0.507549\pi\)
−0.0237124 + 0.999719i \(0.507549\pi\)
\(224\) 0 0
\(225\) 3.00000 + 2.17963i 0.200000 + 0.145309i
\(226\) 0 0
\(227\) 6.40983 + 19.7274i 0.425435 + 1.30936i 0.902577 + 0.430529i \(0.141673\pi\)
−0.477141 + 0.878827i \(0.658327\pi\)
\(228\) 0 0
\(229\) −2.23607 6.88191i −0.147764 0.454769i 0.849592 0.527440i \(-0.176848\pi\)
−0.997356 + 0.0726703i \(0.976848\pi\)
\(230\) 0 0
\(231\) 1.85410 + 1.34708i 0.121991 + 0.0886316i
\(232\) 0 0
\(233\) 5.80902 17.8783i 0.380561 1.17125i −0.559088 0.829108i \(-0.688849\pi\)
0.939649 0.342139i \(-0.111151\pi\)
\(234\) 0 0
\(235\) −2.73607 + 8.42075i −0.178481 + 0.549309i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.8541 7.88597i −0.702093 0.510101i 0.178520 0.983936i \(-0.442869\pi\)
−0.880613 + 0.473836i \(0.842869\pi\)
\(240\) 0 0
\(241\) 6.89919 5.01255i 0.444416 0.322887i −0.342971 0.939346i \(-0.611433\pi\)
0.787387 + 0.616459i \(0.211433\pi\)
\(242\) 0 0
\(243\) 16.0000 1.02640
\(244\) 0 0
\(245\) −1.61803 + 4.97980i −0.103372 + 0.318148i
\(246\) 0 0
\(247\) −24.2705 −1.54430
\(248\) 0 0
\(249\) 4.09017 0.259204
\(250\) 0 0
\(251\) −0.291796 + 0.898056i −0.0184180 + 0.0566848i −0.959843 0.280537i \(-0.909487\pi\)
0.941425 + 0.337222i \(0.109487\pi\)
\(252\) 0 0
\(253\) 4.18034 0.262816
\(254\) 0 0
\(255\) 0.500000 0.363271i 0.0313112 0.0227489i
\(256\) 0 0
\(257\) −1.14590 0.832544i −0.0714792 0.0519326i 0.551472 0.834194i \(-0.314066\pi\)
−0.622951 + 0.782261i \(0.714066\pi\)
\(258\) 0 0
\(259\) 0.572949 0.416272i 0.0356013 0.0258659i
\(260\) 0 0
\(261\) 5.32624 16.3925i 0.329686 1.01467i
\(262\) 0 0
\(263\) 3.33688 10.2699i 0.205761 0.633267i −0.793920 0.608022i \(-0.791963\pi\)
0.999681 0.0252452i \(-0.00803665\pi\)
\(264\) 0 0
\(265\) −26.9164 19.5559i −1.65346 1.20131i
\(266\) 0 0
\(267\) −1.97214 6.06961i −0.120693 0.371454i
\(268\) 0 0
\(269\) −0.427051 1.31433i −0.0260378 0.0801360i 0.937193 0.348811i \(-0.113414\pi\)
−0.963231 + 0.268675i \(0.913414\pi\)
\(270\) 0 0
\(271\) 7.73607 + 5.62058i 0.469933 + 0.341426i 0.797415 0.603431i \(-0.206200\pi\)
−0.327482 + 0.944857i \(0.606200\pi\)
\(272\) 0 0
\(273\) −14.5623 −0.881351
\(274\) 0 0
\(275\) −1.14590 + 0.832544i −0.0691003 + 0.0502043i
\(276\) 0 0
\(277\) 4.11803 + 12.6740i 0.247429 + 0.761507i 0.995228 + 0.0975818i \(0.0311108\pi\)
−0.747799 + 0.663925i \(0.768889\pi\)
\(278\) 0 0
\(279\) 9.56231 + 5.70634i 0.572480 + 0.341630i
\(280\) 0 0
\(281\) 5.88197 + 18.1028i 0.350889 + 1.07992i 0.958355 + 0.285579i \(0.0921859\pi\)
−0.607466 + 0.794345i \(0.707814\pi\)
\(282\) 0 0
\(283\) 5.30902 3.85723i 0.315588 0.229288i −0.418702 0.908124i \(-0.637515\pi\)
0.734291 + 0.678835i \(0.237515\pi\)
\(284\) 0 0
\(285\) 13.0902 0.775395
\(286\) 0 0
\(287\) 15.7082 + 11.4127i 0.927226 + 0.673669i
\(288\) 0 0
\(289\) −5.23607 16.1150i −0.308004 0.947939i
\(290\) 0 0
\(291\) −1.63525 5.03280i −0.0958603 0.295028i
\(292\) 0 0
\(293\) 6.66312 + 4.84104i 0.389264 + 0.282817i 0.765154 0.643848i \(-0.222663\pi\)
−0.375890 + 0.926664i \(0.622663\pi\)
\(294\) 0 0
\(295\) 7.66312 23.5847i 0.446164 1.37315i
\(296\) 0 0
\(297\) −1.18034 + 3.63271i −0.0684903 + 0.210791i
\(298\) 0 0
\(299\) −21.4894 + 15.6129i −1.24276 + 0.902919i
\(300\) 0 0
\(301\) 11.2082 + 8.14324i 0.646030 + 0.469368i
\(302\) 0 0
\(303\) −3.85410 + 2.80017i −0.221412 + 0.160866i
\(304\) 0 0
\(305\) 18.1803 1.04100
\(306\) 0 0
\(307\) −1.88197 + 5.79210i −0.107409 + 0.330572i −0.990288 0.139028i \(-0.955602\pi\)
0.882879 + 0.469601i \(0.155602\pi\)
\(308\) 0 0
\(309\) 0.145898 0.00829985
\(310\) 0 0
\(311\) −16.4721 −0.934049 −0.467025 0.884244i \(-0.654674\pi\)
−0.467025 + 0.884244i \(0.654674\pi\)
\(312\) 0 0
\(313\) 0.381966 1.17557i 0.0215900 0.0664472i −0.939681 0.342052i \(-0.888878\pi\)
0.961271 + 0.275605i \(0.0888781\pi\)
\(314\) 0 0
\(315\) −15.7082 −0.885057
\(316\) 0 0
\(317\) −20.9443 + 15.2169i −1.17635 + 0.854666i −0.991755 0.128149i \(-0.959097\pi\)
−0.184593 + 0.982815i \(0.559097\pi\)
\(318\) 0 0
\(319\) 5.32624 + 3.86974i 0.298212 + 0.216664i
\(320\) 0 0
\(321\) 0.881966 0.640786i 0.0492265 0.0357652i
\(322\) 0 0
\(323\) −0.364745 + 1.12257i −0.0202950 + 0.0624615i
\(324\) 0 0
\(325\) 2.78115 8.55951i 0.154271 0.474796i
\(326\) 0 0
\(327\) 6.80902 + 4.94704i 0.376540 + 0.273572i
\(328\) 0 0
\(329\) −3.13525 9.64932i −0.172852 0.531984i
\(330\) 0 0
\(331\) −3.48278 10.7189i −0.191431 0.589164i −1.00000 0.000762014i \(-0.999757\pi\)
0.808569 0.588402i \(-0.200243\pi\)
\(332\) 0 0
\(333\) 0.381966 + 0.277515i 0.0209316 + 0.0152077i
\(334\) 0 0
\(335\) −11.0902 −0.605921
\(336\) 0 0
\(337\) −15.3541 + 11.1554i −0.836391 + 0.607674i −0.921360 0.388710i \(-0.872921\pi\)
0.0849690 + 0.996384i \(0.472921\pi\)
\(338\) 0 0
\(339\) −0.572949 1.76336i −0.0311183 0.0957723i
\(340\) 0 0
\(341\) −3.20163 + 2.80017i −0.173378 + 0.151638i
\(342\) 0 0
\(343\) 4.63525 + 14.2658i 0.250280 + 0.770283i
\(344\) 0 0
\(345\) 11.5902 8.42075i 0.623994 0.453358i
\(346\) 0 0
\(347\) −8.12461 −0.436152 −0.218076 0.975932i \(-0.569978\pi\)
−0.218076 + 0.975932i \(0.569978\pi\)
\(348\) 0 0
\(349\) 13.5172 + 9.82084i 0.723560 + 0.525697i 0.887520 0.460770i \(-0.152427\pi\)
−0.163959 + 0.986467i \(0.552427\pi\)
\(350\) 0 0
\(351\) −7.50000 23.0826i −0.400320 1.23206i
\(352\) 0 0
\(353\) −10.0066 30.7971i −0.532596 1.63916i −0.748786 0.662812i \(-0.769363\pi\)
0.216190 0.976351i \(-0.430637\pi\)
\(354\) 0 0
\(355\) −0.190983 0.138757i −0.0101363 0.00736447i
\(356\) 0 0
\(357\) −0.218847 + 0.673542i −0.0115826 + 0.0356476i
\(358\) 0 0
\(359\) 7.82624 24.0867i 0.413053 1.27125i −0.500928 0.865489i \(-0.667008\pi\)
0.913981 0.405757i \(-0.132992\pi\)
\(360\) 0 0
\(361\) −4.85410 + 3.52671i −0.255479 + 0.185616i
\(362\) 0 0
\(363\) 8.42705 + 6.12261i 0.442305 + 0.321354i
\(364\) 0 0
\(365\) −18.1353 + 13.1760i −0.949243 + 0.689665i
\(366\) 0 0
\(367\) 36.2705 1.89331 0.946653 0.322256i \(-0.104441\pi\)
0.946653 + 0.322256i \(0.104441\pi\)
\(368\) 0 0
\(369\) −4.00000 + 12.3107i −0.208232 + 0.640871i
\(370\) 0 0
\(371\) 38.1246 1.97933
\(372\) 0 0
\(373\) −0.347524 −0.0179941 −0.00899706 0.999960i \(-0.502864\pi\)
−0.00899706 + 0.999960i \(0.502864\pi\)
\(374\) 0 0
\(375\) 2.54508 7.83297i 0.131428 0.404493i
\(376\) 0 0
\(377\) −41.8328 −2.15450
\(378\) 0 0
\(379\) −14.8992 + 10.8249i −0.765320 + 0.556037i −0.900537 0.434779i \(-0.856827\pi\)
0.135218 + 0.990816i \(0.456827\pi\)
\(380\) 0 0
\(381\) 8.28115 + 6.01661i 0.424256 + 0.308240i
\(382\) 0 0
\(383\) −13.6353 + 9.90659i −0.696729 + 0.506203i −0.878865 0.477070i \(-0.841699\pi\)
0.182136 + 0.983273i \(0.441699\pi\)
\(384\) 0 0
\(385\) 1.85410 5.70634i 0.0944938 0.290822i
\(386\) 0 0
\(387\) −2.85410 + 8.78402i −0.145082 + 0.446517i
\(388\) 0 0
\(389\) 23.5172 + 17.0863i 1.19237 + 0.866308i 0.993513 0.113721i \(-0.0362769\pi\)
0.198858 + 0.980028i \(0.436277\pi\)
\(390\) 0 0
\(391\) 0.399187 + 1.22857i 0.0201878 + 0.0621315i
\(392\) 0 0
\(393\) −0.0278640 0.0857567i −0.00140556 0.00432585i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 16.2918 0.817662 0.408831 0.912610i \(-0.365937\pi\)
0.408831 + 0.912610i \(0.365937\pi\)
\(398\) 0 0
\(399\) −12.1353 + 8.81678i −0.607523 + 0.441391i
\(400\) 0 0
\(401\) −9.21885 28.3727i −0.460367 1.41686i −0.864717 0.502260i \(-0.832502\pi\)
0.404349 0.914605i \(-0.367498\pi\)
\(402\) 0 0
\(403\) 6.00000 26.3521i 0.298881 1.31269i
\(404\) 0 0
\(405\) −0.809017 2.48990i −0.0402004 0.123724i
\(406\) 0 0
\(407\) −0.145898 + 0.106001i −0.00723190 + 0.00525428i
\(408\) 0 0
\(409\) −6.18034 −0.305598 −0.152799 0.988257i \(-0.548829\pi\)
−0.152799 + 0.988257i \(0.548829\pi\)
\(410\) 0 0
\(411\) 5.23607 + 3.80423i 0.258276 + 0.187649i
\(412\) 0 0
\(413\) 8.78115 + 27.0256i 0.432092 + 1.32984i
\(414\) 0 0
\(415\) −3.30902 10.1841i −0.162433 0.499918i
\(416\) 0 0
\(417\) 4.73607 + 3.44095i 0.231926 + 0.168504i
\(418\) 0 0
\(419\) −1.38197 + 4.25325i −0.0675135 + 0.207785i −0.979122 0.203275i \(-0.934841\pi\)
0.911608 + 0.411060i \(0.134841\pi\)
\(420\) 0 0
\(421\) 4.56231 14.0413i 0.222353 0.684333i −0.776196 0.630491i \(-0.782853\pi\)
0.998549 0.0538414i \(-0.0171466\pi\)
\(422\) 0 0
\(423\) 5.47214 3.97574i 0.266064 0.193307i
\(424\) 0 0
\(425\) −0.354102 0.257270i −0.0171765 0.0124794i
\(426\) 0 0
\(427\) −16.8541 + 12.2452i −0.815627 + 0.592588i
\(428\) 0 0
\(429\) 3.70820 0.179034
\(430\) 0 0
\(431\) −9.03444 + 27.8052i −0.435174 + 1.33933i 0.457735 + 0.889089i \(0.348661\pi\)
−0.892908 + 0.450238i \(0.851339\pi\)
\(432\) 0 0
\(433\) 0.583592 0.0280456 0.0140228 0.999902i \(-0.495536\pi\)
0.0140228 + 0.999902i \(0.495536\pi\)
\(434\) 0 0
\(435\) 22.5623 1.08178
\(436\) 0 0
\(437\) −8.45492 + 26.0216i −0.404453 + 1.24478i
\(438\) 0 0
\(439\) −41.8328 −1.99657 −0.998286 0.0585295i \(-0.981359\pi\)
−0.998286 + 0.0585295i \(0.981359\pi\)
\(440\) 0 0
\(441\) 3.23607 2.35114i 0.154098 0.111959i
\(442\) 0 0
\(443\) −33.2705 24.1724i −1.58073 1.14847i −0.915853 0.401514i \(-0.868484\pi\)
−0.664877 0.746953i \(-0.731516\pi\)
\(444\) 0 0
\(445\) −13.5172 + 9.82084i −0.640778 + 0.465552i
\(446\) 0 0
\(447\) −5.26393 + 16.2007i −0.248975 + 0.766268i
\(448\) 0 0
\(449\) 7.43769 22.8909i 0.351006 1.08029i −0.607283 0.794486i \(-0.707740\pi\)
0.958289 0.285801i \(-0.0922596\pi\)
\(450\) 0 0
\(451\) −4.00000 2.90617i −0.188353 0.136846i
\(452\) 0 0
\(453\) 6.02786 + 18.5519i 0.283214 + 0.871642i
\(454\) 0 0
\(455\) 11.7812 + 36.2587i 0.552309 + 1.69983i
\(456\) 0 0
\(457\) 12.7361 + 9.25330i 0.595768 + 0.432851i 0.844374 0.535754i \(-0.179972\pi\)
−0.248606 + 0.968605i \(0.579972\pi\)
\(458\) 0 0
\(459\) −1.18034 −0.0550935
\(460\) 0 0
\(461\) −8.69098 + 6.31437i −0.404779 + 0.294089i −0.771485 0.636248i \(-0.780486\pi\)
0.366705 + 0.930337i \(0.380486\pi\)
\(462\) 0 0
\(463\) 9.61803 + 29.6013i 0.446988 + 1.37569i 0.880289 + 0.474438i \(0.157349\pi\)
−0.433301 + 0.901249i \(0.642651\pi\)
\(464\) 0 0
\(465\) −3.23607 + 14.2128i −0.150069 + 0.659105i
\(466\) 0 0
\(467\) 10.1287 + 31.1729i 0.468699 + 1.44251i 0.854270 + 0.519830i \(0.174005\pi\)
−0.385571 + 0.922678i \(0.625995\pi\)
\(468\) 0 0
\(469\) 10.2812 7.46969i 0.474740 0.344918i
\(470\) 0 0
\(471\) 9.70820 0.447330
\(472\) 0 0
\(473\) −2.85410 2.07363i −0.131232 0.0953454i
\(474\) 0 0
\(475\) −2.86475 8.81678i −0.131444 0.404542i
\(476\) 0 0
\(477\) 7.85410 + 24.1724i 0.359615 + 1.10678i
\(478\) 0 0
\(479\) −7.23607 5.25731i −0.330624 0.240213i 0.410071 0.912054i \(-0.365504\pi\)
−0.740696 + 0.671841i \(0.765504\pi\)
\(480\) 0 0
\(481\) 0.354102 1.08981i 0.0161457 0.0496912i
\(482\) 0 0
\(483\) −5.07295 + 15.6129i −0.230827 + 0.710413i
\(484\) 0 0
\(485\) −11.2082 + 8.14324i −0.508938 + 0.369765i
\(486\) 0 0
\(487\) 18.5451 + 13.4738i 0.840358 + 0.610556i 0.922471 0.386067i \(-0.126167\pi\)
−0.0821126 + 0.996623i \(0.526167\pi\)
\(488\) 0 0
\(489\) −10.2812 + 7.46969i −0.464930 + 0.337791i
\(490\) 0 0
\(491\) 27.5967 1.24542 0.622712 0.782451i \(-0.286031\pi\)
0.622712 + 0.782451i \(0.286031\pi\)
\(492\) 0 0
\(493\) −0.628677 + 1.93487i −0.0283142 + 0.0871421i
\(494\) 0 0
\(495\) 4.00000 0.179787
\(496\) 0 0
\(497\) 0.270510 0.0121340
\(498\) 0 0
\(499\) −1.28115 + 3.94298i −0.0573523 + 0.176512i −0.975629 0.219427i \(-0.929581\pi\)
0.918277 + 0.395940i \(0.129581\pi\)
\(500\) 0 0
\(501\) 9.23607 0.412637
\(502\) 0 0
\(503\) 10.6353 7.72696i 0.474203 0.344528i −0.324874 0.945757i \(-0.605322\pi\)
0.799077 + 0.601229i \(0.205322\pi\)
\(504\) 0 0
\(505\) 10.0902 + 7.33094i 0.449007 + 0.326222i
\(506\) 0 0
\(507\) −8.54508 + 6.20837i −0.379501 + 0.275723i
\(508\) 0 0
\(509\) −0.590170 + 1.81636i −0.0261588 + 0.0805086i −0.963284 0.268486i \(-0.913477\pi\)
0.937125 + 0.348994i \(0.113477\pi\)
\(510\) 0 0
\(511\) 7.93769 24.4297i 0.351143 1.08071i
\(512\) 0 0
\(513\) −20.2254 14.6946i −0.892974 0.648784i
\(514\) 0 0
\(515\) −0.118034 0.363271i −0.00520120 0.0160076i
\(516\) 0 0
\(517\) 0.798374 + 2.45714i 0.0351124 + 0.108065i
\(518\) 0 0
\(519\) −0.736068 0.534785i −0.0323098 0.0234744i
\(520\) 0 0
\(521\) 31.0689 1.36115 0.680576 0.732677i \(-0.261729\pi\)
0.680576 + 0.732677i \(0.261729\pi\)
\(522\) 0 0
\(523\) 27.6074 20.0579i 1.20719 0.877073i 0.212215 0.977223i \(-0.431932\pi\)
0.994972 + 0.100150i \(0.0319324\pi\)
\(524\) 0 0
\(525\) −1.71885 5.29007i −0.0750166 0.230877i
\(526\) 0 0
\(527\) −1.12868 0.673542i −0.0491659 0.0293399i
\(528\) 0 0
\(529\) 2.14590 + 6.60440i 0.0932999 + 0.287148i
\(530\) 0 0
\(531\) −15.3262 + 11.1352i −0.665102 + 0.483225i
\(532\) 0 0
\(533\) 31.4164 1.36080
\(534\) 0 0
\(535\) −2.30902 1.67760i −0.0998275 0.0725289i
\(536\) 0 0
\(537\) −6.11803 18.8294i −0.264013 0.812547i
\(538\) 0 0
\(539\) 0.472136 + 1.45309i 0.0203363 + 0.0625888i
\(540\) 0 0
\(541\) −17.7984 12.9313i −0.765212 0.555959i 0.135293 0.990806i \(-0.456803\pi\)
−0.900504 + 0.434847i \(0.856803\pi\)
\(542\) 0 0
\(543\) 5.25329 16.1680i 0.225440 0.693834i
\(544\) 0 0
\(545\) 6.80902 20.9560i 0.291666 0.897656i
\(546\) 0 0
\(547\) −19.1803 + 13.9353i −0.820092 + 0.595832i −0.916739 0.399487i \(-0.869188\pi\)
0.0966468 + 0.995319i \(0.469188\pi\)
\(548\) 0 0
\(549\) −11.2361 8.16348i −0.479544 0.348409i
\(550\) 0 0
\(551\) −34.8607 + 25.3278i −1.48511 + 1.07900i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −0.190983 + 0.587785i −0.00810678 + 0.0249501i
\(556\) 0 0
\(557\) 35.8885 1.52065 0.760323 0.649545i \(-0.225041\pi\)
0.760323 + 0.649545i \(0.225041\pi\)
\(558\) 0 0
\(559\) 22.4164 0.948113
\(560\) 0 0
\(561\) 0.0557281 0.171513i 0.00235284 0.00724130i
\(562\) 0 0
\(563\) 8.56231 0.360858 0.180429 0.983588i \(-0.442251\pi\)
0.180429 + 0.983588i \(0.442251\pi\)
\(564\) 0 0
\(565\) −3.92705 + 2.85317i −0.165212 + 0.120034i
\(566\) 0 0
\(567\) 2.42705 + 1.76336i 0.101927 + 0.0740540i
\(568\) 0 0
\(569\) −12.5623 + 9.12705i −0.526639 + 0.382626i −0.819099 0.573652i \(-0.805526\pi\)
0.292460 + 0.956278i \(0.405526\pi\)
\(570\) 0 0
\(571\) −2.16312 + 6.65740i −0.0905237 + 0.278603i −0.986061 0.166383i \(-0.946791\pi\)
0.895538 + 0.444986i \(0.146791\pi\)
\(572\) 0 0
\(573\) 4.97214 15.3027i 0.207714 0.639278i
\(574\) 0 0
\(575\) −8.20820 5.96361i −0.342306 0.248700i
\(576\) 0 0
\(577\) 12.0451 + 37.0710i 0.501443 + 1.54328i 0.806669 + 0.591004i \(0.201268\pi\)
−0.305225 + 0.952280i \(0.598732\pi\)
\(578\) 0 0
\(579\) −0.736068 2.26538i −0.0305899 0.0941462i
\(580\) 0 0
\(581\) 9.92705 + 7.21242i 0.411843 + 0.299222i
\(582\) 0 0
\(583\) −9.70820 −0.402073
\(584\) 0 0
\(585\) −20.5623 + 14.9394i −0.850147 + 0.617668i
\(586\) 0 0
\(587\) −11.1287 34.2505i −0.459330 1.41367i −0.865976 0.500086i \(-0.833302\pi\)
0.406646 0.913586i \(-0.366698\pi\)
\(588\) 0 0
\(589\) −10.9549 25.5928i −0.451389 1.05453i
\(590\) 0 0
\(591\) 5.07295 + 15.6129i 0.208673 + 0.642230i
\(592\) 0 0
\(593\) −4.94427 + 3.59222i −0.203037 + 0.147515i −0.684658 0.728865i \(-0.740048\pi\)
0.481621 + 0.876380i \(0.340048\pi\)
\(594\) 0 0
\(595\) 1.85410 0.0760108
\(596\) 0 0
\(597\) −21.6074 15.6987i −0.884332 0.642505i
\(598\) 0 0
\(599\) −9.20820 28.3399i −0.376237 1.15794i −0.942640 0.333810i \(-0.891666\pi\)
0.566403 0.824128i \(-0.308334\pi\)
\(600\) 0 0
\(601\) 6.79837 + 20.9232i 0.277311 + 0.853477i 0.988599 + 0.150575i \(0.0481126\pi\)
−0.711287 + 0.702902i \(0.751887\pi\)
\(602\) 0 0
\(603\) 6.85410 + 4.97980i 0.279121 + 0.202793i
\(604\) 0 0
\(605\) 8.42705 25.9358i 0.342608 1.05444i
\(606\) 0 0
\(607\) 7.85410 24.1724i 0.318788 0.981129i −0.655379 0.755300i \(-0.727491\pi\)
0.974167 0.225829i \(-0.0725090\pi\)
\(608\) 0 0
\(609\) −20.9164 + 15.1967i −0.847576 + 0.615800i
\(610\) 0 0
\(611\) −13.2812 9.64932i −0.537298 0.390370i
\(612\) 0 0
\(613\) −20.2705 + 14.7274i −0.818718 + 0.594834i −0.916345 0.400390i \(-0.868875\pi\)
0.0976269 + 0.995223i \(0.468875\pi\)
\(614\) 0 0
\(615\) −16.9443 −0.683259
\(616\) 0 0
\(617\) −4.39919 + 13.5393i −0.177105 + 0.545072i −0.999723 0.0235215i \(-0.992512\pi\)
0.822619 + 0.568593i \(0.192512\pi\)
\(618\) 0 0
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 0 0
\(621\) −27.3607 −1.09795
\(622\) 0 0
\(623\) 5.91641 18.2088i 0.237036 0.729521i
\(624\) 0 0
\(625\) −30.8328 −1.23331
\(626\) 0 0
\(627\) 3.09017 2.24514i 0.123410 0.0896623i
\(628\) 0 0
\(629\) −0.0450850 0.0327561i −0.00179766 0.00130607i
\(630\) 0 0
\(631\) −7.06231 + 5.13107i −0.281146 + 0.204264i −0.719417 0.694578i \(-0.755591\pi\)
0.438271 + 0.898843i \(0.355591\pi\)
\(632\) 0 0
\(633\) 2.47214 7.60845i 0.0982586 0.302409i
\(634\) 0 0
\(635\) 8.28115 25.4868i 0.328628 1.01141i
\(636\) 0 0
\(637\) −7.85410 5.70634i −0.311191 0.226093i
\(638\) 0 0
\(639\) 0.0557281 + 0.171513i 0.00220457 + 0.00678497i
\(640\) 0 0
\(641\) −12.6976 39.0791i −0.501523 1.54353i −0.806538 0.591183i \(-0.798661\pi\)
0.305014 0.952348i \(-0.401339\pi\)
\(642\) 0 0
\(643\) 6.59017 + 4.78804i 0.259891 + 0.188822i 0.710099 0.704102i \(-0.248650\pi\)
−0.450208 + 0.892924i \(0.648650\pi\)
\(644\) 0 0
\(645\) −12.0902 −0.476050
\(646\) 0 0
\(647\) −24.1803 + 17.5680i −0.950627 + 0.690671i −0.950955 0.309329i \(-0.899896\pi\)
0.000327889 1.00000i \(0.499896\pi\)
\(648\) 0 0
\(649\) −2.23607 6.88191i −0.0877733 0.270139i
\(650\) 0 0
\(651\) −6.57295 15.3557i −0.257614 0.601836i
\(652\) 0 0
\(653\) 12.2533 + 37.7117i 0.479508 + 1.47577i 0.839780 + 0.542927i \(0.182684\pi\)
−0.360272 + 0.932847i \(0.617316\pi\)
\(654\) 0 0
\(655\) −0.190983 + 0.138757i −0.00746232 + 0.00542170i
\(656\) 0 0
\(657\) 17.1246 0.668095
\(658\) 0 0
\(659\) 18.3541 + 13.3350i 0.714974 + 0.519459i 0.884775 0.466019i \(-0.154312\pi\)
−0.169800 + 0.985478i \(0.554312\pi\)
\(660\) 0 0
\(661\) −5.13525 15.8047i −0.199738 0.614731i −0.999889 0.0149316i \(-0.995247\pi\)
0.800150 0.599800i \(-0.204753\pi\)
\(662\) 0 0
\(663\) 0.354102 + 1.08981i 0.0137522 + 0.0423249i
\(664\) 0 0
\(665\) 31.7705 + 23.0826i 1.23201 + 0.895106i
\(666\) 0 0
\(667\) −14.5729 + 44.8509i −0.564267 + 1.73663i
\(668\) 0 0
\(669\) −0.218847 + 0.673542i −0.00846112 + 0.0260406i
\(670\) 0 0
\(671\) 4.29180 3.11817i 0.165683 0.120376i
\(672\) 0 0
\(673\) 3.57295 + 2.59590i 0.137727 + 0.100065i 0.654516 0.756049i \(-0.272873\pi\)
−0.516788 + 0.856113i \(0.672873\pi\)
\(674\) 0 0
\(675\) 7.50000 5.44907i 0.288675 0.209735i
\(676\) 0 0
\(677\) 28.6525 1.10120 0.550602 0.834768i \(-0.314398\pi\)
0.550602 + 0.834768i \(0.314398\pi\)
\(678\) 0 0
\(679\) 4.90576 15.0984i 0.188266 0.579423i
\(680\) 0 0
\(681\) 20.7426 0.794860
\(682\) 0 0
\(683\) −10.0557 −0.384772 −0.192386 0.981319i \(-0.561623\pi\)
−0.192386 + 0.981319i \(0.561623\pi\)
\(684\) 0 0
\(685\) 5.23607 16.1150i 0.200060 0.615721i
\(686\) 0 0
\(687\) −7.23607 −0.276073
\(688\) 0 0
\(689\) 49.9058 36.2587i 1.90126 1.38134i
\(690\) 0 0
\(691\) 3.10081 + 2.25287i 0.117960 + 0.0857033i 0.645201 0.764013i \(-0.276773\pi\)
−0.527241 + 0.849716i \(0.676773\pi\)
\(692\) 0 0
\(693\) −3.70820 + 2.69417i −0.140863 + 0.102343i
\(694\) 0 0
\(695\) 4.73607 14.5761i 0.179649 0.552904i
\(696\) 0 0
\(697\) 0.472136 1.45309i 0.0178834 0.0550395i
\(698\) 0 0
\(699\) −15.2082 11.0494i −0.575227 0.417927i
\(700\) 0 0
\(701\) −9.28115 28.5645i −0.350544 1.07886i −0.958548 0.284930i \(-0.908030\pi\)
0.608004 0.793934i \(-0.291970\pi\)
\(702\) 0 0
\(703\) −0.364745 1.12257i −0.0137566 0.0423385i
\(704\) 0 0
\(705\) 7.16312 + 5.20431i 0.269779 + 0.196006i
\(706\) 0 0
\(707\) −14.2918 −0.537498
\(708\) 0 0
\(709\) −3.35410 + 2.43690i −0.125966 + 0.0915196i −0.648984 0.760802i \(-0.724806\pi\)
0.523018 + 0.852321i \(0.324806\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −26.1631 15.6129i −0.979817 0.584709i
\(714\) 0 0
\(715\) −3.00000 9.23305i −0.112194 0.345297i
\(716\) 0 0
\(717\) −10.8541 + 7.88597i −0.405354 + 0.294507i
\(718\) 0 0
\(719\) 41.3820 1.54329 0.771643 0.636055i \(-0.219435\pi\)
0.771643 + 0.636055i \(0.219435\pi\)
\(720\) 0 0
\(721\) 0.354102 + 0.257270i 0.0131874 + 0.00958124i
\(722\) 0 0
\(723\) −2.63525 8.11048i −0.0980062 0.301632i
\(724\) 0 0
\(725\) −4.93769 15.1967i −0.183381 0.564390i
\(726\) 0 0
\(727\) −19.2812 14.0086i −0.715098 0.519549i 0.169716 0.985493i \(-0.445715\pi\)
−0.884814 + 0.465944i \(0.845715\pi\)
\(728\) 0 0
\(729\) 4.01722 12.3637i 0.148786 0.457916i
\(730\) 0 0
\(731\) 0.336881 1.03681i 0.0124600 0.0383479i
\(732\) 0 0
\(733\) −22.6074 + 16.4252i −0.835023 + 0.606680i −0.920976 0.389619i \(-0.872607\pi\)
0.0859529 + 0.996299i \(0.472607\pi\)
\(734\) 0 0
\(735\) 4.23607 + 3.07768i 0.156250 + 0.113522i
\(736\) 0 0
\(737\) −2.61803 + 1.90211i −0.0964365 + 0.0700652i
\(738\) 0 0
\(739\) −21.7082 −0.798549 −0.399275 0.916831i \(-0.630738\pi\)
−0.399275 + 0.916831i \(0.630738\pi\)
\(740\) 0 0
\(741\) −7.50000 + 23.0826i −0.275519 + 0.847961i
\(742\) 0 0
\(743\) 3.43769 0.126117 0.0630584 0.998010i \(-0.479915\pi\)
0.0630584 + 0.998010i \(0.479915\pi\)
\(744\) 0 0
\(745\) 44.5967 1.63390
\(746\) 0 0
\(747\) −2.52786 + 7.77997i −0.0924897 + 0.284654i
\(748\) 0 0
\(749\) 3.27051 0.119502
\(750\) 0 0
\(751\) −32.2254 + 23.4131i −1.17592 + 0.854358i −0.991706 0.128528i \(-0.958975\pi\)
−0.184217 + 0.982886i \(0.558975\pi\)
\(752\) 0 0
\(753\) 0.763932 + 0.555029i 0.0278392 + 0.0202264i
\(754\) 0 0
\(755\) 41.3156 30.0175i 1.50363 1.09245i
\(756\) 0 0
\(757\) 13.3262 41.0139i 0.484350 1.49068i −0.348569 0.937283i \(-0.613332\pi\)
0.832920 0.553394i \(-0.186668\pi\)
\(758\) 0 0
\(759\) 1.29180 3.97574i 0.0468892 0.144310i
\(760\) 0 0
\(761\) −2.83688 2.06111i −0.102837 0.0747154i 0.535178 0.844739i \(-0.320244\pi\)
−0.638015 + 0.770024i \(0.720244\pi\)
\(762\) 0 0
\(763\) 7.80244 + 24.0134i 0.282467 + 0.869345i
\(764\) 0 0
\(765\) 0.381966 + 1.17557i 0.0138100 + 0.0425028i
\(766\) 0 0
\(767\) 37.1976 + 27.0256i 1.34313 + 0.975838i
\(768\) 0 0
\(769\) −53.7426 −1.93801 −0.969005 0.247042i \(-0.920541\pi\)
−0.969005 + 0.247042i \(0.920541\pi\)
\(770\) 0 0
\(771\) −1.14590 + 0.832544i −0.0412685 + 0.0299833i
\(772\) 0 0
\(773\) −5.89919 18.1558i −0.212179 0.653020i −0.999342 0.0362746i \(-0.988451\pi\)
0.787163 0.616745i \(-0.211549\pi\)
\(774\) 0 0
\(775\) 10.2812 0.930812i 0.369310 0.0334358i
\(776\) 0 0
\(777\) −0.218847 0.673542i −0.00785109 0.0241632i
\(778\) 0 0
\(779\) 26.1803 19.0211i 0.938008 0.681503i
\(780\) 0 0
\(781\) −0.0688837 −0.00246485
\(782\) 0 0
\(783\) −34.8607 25.3278i −1.24582 0.905141i
\(784\) 0 0
\(785\) −7.85410 24.1724i −0.280325 0.862751i
\(786\) 0 0
\(787\) −9.66970 29.7603i −0.344687 1.06084i −0.961751 0.273926i \(-0.911678\pi\)
0.617063 0.786913i \(-0.288322\pi\)
\(788\) 0 0
\(789\) −8.73607 6.34712i −0.311012 0.225964i
\(790\) 0 0
\(791\) 1.71885 5.29007i 0.0611152 0.188093i
\(792\) 0 0
\(793\) −10.4164 + 32.0584i −0.369897 + 1.13843i
\(794\) 0 0
\(795\) −26.9164 + 19.5559i −0.954627 + 0.693577i
\(796\) 0 0
\(797\) −7.32624 5.32282i −0.259509 0.188544i 0.450422 0.892816i \(-0.351274\pi\)
−0.709930 + 0.704272i \(0.751274\pi\)
\(798\) 0 0
\(799\) −0.645898 + 0.469272i −0.0228502 + 0.0166017i
\(800\) 0 0
\(801\) 12.7639 0.450991
\(802\) 0 0
\(803\) −2.02129 + 6.22088i −0.0713296 + 0.219530i
\(804\) 0 0
\(805\) 42.9787 1.51480
\(806\) 0 0
\(807\) −1.38197 −0.0486475
\(808\) 0 0
\(809\) 16.9336 52.1164i 0.595355 1.83231i 0.0424020 0.999101i \(-0.486499\pi\)
0.552953 0.833213i \(-0.313501\pi\)
\(810\) 0 0
\(811\) −42.7771 −1.50211 −0.751053 0.660242i \(-0.770454\pi\)
−0.751053 + 0.660242i \(0.770454\pi\)
\(812\) 0 0
\(813\) 7.73607 5.62058i 0.271316 0.197122i
\(814\) 0 0
\(815\) 26.9164 + 19.5559i 0.942841 + 0.685014i
\(816\) 0 0
\(817\) 18.6803 13.5721i 0.653542 0.474826i
\(818\) 0 0
\(819\) 9.00000 27.6992i 0.314485 0.967887i
\(820\) 0 0
\(821\) −10.0344 + 30.8828i −0.350204 + 1.07782i 0.608534 + 0.793528i \(0.291758\pi\)
−0.958738 + 0.284290i \(0.908242\pi\)
\(822\) 0 0
\(823\) −4.95492 3.59996i −0.172717 0.125487i 0.498068 0.867138i \(-0.334043\pi\)
−0.670786 + 0.741651i \(0.734043\pi\)
\(824\) 0 0
\(825\) 0.437694 + 1.34708i 0.0152386 + 0.0468994i
\(826\) 0 0
\(827\) −0.826238 2.54290i −0.0287311 0.0884253i 0.935663 0.352896i \(-0.114803\pi\)
−0.964394 + 0.264470i \(0.914803\pi\)
\(828\) 0 0
\(829\) 17.5623 + 12.7598i 0.609964 + 0.443165i 0.849402 0.527747i \(-0.176963\pi\)
−0.239438 + 0.970912i \(0.576963\pi\)
\(830\) 0 0
\(831\) 13.3262 0.462282
\(832\) 0 0
\(833\) −0.381966 + 0.277515i −0.0132343 + 0.00961531i
\(834\) 0 0
\(835\) −7.47214 22.9969i −0.258584 0.795839i
\(836\) 0 0
\(837\) 20.9549 18.3273i 0.724308 0.633486i
\(838\) 0 0
\(839\) −3.45492 10.6331i −0.119277 0.367097i 0.873538 0.486756i \(-0.161820\pi\)
−0.992815 + 0.119659i \(0.961820\pi\)
\(840\) 0 0
\(841\) −36.6246 + 26.6093i −1.26292 + 0.917563i
\(842\) 0 0
\(843\) 19.0344 0.655581
\(844\) 0 0
\(845\) 22.3713 + 16.2537i 0.769597 + 0.559145i
\(846\) 0 0
\(847\) 9.65654 + 29.7198i 0.331803 + 1.02118i
\(848\) 0 0
\(849\) −2.02786 6.24112i −0.0695961 0.214195i
\(850\) 0 0
\(851\) −1.04508 0.759299i −0.0358251 0.0260284i
\(852\) 0 0
\(853\) 1.23607 3.80423i 0.0423222 0.130254i −0.927663 0.373419i \(-0.878185\pi\)
0.969985 + 0.243164i \(0.0781855\pi\)
\(854\) 0 0
\(855\) −8.09017 + 24.8990i −0.276678 + 0.851527i
\(856\) 0 0
\(857\) 6.61803 4.80828i 0.226068 0.164248i −0.468986 0.883206i \(-0.655381\pi\)
0.695054 + 0.718958i \(0.255381\pi\)
\(858\) 0 0
\(859\) 35.0238 + 25.4463i 1.19500 + 0.868216i 0.993783 0.111332i \(-0.0355116\pi\)
0.201213 + 0.979547i \(0.435512\pi\)
\(860\) 0 0
\(861\) 15.7082 11.4127i 0.535334 0.388943i
\(862\) 0 0
\(863\) −2.49342 −0.0848771 −0.0424385 0.999099i \(-0.513513\pi\)
−0.0424385 + 0.999099i \(0.513513\pi\)
\(864\) 0 0
\(865\) −0.736068 + 2.26538i −0.0250271 + 0.0770254i
\(866\) 0 0
\(867\) −16.9443 −0.575458
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 6.35410 19.5559i 0.215301 0.662627i
\(872\) 0 0
\(873\) 10.5836 0.358200
\(874\) 0 0
\(875\) 19.9894 14.5231i 0.675764 0.490971i
\(876\) 0 0
\(877\) −13.1803 9.57608i −0.445068 0.323361i 0.342577 0.939490i \(-0.388700\pi\)
−0.787646 + 0.616129i \(0.788700\pi\)
\(878\) 0 0
\(879\) 6.66312 4.84104i 0.224741 0.163284i
\(880\) 0 0
\(881\) −4.74671 + 14.6089i −0.159921 + 0.492185i −0.998626 0.0523999i \(-0.983313\pi\)
0.838705 + 0.544585i \(0.183313\pi\)
\(882\) 0 0
\(883\) 0.309017 0.951057i 0.0103992 0.0320056i −0.945722 0.324976i \(-0.894644\pi\)
0.956121 + 0.292970i \(0.0946438\pi\)
\(884\) 0 0
\(885\) −20.0623 14.5761i −0.674387 0.489971i
\(886\) 0 0
\(887\) −12.0836 37.1895i −0.405727 1.24870i −0.920286 0.391245i \(-0.872044\pi\)
0.514559 0.857455i \(-0.327956\pi\)
\(888\) 0 0
\(889\) 9.48936 + 29.2052i 0.318263 + 0.979512i
\(890\) 0 0
\(891\) −0.618034 0.449028i −0.0207049 0.0150430i
\(892\) 0 0
\(893\) −16.9098 −0.565866
\(894\) 0 0
\(895\) −41.9336 + 30.4666i −1.40169 + 1.01838i
\(896\) 0 0
\(897\) 8.20820 + 25.2623i 0.274064 + 0.843482i
\(898\) 0 0
\(899\) −18.8820 44.1119i −0.629749 1.47121i
\(900\) 0 0
\(901\) −0.927051 2.85317i −0.0308845 0.0950529i
\(902\) 0 0
\(903\) 11.2082 8.14324i 0.372986 0.270990i
\(904\) 0 0
\(905\) −44.5066 −1.47945
\(906\) 0 0
\(907\) 42.8156 + 31.1074i 1.42167 + 1.03290i 0.991493 + 0.130157i \(0.0415482\pi\)
0.430175 + 0.902745i \(0.358452\pi\)
\(908\) 0 0
\(909\) −2.94427 9.06154i −0.0976553 0.300552i
\(910\) 0 0
\(911\) −2.52786 7.77997i −0.0837519 0.257762i 0.900408 0.435047i \(-0.143268\pi\)
−0.984159 + 0.177286i \(0.943268\pi\)
\(912\) 0 0
\(913\) −2.52786 1.83660i −0.0836601 0.0607826i
\(914\) 0 0
\(915\) 5.61803 17.2905i 0.185726 0.571607i
\(916\) 0 0
\(917\) 0.0835921 0.257270i 0.00276046 0.00849581i
\(918\) 0 0
\(919\) 7.98936 5.80461i 0.263545 0.191476i −0.448164 0.893952i \(-0.647922\pi\)
0.711708 + 0.702475i \(0.247922\pi\)
\(920\) 0 0
\(921\) 4.92705 + 3.57971i 0.162352 + 0.117956i
\(922\) 0 0
\(923\) 0.354102 0.257270i 0.0116554 0.00846815i
\(924\) 0 0
\(925\) 0.437694 0.0143913
\(926\) 0 0
\(927\) −0.0901699 + 0.277515i −0.00296157 + 0.00911477i
\(928\) 0 0
\(929\) 33.5410 1.10045 0.550223 0.835018i \(-0.314543\pi\)
0.550223 + 0.835018i \(0.314543\pi\)
\(930\) 0 0
\(931\) −10.0000 −0.327737
\(932\) 0 0
\(933\) −5.09017 + 15.6659i −0.166645 + 0.512880i
\(934\) 0 0
\(935\) −0.472136 −0.0154405
\(936\) 0 0
\(937\) −32.7533 + 23.7967i −1.07000 + 0.777403i −0.975913 0.218161i \(-0.929994\pi\)
−0.0940905 + 0.995564i \(0.529994\pi\)
\(938\) 0 0
\(939\) −1.00000 0.726543i −0.0326338 0.0237098i
\(940\) 0 0
\(941\) −23.1246 + 16.8010i −0.753841 + 0.547697i −0.897015 0.442000i \(-0.854269\pi\)
0.143174 + 0.989698i \(0.454269\pi\)
\(942\) 0 0
\(943\) 10.9443 33.6830i 0.356395 1.09687i
\(944\) 0 0
\(945\) −12.1353 + 37.3485i −0.394760 + 1.21495i
\(946\) 0 0
\(947\) 17.8541 + 12.9718i 0.580180 + 0.421526i 0.838789 0.544456i \(-0.183264\pi\)
−0.258609 + 0.965982i \(0.583264\pi\)
\(948\) 0 0
\(949\) −12.8435 39.5281i −0.416916 1.28314i
\(950\) 0 0
\(951\) 8.00000 + 24.6215i 0.259418 + 0.798406i
\(952\) 0 0
\(953\) −34.1525 24.8132i −1.10631 0.803779i −0.124229 0.992254i \(-0.539646\pi\)
−0.982078 + 0.188474i \(0.939646\pi\)
\(954\) 0 0
\(955\) −42.1246 −1.36312
\(956\) 0 0
\(957\) 5.32624 3.86974i 0.172173 0.125091i
\(958\) 0 0
\(959\) 6.00000 + 18.4661i 0.193750 + 0.596302i
\(960\) 0 0
\(961\) 30.4959 5.56758i 0.983740 0.179599i
\(962\) 0 0
\(963\) 0.673762 + 2.07363i 0.0217117 + 0.0668217i
\(964\) 0 0
\(965\) −5.04508 + 3.66547i −0.162407 + 0.117996i
\(966\) 0 0
\(967\) −43.6525 −1.40377 −0.701884 0.712291i \(-0.747658\pi\)
−0.701884 + 0.712291i \(0.747658\pi\)
\(968\) 0 0
\(969\) 0.954915 + 0.693786i 0.0306763 + 0.0222876i
\(970\) 0 0
\(971\) 6.35410 + 19.5559i 0.203913 + 0.627579i 0.999756 + 0.0220767i \(0.00702781\pi\)
−0.795843 + 0.605502i \(0.792972\pi\)
\(972\) 0 0
\(973\) 5.42705 + 16.7027i 0.173983 + 0.535465i
\(974\) 0 0
\(975\) −7.28115 5.29007i −0.233184 0.169418i
\(976\) 0 0
\(977\) −1.87539 + 5.77185i −0.0599990 + 0.184658i −0.976564 0.215228i \(-0.930950\pi\)
0.916565 + 0.399886i \(0.130950\pi\)
\(978\) 0 0
\(979\) −1.50658 + 4.63677i −0.0481504 + 0.148192i
\(980\) 0 0
\(981\) −13.6180 + 9.89408i −0.434790 + 0.315894i
\(982\) 0 0
\(983\) 17.0172 + 12.3637i 0.542765 + 0.394342i 0.825111 0.564971i \(-0.191113\pi\)
−0.282346 + 0.959313i \(0.591113\pi\)
\(984\) 0 0
\(985\) 34.7705 25.2623i 1.10788 0.804922i
\(986\) 0 0
\(987\) −10.1459 −0.322947
\(988\) 0 0
\(989\) 7.80902 24.0337i 0.248312 0.764227i
\(990\) 0 0
\(991\) 17.2705 0.548616 0.274308 0.961642i \(-0.411551\pi\)
0.274308 + 0.961642i \(0.411551\pi\)
\(992\) 0 0
\(993\) −11.2705 −0.357659
\(994\) 0 0
\(995\) −21.6074 + 66.5007i −0.685000 + 2.10821i
\(996\) 0 0
\(997\) −27.2492 −0.862992 −0.431496 0.902115i \(-0.642014\pi\)
−0.431496 + 0.902115i \(0.642014\pi\)
\(998\) 0 0
\(999\) 0.954915 0.693786i 0.0302122 0.0219504i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 496.2.n.b.97.1 4
4.3 odd 2 31.2.d.a.4.1 4
12.11 even 2 279.2.i.a.190.1 4
20.3 even 4 775.2.bf.a.624.1 8
20.7 even 4 775.2.bf.a.624.2 8
20.19 odd 2 775.2.k.c.376.1 4
31.8 even 5 inner 496.2.n.b.225.1 4
124.3 even 30 961.2.c.d.439.1 4
124.7 odd 30 961.2.g.f.816.1 8
124.11 even 30 961.2.g.g.732.1 8
124.15 even 10 961.2.a.e.1.1 2
124.19 odd 30 961.2.g.f.235.1 8
124.23 even 10 961.2.d.b.628.1 4
124.27 even 10 961.2.d.e.374.1 4
124.35 odd 10 961.2.d.f.374.1 4
124.39 odd 10 31.2.d.a.8.1 yes 4
124.43 even 30 961.2.g.g.235.1 8
124.47 odd 10 961.2.a.d.1.1 2
124.51 odd 30 961.2.g.f.732.1 8
124.55 even 30 961.2.g.g.816.1 8
124.59 odd 30 961.2.c.f.439.1 4
124.67 odd 6 961.2.g.b.844.1 8
124.71 odd 30 961.2.g.b.448.1 8
124.75 even 30 961.2.c.d.521.1 4
124.79 even 30 961.2.g.c.846.1 8
124.83 even 30 961.2.g.g.338.1 8
124.87 odd 6 961.2.g.b.547.1 8
124.91 even 10 961.2.d.e.388.1 4
124.95 odd 10 961.2.d.f.388.1 4
124.99 even 6 961.2.g.c.547.1 8
124.103 odd 30 961.2.g.f.338.1 8
124.107 odd 30 961.2.g.b.846.1 8
124.111 odd 30 961.2.c.f.521.1 4
124.115 even 30 961.2.g.c.448.1 8
124.119 even 6 961.2.g.c.844.1 8
124.123 even 2 961.2.d.b.531.1 4
372.47 even 10 8649.2.a.g.1.2 2
372.263 odd 10 8649.2.a.f.1.2 2
372.287 even 10 279.2.i.a.163.1 4
620.39 odd 10 775.2.k.c.101.1 4
620.163 even 20 775.2.bf.a.349.2 8
620.287 even 20 775.2.bf.a.349.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.4.1 4 4.3 odd 2
31.2.d.a.8.1 yes 4 124.39 odd 10
279.2.i.a.163.1 4 372.287 even 10
279.2.i.a.190.1 4 12.11 even 2
496.2.n.b.97.1 4 1.1 even 1 trivial
496.2.n.b.225.1 4 31.8 even 5 inner
775.2.k.c.101.1 4 620.39 odd 10
775.2.k.c.376.1 4 20.19 odd 2
775.2.bf.a.349.1 8 620.287 even 20
775.2.bf.a.349.2 8 620.163 even 20
775.2.bf.a.624.1 8 20.3 even 4
775.2.bf.a.624.2 8 20.7 even 4
961.2.a.d.1.1 2 124.47 odd 10
961.2.a.e.1.1 2 124.15 even 10
961.2.c.d.439.1 4 124.3 even 30
961.2.c.d.521.1 4 124.75 even 30
961.2.c.f.439.1 4 124.59 odd 30
961.2.c.f.521.1 4 124.111 odd 30
961.2.d.b.531.1 4 124.123 even 2
961.2.d.b.628.1 4 124.23 even 10
961.2.d.e.374.1 4 124.27 even 10
961.2.d.e.388.1 4 124.91 even 10
961.2.d.f.374.1 4 124.35 odd 10
961.2.d.f.388.1 4 124.95 odd 10
961.2.g.b.448.1 8 124.71 odd 30
961.2.g.b.547.1 8 124.87 odd 6
961.2.g.b.844.1 8 124.67 odd 6
961.2.g.b.846.1 8 124.107 odd 30
961.2.g.c.448.1 8 124.115 even 30
961.2.g.c.547.1 8 124.99 even 6
961.2.g.c.844.1 8 124.119 even 6
961.2.g.c.846.1 8 124.79 even 30
961.2.g.f.235.1 8 124.19 odd 30
961.2.g.f.338.1 8 124.103 odd 30
961.2.g.f.732.1 8 124.51 odd 30
961.2.g.f.816.1 8 124.7 odd 30
961.2.g.g.235.1 8 124.43 even 30
961.2.g.g.338.1 8 124.83 even 30
961.2.g.g.732.1 8 124.11 even 30
961.2.g.g.816.1 8 124.55 even 30
8649.2.a.f.1.2 2 372.263 odd 10
8649.2.a.g.1.2 2 372.47 even 10