L(s) = 1 | + 0.765i·2-s + (−0.707 − 0.707i)3-s + 1.41·4-s + (−1.47 − 1.47i)5-s + (0.541 − 0.541i)6-s + (−0.873 + 0.873i)7-s + 2.61i·8-s + 1.00i·9-s + (1.12 − 1.12i)10-s + (−1.05 + 1.05i)11-s + (−1 − i)12-s − 4.10·13-s + (−0.668 − 0.668i)14-s + 2.08i·15-s + 0.828·16-s + ⋯ |
L(s) = 1 | + 0.541i·2-s + (−0.408 − 0.408i)3-s + 0.707·4-s + (−0.658 − 0.658i)5-s + (0.220 − 0.220i)6-s + (−0.329 + 0.329i)7-s + 0.923i·8-s + 0.333i·9-s + (0.356 − 0.356i)10-s + (−0.319 + 0.319i)11-s + (−0.288 − 0.288i)12-s − 1.13·13-s + (−0.178 − 0.178i)14-s + 0.537i·15-s + 0.207·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.698 - 0.715i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.698 - 0.715i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.284072 + 0.673872i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.284072 + 0.673872i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.707 + 0.707i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 - 0.765iT - 2T^{2} \) |
| 5 | \( 1 + (1.47 + 1.47i)T + 5iT^{2} \) |
| 7 | \( 1 + (0.873 - 0.873i)T - 7iT^{2} \) |
| 11 | \( 1 + (1.05 - 1.05i)T - 11iT^{2} \) |
| 13 | \( 1 + 4.10T + 13T^{2} \) |
| 19 | \( 1 - 6.81iT - 19T^{2} \) |
| 23 | \( 1 + (2.33 - 2.33i)T - 23iT^{2} \) |
| 29 | \( 1 + (4.41 + 4.41i)T + 29iT^{2} \) |
| 31 | \( 1 + (-7.26 - 7.26i)T + 31iT^{2} \) |
| 37 | \( 1 + (-2.78 - 2.78i)T + 37iT^{2} \) |
| 41 | \( 1 + (8.58 - 8.58i)T - 41iT^{2} \) |
| 43 | \( 1 + 3.44iT - 43T^{2} \) |
| 47 | \( 1 + 1.56T + 47T^{2} \) |
| 53 | \( 1 + 3.96iT - 53T^{2} \) |
| 59 | \( 1 - 8.06iT - 59T^{2} \) |
| 61 | \( 1 + (2.31 - 2.31i)T - 61iT^{2} \) |
| 67 | \( 1 - 2.11T + 67T^{2} \) |
| 71 | \( 1 + (0.160 + 0.160i)T + 71iT^{2} \) |
| 73 | \( 1 + (-0.260 - 0.260i)T + 73iT^{2} \) |
| 79 | \( 1 + (-1.91 + 1.91i)T - 79iT^{2} \) |
| 83 | \( 1 + 14.4iT - 83T^{2} \) |
| 89 | \( 1 + 13.6T + 89T^{2} \) |
| 97 | \( 1 + (-1.89 - 1.89i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39330466488988905520710745594, −9.747271590183216437399809424335, −8.314785522943871067213915036786, −7.922386803258311355871247827922, −7.08311791756847474468003269871, −6.19096715460338568892331027803, −5.39360299503949377032499194302, −4.45485825137561622501774813878, −2.94106880506974123843270162396, −1.68553165213893966798130217966,
0.34469708449368383128927626178, 2.39046425496300314744306336667, 3.24509184002893691065985375533, 4.21732114822538089347976161966, 5.37327807468243160202990941487, 6.63666997557011847597717689870, 7.08419499683838549629945153686, 7.989821708466036778911753980248, 9.381328178760191970802190049665, 10.06209716276723049727049783248