Properties

Label 867.2.e.i.829.3
Level $867$
Weight $2$
Character 867.829
Analytic conductor $6.923$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,2,Mod(616,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.616");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.e (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 829.3
Root \(0.382683 - 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 867.829
Dual form 867.2.e.i.616.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.765367i q^{2} +(-0.707107 - 0.707107i) q^{3} +1.41421 q^{4} +(-1.47247 - 1.47247i) q^{5} +(0.541196 - 0.541196i) q^{6} +(-0.873017 + 0.873017i) q^{7} +2.61313i q^{8} +1.00000i q^{9} +(1.12698 - 1.12698i) q^{10} +(-1.05826 + 1.05826i) q^{11} +(-1.00000 - 1.00000i) q^{12} -4.10973 q^{13} +(-0.668179 - 0.668179i) q^{14} +2.08239i q^{15} +0.828427 q^{16} -0.765367 q^{18} +6.81204i q^{19} +(-2.08239 - 2.08239i) q^{20} +1.23463 q^{21} +(-0.809957 - 0.809957i) q^{22} +(-2.33956 + 2.33956i) q^{23} +(1.84776 - 1.84776i) q^{24} -0.663643i q^{25} -3.14545i q^{26} +(0.707107 - 0.707107i) q^{27} +(-1.23463 + 1.23463i) q^{28} +(-4.41421 - 4.41421i) q^{29} -1.59379 q^{30} +(7.26197 + 7.26197i) q^{31} +5.86030i q^{32} +1.49661 q^{33} +2.57099 q^{35} +1.41421i q^{36} +(2.78384 + 2.78384i) q^{37} -5.21371 q^{38} +(2.90602 + 2.90602i) q^{39} +(3.84776 - 3.84776i) q^{40} +(-8.58221 + 8.58221i) q^{41} +0.944947i q^{42} -3.44609i q^{43} +(-1.49661 + 1.49661i) q^{44} +(1.47247 - 1.47247i) q^{45} +(-1.79063 - 1.79063i) q^{46} -1.56940 q^{47} +(-0.585786 - 0.585786i) q^{48} +5.47568i q^{49} +0.507930 q^{50} -5.81204 q^{52} -3.96134i q^{53} +(0.541196 + 0.541196i) q^{54} +3.11652 q^{55} +(-2.28130 - 2.28130i) q^{56} +(4.81684 - 4.81684i) q^{57} +(3.37849 - 3.37849i) q^{58} +8.06306i q^{59} +2.94495i q^{60} +(-2.31457 + 2.31457i) q^{61} +(-5.55807 + 5.55807i) q^{62} +(-0.873017 - 0.873017i) q^{63} -2.82843 q^{64} +(6.05147 + 6.05147i) q^{65} +1.14545i q^{66} +2.11652 q^{67} +3.30864 q^{69} +1.96775i q^{70} +(-0.160248 - 0.160248i) q^{71} -2.61313 q^{72} +(0.260380 + 0.260380i) q^{73} +(-2.13066 + 2.13066i) q^{74} +(-0.469266 + 0.469266i) q^{75} +9.63368i q^{76} -1.84776i q^{77} +(-2.22417 + 2.22417i) q^{78} +(1.91969 - 1.91969i) q^{79} +(-1.21984 - 1.21984i) q^{80} -1.00000 q^{81} +(-6.56854 - 6.56854i) q^{82} -14.4138i q^{83} +1.74603 q^{84} +2.63752 q^{86} +6.24264i q^{87} +(-2.76537 - 2.76537i) q^{88} -13.6694 q^{89} +(1.12698 + 1.12698i) q^{90} +(3.58787 - 3.58787i) q^{91} +(-3.30864 + 3.30864i) q^{92} -10.2700i q^{93} -1.20116i q^{94} +(10.0305 - 10.0305i) q^{95} +(4.14386 - 4.14386i) q^{96} +(1.89828 + 1.89828i) q^{97} -4.19090 q^{98} +(-1.05826 - 1.05826i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{10} - 8 q^{11} - 8 q^{12} + 8 q^{13} - 8 q^{14} - 16 q^{16} - 8 q^{20} + 16 q^{21} - 16 q^{22} - 16 q^{28} - 24 q^{29} + 16 q^{30} + 32 q^{31} - 8 q^{33} + 32 q^{35} - 16 q^{37} - 32 q^{38}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.765367i 0.541196i 0.962692 + 0.270598i \(0.0872214\pi\)
−0.962692 + 0.270598i \(0.912779\pi\)
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 1.41421 0.707107
\(5\) −1.47247 1.47247i −0.658510 0.658510i 0.296517 0.955027i \(-0.404175\pi\)
−0.955027 + 0.296517i \(0.904175\pi\)
\(6\) 0.541196 0.541196i 0.220942 0.220942i
\(7\) −0.873017 + 0.873017i −0.329970 + 0.329970i −0.852575 0.522605i \(-0.824960\pi\)
0.522605 + 0.852575i \(0.324960\pi\)
\(8\) 2.61313i 0.923880i
\(9\) 1.00000i 0.333333i
\(10\) 1.12698 1.12698i 0.356383 0.356383i
\(11\) −1.05826 + 1.05826i −0.319077 + 0.319077i −0.848413 0.529335i \(-0.822441\pi\)
0.529335 + 0.848413i \(0.322441\pi\)
\(12\) −1.00000 1.00000i −0.288675 0.288675i
\(13\) −4.10973 −1.13983 −0.569917 0.821702i \(-0.693025\pi\)
−0.569917 + 0.821702i \(0.693025\pi\)
\(14\) −0.668179 0.668179i −0.178578 0.178578i
\(15\) 2.08239i 0.537671i
\(16\) 0.828427 0.207107
\(17\) 0 0
\(18\) −0.765367 −0.180399
\(19\) 6.81204i 1.56279i 0.624038 + 0.781394i \(0.285491\pi\)
−0.624038 + 0.781394i \(0.714509\pi\)
\(20\) −2.08239 2.08239i −0.465637 0.465637i
\(21\) 1.23463 0.269419
\(22\) −0.809957 0.809957i −0.172683 0.172683i
\(23\) −2.33956 + 2.33956i −0.487833 + 0.487833i −0.907622 0.419789i \(-0.862104\pi\)
0.419789 + 0.907622i \(0.362104\pi\)
\(24\) 1.84776 1.84776i 0.377172 0.377172i
\(25\) 0.663643i 0.132729i
\(26\) 3.14545i 0.616874i
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) −1.23463 + 1.23463i −0.233324 + 0.233324i
\(29\) −4.41421 4.41421i −0.819699 0.819699i 0.166365 0.986064i \(-0.446797\pi\)
−0.986064 + 0.166365i \(0.946797\pi\)
\(30\) −1.59379 −0.290986
\(31\) 7.26197 + 7.26197i 1.30429 + 1.30429i 0.925471 + 0.378817i \(0.123669\pi\)
0.378817 + 0.925471i \(0.376331\pi\)
\(32\) 5.86030i 1.03596i
\(33\) 1.49661 0.260526
\(34\) 0 0
\(35\) 2.57099 0.434577
\(36\) 1.41421i 0.235702i
\(37\) 2.78384 + 2.78384i 0.457660 + 0.457660i 0.897887 0.440227i \(-0.145102\pi\)
−0.440227 + 0.897887i \(0.645102\pi\)
\(38\) −5.21371 −0.845775
\(39\) 2.90602 + 2.90602i 0.465335 + 0.465335i
\(40\) 3.84776 3.84776i 0.608384 0.608384i
\(41\) −8.58221 + 8.58221i −1.34032 + 1.34032i −0.444572 + 0.895743i \(0.646644\pi\)
−0.895743 + 0.444572i \(0.853356\pi\)
\(42\) 0.944947i 0.145809i
\(43\) 3.44609i 0.525524i −0.964861 0.262762i \(-0.915367\pi\)
0.964861 0.262762i \(-0.0846333\pi\)
\(44\) −1.49661 + 1.49661i −0.225622 + 0.225622i
\(45\) 1.47247 1.47247i 0.219503 0.219503i
\(46\) −1.79063 1.79063i −0.264013 0.264013i
\(47\) −1.56940 −0.228920 −0.114460 0.993428i \(-0.536514\pi\)
−0.114460 + 0.993428i \(0.536514\pi\)
\(48\) −0.585786 0.585786i −0.0845510 0.0845510i
\(49\) 5.47568i 0.782240i
\(50\) 0.507930 0.0718322
\(51\) 0 0
\(52\) −5.81204 −0.805985
\(53\) 3.96134i 0.544131i −0.962279 0.272066i \(-0.912293\pi\)
0.962279 0.272066i \(-0.0877068\pi\)
\(54\) 0.541196 + 0.541196i 0.0736475 + 0.0736475i
\(55\) 3.11652 0.420231
\(56\) −2.28130 2.28130i −0.304852 0.304852i
\(57\) 4.81684 4.81684i 0.638006 0.638006i
\(58\) 3.37849 3.37849i 0.443618 0.443618i
\(59\) 8.06306i 1.04972i 0.851188 + 0.524861i \(0.175883\pi\)
−0.851188 + 0.524861i \(0.824117\pi\)
\(60\) 2.94495i 0.380191i
\(61\) −2.31457 + 2.31457i −0.296350 + 0.296350i −0.839583 0.543232i \(-0.817200\pi\)
0.543232 + 0.839583i \(0.317200\pi\)
\(62\) −5.55807 + 5.55807i −0.705876 + 0.705876i
\(63\) −0.873017 0.873017i −0.109990 0.109990i
\(64\) −2.82843 −0.353553
\(65\) 6.05147 + 6.05147i 0.750593 + 0.750593i
\(66\) 1.14545i 0.140995i
\(67\) 2.11652 0.258574 0.129287 0.991607i \(-0.458731\pi\)
0.129287 + 0.991607i \(0.458731\pi\)
\(68\) 0 0
\(69\) 3.30864 0.398314
\(70\) 1.96775i 0.235191i
\(71\) −0.160248 0.160248i −0.0190180 0.0190180i 0.697534 0.716552i \(-0.254281\pi\)
−0.716552 + 0.697534i \(0.754281\pi\)
\(72\) −2.61313 −0.307960
\(73\) 0.260380 + 0.260380i 0.0304752 + 0.0304752i 0.722180 0.691705i \(-0.243140\pi\)
−0.691705 + 0.722180i \(0.743140\pi\)
\(74\) −2.13066 + 2.13066i −0.247684 + 0.247684i
\(75\) −0.469266 + 0.469266i −0.0541862 + 0.0541862i
\(76\) 9.63368i 1.10506i
\(77\) 1.84776i 0.210572i
\(78\) −2.22417 + 2.22417i −0.251838 + 0.251838i
\(79\) 1.91969 1.91969i 0.215982 0.215982i −0.590821 0.806803i \(-0.701196\pi\)
0.806803 + 0.590821i \(0.201196\pi\)
\(80\) −1.21984 1.21984i −0.136382 0.136382i
\(81\) −1.00000 −0.111111
\(82\) −6.56854 6.56854i −0.725373 0.725373i
\(83\) 14.4138i 1.58212i −0.611736 0.791062i \(-0.709528\pi\)
0.611736 0.791062i \(-0.290472\pi\)
\(84\) 1.74603 0.190508
\(85\) 0 0
\(86\) 2.63752 0.284411
\(87\) 6.24264i 0.669281i
\(88\) −2.76537 2.76537i −0.294789 0.294789i
\(89\) −13.6694 −1.44895 −0.724477 0.689299i \(-0.757918\pi\)
−0.724477 + 0.689299i \(0.757918\pi\)
\(90\) 1.12698 + 1.12698i 0.118794 + 0.118794i
\(91\) 3.58787 3.58787i 0.376111 0.376111i
\(92\) −3.30864 + 3.30864i −0.344950 + 0.344950i
\(93\) 10.2700i 1.06495i
\(94\) 1.20116i 0.123891i
\(95\) 10.0305 10.0305i 1.02911 1.02911i
\(96\) 4.14386 4.14386i 0.422931 0.422931i
\(97\) 1.89828 + 1.89828i 0.192741 + 0.192741i 0.796879 0.604139i \(-0.206483\pi\)
−0.604139 + 0.796879i \(0.706483\pi\)
\(98\) −4.19090 −0.423345
\(99\) −1.05826 1.05826i −0.106359 0.106359i
\(100\) 0.938533i 0.0938533i
\(101\) −2.38009 −0.236827 −0.118414 0.992964i \(-0.537781\pi\)
−0.118414 + 0.992964i \(0.537781\pi\)
\(102\) 0 0
\(103\) −13.2909 −1.30959 −0.654796 0.755806i \(-0.727245\pi\)
−0.654796 + 0.755806i \(0.727245\pi\)
\(104\) 10.7392i 1.05307i
\(105\) −1.81796 1.81796i −0.177415 0.177415i
\(106\) 3.03188 0.294482
\(107\) −9.24360 9.24360i −0.893612 0.893612i 0.101249 0.994861i \(-0.467716\pi\)
−0.994861 + 0.101249i \(0.967716\pi\)
\(108\) 1.00000 1.00000i 0.0962250 0.0962250i
\(109\) −0.676186 + 0.676186i −0.0647669 + 0.0647669i −0.738748 0.673981i \(-0.764583\pi\)
0.673981 + 0.738748i \(0.264583\pi\)
\(110\) 2.38528i 0.227428i
\(111\) 3.93694i 0.373678i
\(112\) −0.723231 + 0.723231i −0.0683389 + 0.0683389i
\(113\) 6.10199 6.10199i 0.574027 0.574027i −0.359224 0.933251i \(-0.616959\pi\)
0.933251 + 0.359224i \(0.116959\pi\)
\(114\) 3.68665 + 3.68665i 0.345286 + 0.345286i
\(115\) 6.88989 0.642486
\(116\) −6.24264 6.24264i −0.579615 0.579615i
\(117\) 4.10973i 0.379945i
\(118\) −6.17120 −0.568105
\(119\) 0 0
\(120\) −5.44155 −0.496744
\(121\) 8.76017i 0.796379i
\(122\) −1.77150 1.77150i −0.160384 0.160384i
\(123\) 12.1371 1.09436
\(124\) 10.2700 + 10.2700i 0.922271 + 0.922271i
\(125\) −8.33956 + 8.33956i −0.745913 + 0.745913i
\(126\) 0.668179 0.668179i 0.0595261 0.0595261i
\(127\) 14.1484i 1.25547i −0.778428 0.627734i \(-0.783983\pi\)
0.778428 0.627734i \(-0.216017\pi\)
\(128\) 9.55582i 0.844623i
\(129\) −2.43675 + 2.43675i −0.214544 + 0.214544i
\(130\) −4.63160 + 4.63160i −0.406218 + 0.406218i
\(131\) 1.83201 + 1.83201i 0.160063 + 0.160063i 0.782595 0.622531i \(-0.213896\pi\)
−0.622531 + 0.782595i \(0.713896\pi\)
\(132\) 2.11652 0.184219
\(133\) −5.94703 5.94703i −0.515673 0.515673i
\(134\) 1.61991i 0.139939i
\(135\) −2.08239 −0.179224
\(136\) 0 0
\(137\) 15.2684 1.30447 0.652233 0.758018i \(-0.273832\pi\)
0.652233 + 0.758018i \(0.273832\pi\)
\(138\) 2.53233i 0.215566i
\(139\) 2.85822 + 2.85822i 0.242431 + 0.242431i 0.817855 0.575424i \(-0.195163\pi\)
−0.575424 + 0.817855i \(0.695163\pi\)
\(140\) 3.63593 0.307292
\(141\) 1.10973 + 1.10973i 0.0934563 + 0.0934563i
\(142\) 0.122649 0.122649i 0.0102925 0.0102925i
\(143\) 4.34917 4.34917i 0.363695 0.363695i
\(144\) 0.828427i 0.0690356i
\(145\) 12.9996i 1.07956i
\(146\) −0.199286 + 0.199286i −0.0164930 + 0.0164930i
\(147\) 3.87189 3.87189i 0.319348 0.319348i
\(148\) 3.93694 + 3.93694i 0.323614 + 0.323614i
\(149\) 18.1219 1.48460 0.742302 0.670065i \(-0.233734\pi\)
0.742302 + 0.670065i \(0.233734\pi\)
\(150\) −0.359161 0.359161i −0.0293254 0.0293254i
\(151\) 5.27133i 0.428975i −0.976727 0.214487i \(-0.931192\pi\)
0.976727 0.214487i \(-0.0688081\pi\)
\(152\) −17.8007 −1.44383
\(153\) 0 0
\(154\) 1.41421 0.113961
\(155\) 21.3861i 1.71778i
\(156\) 4.10973 + 4.10973i 0.329042 + 0.329042i
\(157\) 3.80334 0.303540 0.151770 0.988416i \(-0.451503\pi\)
0.151770 + 0.988416i \(0.451503\pi\)
\(158\) 1.46927 + 1.46927i 0.116889 + 0.116889i
\(159\) −2.80109 + 2.80109i −0.222141 + 0.222141i
\(160\) 8.62914 8.62914i 0.682193 0.682193i
\(161\) 4.08496i 0.321940i
\(162\) 0.765367i 0.0601329i
\(163\) −6.41262 + 6.41262i −0.502275 + 0.502275i −0.912144 0.409869i \(-0.865574\pi\)
0.409869 + 0.912144i \(0.365574\pi\)
\(164\) −12.1371 + 12.1371i −0.947746 + 0.947746i
\(165\) −2.20371 2.20371i −0.171559 0.171559i
\(166\) 11.0319 0.856240
\(167\) 6.28451 + 6.28451i 0.486310 + 0.486310i 0.907140 0.420830i \(-0.138261\pi\)
−0.420830 + 0.907140i \(0.638261\pi\)
\(168\) 3.22625i 0.248911i
\(169\) 3.88989 0.299223
\(170\) 0 0
\(171\) −6.81204 −0.520930
\(172\) 4.87351i 0.371601i
\(173\) 8.66006 + 8.66006i 0.658412 + 0.658412i 0.955004 0.296592i \(-0.0958501\pi\)
−0.296592 + 0.955004i \(0.595850\pi\)
\(174\) −4.77791 −0.362212
\(175\) 0.579372 + 0.579372i 0.0437964 + 0.0437964i
\(176\) −0.876691 + 0.876691i −0.0660831 + 0.0660831i
\(177\) 5.70144 5.70144i 0.428547 0.428547i
\(178\) 10.4621i 0.784168i
\(179\) 10.6173i 0.793573i −0.917911 0.396787i \(-0.870125\pi\)
0.917911 0.396787i \(-0.129875\pi\)
\(180\) 2.08239 2.08239i 0.155212 0.155212i
\(181\) 11.6866 11.6866i 0.868662 0.868662i −0.123663 0.992324i \(-0.539464\pi\)
0.992324 + 0.123663i \(0.0394640\pi\)
\(182\) 2.74603 + 2.74603i 0.203550 + 0.203550i
\(183\) 3.27330 0.241969
\(184\) −6.11358 6.11358i −0.450699 0.450699i
\(185\) 8.19825i 0.602748i
\(186\) 7.86030 0.576345
\(187\) 0 0
\(188\) −2.21946 −0.161871
\(189\) 1.23463i 0.0898063i
\(190\) 7.67705 + 7.67705i 0.556952 + 0.556952i
\(191\) 12.0167 0.869498 0.434749 0.900552i \(-0.356837\pi\)
0.434749 + 0.900552i \(0.356837\pi\)
\(192\) 2.00000 + 2.00000i 0.144338 + 0.144338i
\(193\) −7.57900 + 7.57900i −0.545548 + 0.545548i −0.925150 0.379602i \(-0.876061\pi\)
0.379602 + 0.925150i \(0.376061\pi\)
\(194\) −1.45288 + 1.45288i −0.104311 + 0.104311i
\(195\) 8.55807i 0.612856i
\(196\) 7.74378i 0.553127i
\(197\) 2.24078 2.24078i 0.159649 0.159649i −0.622762 0.782411i \(-0.713990\pi\)
0.782411 + 0.622762i \(0.213990\pi\)
\(198\) 0.809957 0.809957i 0.0575612 0.0575612i
\(199\) 9.66940 + 9.66940i 0.685445 + 0.685445i 0.961222 0.275776i \(-0.0889349\pi\)
−0.275776 + 0.961222i \(0.588935\pi\)
\(200\) 1.73418 0.122625
\(201\) −1.49661 1.49661i −0.105562 0.105562i
\(202\) 1.82164i 0.128170i
\(203\) 7.70737 0.540951
\(204\) 0 0
\(205\) 25.2741 1.76522
\(206\) 10.1724i 0.708746i
\(207\) −2.33956 2.33956i −0.162611 0.162611i
\(208\) −3.40461 −0.236067
\(209\) −7.20891 7.20891i −0.498651 0.498651i
\(210\) 1.39141 1.39141i 0.0960164 0.0960164i
\(211\) 4.19212 4.19212i 0.288598 0.288598i −0.547928 0.836526i \(-0.684583\pi\)
0.836526 + 0.547928i \(0.184583\pi\)
\(212\) 5.60218i 0.384759i
\(213\) 0.226626i 0.0155281i
\(214\) 7.07474 7.07474i 0.483619 0.483619i
\(215\) −5.07428 + 5.07428i −0.346063 + 0.346063i
\(216\) 1.84776 + 1.84776i 0.125724 + 0.125724i
\(217\) −12.6797 −0.860751
\(218\) −0.517531 0.517531i −0.0350516 0.0350516i
\(219\) 0.368233i 0.0248829i
\(220\) 4.40743 0.297149
\(221\) 0 0
\(222\) 3.01320 0.202233
\(223\) 26.1476i 1.75098i −0.483240 0.875488i \(-0.660540\pi\)
0.483240 0.875488i \(-0.339460\pi\)
\(224\) −5.11615 5.11615i −0.341837 0.341837i
\(225\) 0.663643 0.0442428
\(226\) 4.67026 + 4.67026i 0.310661 + 0.310661i
\(227\) −7.76019 + 7.76019i −0.515062 + 0.515062i −0.916073 0.401011i \(-0.868659\pi\)
0.401011 + 0.916073i \(0.368659\pi\)
\(228\) 6.81204 6.81204i 0.451138 0.451138i
\(229\) 14.4872i 0.957341i −0.877995 0.478670i \(-0.841119\pi\)
0.877995 0.478670i \(-0.158881\pi\)
\(230\) 5.27330i 0.347711i
\(231\) −1.30656 + 1.30656i −0.0859655 + 0.0859655i
\(232\) 11.5349 11.5349i 0.757303 0.757303i
\(233\) 13.5043 + 13.5043i 0.884699 + 0.884699i 0.994008 0.109309i \(-0.0348637\pi\)
−0.109309 + 0.994008i \(0.534864\pi\)
\(234\) 3.14545 0.205625
\(235\) 2.31090 + 2.31090i 0.150746 + 0.150746i
\(236\) 11.4029i 0.742265i
\(237\) −2.71485 −0.176348
\(238\) 0 0
\(239\) 0.740970 0.0479294 0.0239647 0.999713i \(-0.492371\pi\)
0.0239647 + 0.999713i \(0.492371\pi\)
\(240\) 1.72511i 0.111355i
\(241\) −15.1050 15.1050i −0.973000 0.973000i 0.0266448 0.999645i \(-0.491518\pi\)
−0.999645 + 0.0266448i \(0.991518\pi\)
\(242\) −6.70474 −0.430997
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) −3.27330 + 3.27330i −0.209551 + 0.209551i
\(245\) 8.06280 8.06280i 0.515113 0.515113i
\(246\) 9.28931i 0.592265i
\(247\) 27.9956i 1.78132i
\(248\) −18.9764 + 18.9764i −1.20501 + 1.20501i
\(249\) −10.1921 + 10.1921i −0.645900 + 0.645900i
\(250\) −6.38283 6.38283i −0.403685 0.403685i
\(251\) 0.938819 0.0592577 0.0296289 0.999561i \(-0.490567\pi\)
0.0296289 + 0.999561i \(0.490567\pi\)
\(252\) −1.23463 1.23463i −0.0777746 0.0777746i
\(253\) 4.95174i 0.311313i
\(254\) 10.8287 0.679454
\(255\) 0 0
\(256\) −12.9706 −0.810660
\(257\) 15.8293i 0.987403i 0.869631 + 0.493701i \(0.164356\pi\)
−0.869631 + 0.493701i \(0.835644\pi\)
\(258\) −1.86501 1.86501i −0.116110 0.116110i
\(259\) −4.86068 −0.302028
\(260\) 8.55807 + 8.55807i 0.530749 + 0.530749i
\(261\) 4.41421 4.41421i 0.273233 0.273233i
\(262\) −1.40216 + 1.40216i −0.0866256 + 0.0866256i
\(263\) 11.4573i 0.706486i 0.935532 + 0.353243i \(0.114921\pi\)
−0.935532 + 0.353243i \(0.885079\pi\)
\(264\) 3.91082i 0.240694i
\(265\) −5.83296 + 5.83296i −0.358316 + 0.358316i
\(266\) 4.55166 4.55166i 0.279080 0.279080i
\(267\) 9.66572 + 9.66572i 0.591533 + 0.591533i
\(268\) 2.99321 0.182839
\(269\) −13.5545 13.5545i −0.826432 0.826432i 0.160589 0.987021i \(-0.448661\pi\)
−0.987021 + 0.160589i \(0.948661\pi\)
\(270\) 1.59379i 0.0969952i
\(271\) 6.82805 0.414775 0.207387 0.978259i \(-0.433504\pi\)
0.207387 + 0.978259i \(0.433504\pi\)
\(272\) 0 0
\(273\) −5.07401 −0.307093
\(274\) 11.6859i 0.705972i
\(275\) 0.702307 + 0.702307i 0.0423507 + 0.0423507i
\(276\) 4.67913 0.281650
\(277\) −5.74725 5.74725i −0.345319 0.345319i 0.513044 0.858363i \(-0.328518\pi\)
−0.858363 + 0.513044i \(0.828518\pi\)
\(278\) −2.18759 + 2.18759i −0.131203 + 0.131203i
\(279\) −7.26197 + 7.26197i −0.434763 + 0.434763i
\(280\) 6.71832i 0.401497i
\(281\) 11.6070i 0.692417i 0.938158 + 0.346209i \(0.112531\pi\)
−0.938158 + 0.346209i \(0.887469\pi\)
\(282\) −0.849352 + 0.849352i −0.0505782 + 0.0505782i
\(283\) −4.28792 + 4.28792i −0.254890 + 0.254890i −0.822972 0.568082i \(-0.807686\pi\)
0.568082 + 0.822972i \(0.307686\pi\)
\(284\) −0.226626 0.226626i −0.0134478 0.0134478i
\(285\) −14.1853 −0.840267
\(286\) 3.32871 + 3.32871i 0.196831 + 0.196831i
\(287\) 14.9848i 0.884527i
\(288\) −5.86030 −0.345322
\(289\) 0 0
\(290\) −9.94948 −0.584254
\(291\) 2.68457i 0.157372i
\(292\) 0.368233 + 0.368233i 0.0215492 + 0.0215492i
\(293\) −6.87547 −0.401669 −0.200835 0.979625i \(-0.564365\pi\)
−0.200835 + 0.979625i \(0.564365\pi\)
\(294\) 2.96342 + 2.96342i 0.172830 + 0.172830i
\(295\) 11.8726 11.8726i 0.691252 0.691252i
\(296\) −7.27452 + 7.27452i −0.422823 + 0.422823i
\(297\) 1.49661i 0.0868419i
\(298\) 13.8699i 0.803462i
\(299\) 9.61498 9.61498i 0.556049 0.556049i
\(300\) −0.663643 + 0.663643i −0.0383154 + 0.0383154i
\(301\) 3.00850 + 3.00850i 0.173407 + 0.173407i
\(302\) 4.03450 0.232159
\(303\) 1.68297 + 1.68297i 0.0966844 + 0.0966844i
\(304\) 5.64328i 0.323664i
\(305\) 6.81629 0.390300
\(306\) 0 0
\(307\) 22.2451 1.26959 0.634797 0.772679i \(-0.281084\pi\)
0.634797 + 0.772679i \(0.281084\pi\)
\(308\) 2.61313i 0.148897i
\(309\) 9.39809 + 9.39809i 0.534639 + 0.534639i
\(310\) 16.3682 0.929653
\(311\) 3.82843 + 3.82843i 0.217090 + 0.217090i 0.807271 0.590181i \(-0.200944\pi\)
−0.590181 + 0.807271i \(0.700944\pi\)
\(312\) −7.59379 + 7.59379i −0.429914 + 0.429914i
\(313\) −7.98642 + 7.98642i −0.451419 + 0.451419i −0.895825 0.444406i \(-0.853415\pi\)
0.444406 + 0.895825i \(0.353415\pi\)
\(314\) 2.91095i 0.164274i
\(315\) 2.57099i 0.144859i
\(316\) 2.71485 2.71485i 0.152722 0.152722i
\(317\) 13.0475 13.0475i 0.732822 0.732822i −0.238356 0.971178i \(-0.576609\pi\)
0.971178 + 0.238356i \(0.0766086\pi\)
\(318\) −2.14386 2.14386i −0.120222 0.120222i
\(319\) 9.34277 0.523095
\(320\) 4.16478 + 4.16478i 0.232819 + 0.232819i
\(321\) 13.0724i 0.729631i
\(322\) 3.12649 0.174233
\(323\) 0 0
\(324\) −1.41421 −0.0785674
\(325\) 2.72739i 0.151289i
\(326\) −4.90801 4.90801i −0.271829 0.271829i
\(327\) 0.956272 0.0528819
\(328\) −22.4264 22.4264i −1.23829 1.23829i
\(329\) 1.37011 1.37011i 0.0755367 0.0755367i
\(330\) 1.68665 1.68665i 0.0928469 0.0928469i
\(331\) 5.76606i 0.316931i 0.987365 + 0.158466i \(0.0506547\pi\)
−0.987365 + 0.158466i \(0.949345\pi\)
\(332\) 20.3842i 1.11873i
\(333\) −2.78384 + 2.78384i −0.152553 + 0.152553i
\(334\) −4.80996 + 4.80996i −0.263189 + 0.263189i
\(335\) −3.11652 3.11652i −0.170274 0.170274i
\(336\) 1.02280 0.0557985
\(337\) 11.5051 + 11.5051i 0.626723 + 0.626723i 0.947242 0.320519i \(-0.103857\pi\)
−0.320519 + 0.947242i \(0.603857\pi\)
\(338\) 2.97720i 0.161938i
\(339\) −8.62951 −0.468691
\(340\) 0 0
\(341\) −15.3701 −0.832338
\(342\) 5.21371i 0.281925i
\(343\) −10.8915 10.8915i −0.588085 0.588085i
\(344\) 9.00506 0.485521
\(345\) −4.87189 4.87189i −0.262294 0.262294i
\(346\) −6.62812 + 6.62812i −0.356330 + 0.356330i
\(347\) 3.03375 3.03375i 0.162860 0.162860i −0.620972 0.783833i \(-0.713262\pi\)
0.783833 + 0.620972i \(0.213262\pi\)
\(348\) 8.82843i 0.473253i
\(349\) 14.1553i 0.757718i 0.925454 + 0.378859i \(0.123683\pi\)
−0.925454 + 0.378859i \(0.876317\pi\)
\(350\) −0.443432 + 0.443432i −0.0237024 + 0.0237024i
\(351\) −2.90602 + 2.90602i −0.155112 + 0.155112i
\(352\) −6.20172 6.20172i −0.330553 0.330553i
\(353\) −23.8142 −1.26750 −0.633752 0.773536i \(-0.718486\pi\)
−0.633752 + 0.773536i \(0.718486\pi\)
\(354\) 4.36370 + 4.36370i 0.231928 + 0.231928i
\(355\) 0.471923i 0.0250471i
\(356\) −19.3314 −1.02456
\(357\) 0 0
\(358\) 8.12612 0.429479
\(359\) 35.2676i 1.86135i 0.365841 + 0.930677i \(0.380781\pi\)
−0.365841 + 0.930677i \(0.619219\pi\)
\(360\) 3.84776 + 3.84776i 0.202795 + 0.202795i
\(361\) −27.4039 −1.44231
\(362\) 8.94457 + 8.94457i 0.470116 + 0.470116i
\(363\) 6.19438 6.19438i 0.325120 0.325120i
\(364\) 5.07401 5.07401i 0.265950 0.265950i
\(365\) 0.766805i 0.0401364i
\(366\) 2.50527i 0.130953i
\(367\) 11.5408 11.5408i 0.602426 0.602426i −0.338530 0.940956i \(-0.609930\pi\)
0.940956 + 0.338530i \(0.109930\pi\)
\(368\) −1.93816 + 1.93816i −0.101034 + 0.101034i
\(369\) −8.58221 8.58221i −0.446772 0.446772i
\(370\) 6.27467 0.326205
\(371\) 3.45832 + 3.45832i 0.179547 + 0.179547i
\(372\) 14.5239i 0.753031i
\(373\) −25.0156 −1.29526 −0.647630 0.761955i \(-0.724240\pi\)
−0.647630 + 0.761955i \(0.724240\pi\)
\(374\) 0 0
\(375\) 11.7939 0.609036
\(376\) 4.10103i 0.211495i
\(377\) 18.1412 + 18.1412i 0.934321 + 0.934321i
\(378\) −0.944947 −0.0486028
\(379\) 23.0716 + 23.0716i 1.18511 + 1.18511i 0.978404 + 0.206702i \(0.0662732\pi\)
0.206702 + 0.978404i \(0.433727\pi\)
\(380\) 14.1853 14.1853i 0.727692 0.727692i
\(381\) −10.0044 + 10.0044i −0.512542 + 0.512542i
\(382\) 9.19719i 0.470569i
\(383\) 0.585258i 0.0299053i −0.999888 0.0149526i \(-0.995240\pi\)
0.999888 0.0149526i \(-0.00475975\pi\)
\(384\) 6.75699 6.75699i 0.344816 0.344816i
\(385\) −2.72078 + 2.72078i −0.138664 + 0.138664i
\(386\) −5.80071 5.80071i −0.295249 0.295249i
\(387\) 3.44609 0.175175
\(388\) 2.68457 + 2.68457i 0.136288 + 0.136288i
\(389\) 22.1261i 1.12184i 0.827871 + 0.560918i \(0.189552\pi\)
−0.827871 + 0.560918i \(0.810448\pi\)
\(390\) 6.55007 0.331675
\(391\) 0 0
\(392\) −14.3086 −0.722696
\(393\) 2.59085i 0.130691i
\(394\) 1.71502 + 1.71502i 0.0864015 + 0.0864015i
\(395\) −5.65338 −0.284453
\(396\) −1.49661 1.49661i −0.0752073 0.0752073i
\(397\) 4.12265 4.12265i 0.206910 0.206910i −0.596043 0.802953i \(-0.703261\pi\)
0.802953 + 0.596043i \(0.203261\pi\)
\(398\) −7.40064 + 7.40064i −0.370960 + 0.370960i
\(399\) 8.41037i 0.421045i
\(400\) 0.549780i 0.0274890i
\(401\) −3.67004 + 3.67004i −0.183273 + 0.183273i −0.792780 0.609507i \(-0.791367\pi\)
0.609507 + 0.792780i \(0.291367\pi\)
\(402\) 1.14545 1.14545i 0.0571300 0.0571300i
\(403\) −29.8448 29.8448i −1.48667 1.48667i
\(404\) −3.36595 −0.167462
\(405\) 1.47247 + 1.47247i 0.0731678 + 0.0731678i
\(406\) 5.89897i 0.292761i
\(407\) −5.89205 −0.292058
\(408\) 0 0
\(409\) −27.2400 −1.34693 −0.673465 0.739219i \(-0.735195\pi\)
−0.673465 + 0.739219i \(0.735195\pi\)
\(410\) 19.3440i 0.955332i
\(411\) −10.7964 10.7964i −0.532546 0.532546i
\(412\) −18.7962 −0.926021
\(413\) −7.03919 7.03919i −0.346376 0.346376i
\(414\) 1.79063 1.79063i 0.0880044 0.0880044i
\(415\) −21.2240 + 21.2240i −1.04185 + 1.04185i
\(416\) 24.0843i 1.18083i
\(417\) 4.04214i 0.197944i
\(418\) 5.51746 5.51746i 0.269868 0.269868i
\(419\) −9.92079 + 9.92079i −0.484662 + 0.484662i −0.906617 0.421955i \(-0.861344\pi\)
0.421955 + 0.906617i \(0.361344\pi\)
\(420\) −2.57099 2.57099i −0.125451 0.125451i
\(421\) −15.3811 −0.749627 −0.374814 0.927100i \(-0.622293\pi\)
−0.374814 + 0.927100i \(0.622293\pi\)
\(422\) 3.20851 + 3.20851i 0.156188 + 0.156188i
\(423\) 1.56940i 0.0763067i
\(424\) 10.3515 0.502712
\(425\) 0 0
\(426\) −0.173452 −0.00840376
\(427\) 4.04132i 0.195573i
\(428\) −13.0724 13.0724i −0.631879 0.631879i
\(429\) −6.15065 −0.296956
\(430\) −3.88368 3.88368i −0.187288 0.187288i
\(431\) 11.5899 11.5899i 0.558268 0.558268i −0.370546 0.928814i \(-0.620829\pi\)
0.928814 + 0.370546i \(0.120829\pi\)
\(432\) 0.585786 0.585786i 0.0281837 0.0281837i
\(433\) 21.7106i 1.04335i 0.853145 + 0.521673i \(0.174692\pi\)
−0.853145 + 0.521673i \(0.825308\pi\)
\(434\) 9.70459i 0.465835i
\(435\) 9.19212 9.19212i 0.440729 0.440729i
\(436\) −0.956272 + 0.956272i −0.0457971 + 0.0457971i
\(437\) −15.9372 15.9372i −0.762380 0.762380i
\(438\) 0.281833 0.0134665
\(439\) −16.6385 16.6385i −0.794112 0.794112i 0.188048 0.982160i \(-0.439784\pi\)
−0.982160 + 0.188048i \(0.939784\pi\)
\(440\) 8.14386i 0.388243i
\(441\) −5.47568 −0.260747
\(442\) 0 0
\(443\) −15.4238 −0.732808 −0.366404 0.930456i \(-0.619411\pi\)
−0.366404 + 0.930456i \(0.619411\pi\)
\(444\) 5.56767i 0.264230i
\(445\) 20.1278 + 20.1278i 0.954151 + 0.954151i
\(446\) 20.0125 0.947621
\(447\) −12.8141 12.8141i −0.606087 0.606087i
\(448\) 2.46927 2.46927i 0.116662 0.116662i
\(449\) 9.58091 9.58091i 0.452151 0.452151i −0.443917 0.896068i \(-0.646411\pi\)
0.896068 + 0.443917i \(0.146411\pi\)
\(450\) 0.507930i 0.0239441i
\(451\) 18.1644i 0.855329i
\(452\) 8.62951 8.62951i 0.405898 0.405898i
\(453\) −3.72739 + 3.72739i −0.175128 + 0.175128i
\(454\) −5.93939 5.93939i −0.278750 0.278750i
\(455\) −10.5661 −0.495346
\(456\) 12.5870 + 12.5870i 0.589441 + 0.589441i
\(457\) 15.3875i 0.719796i 0.932992 + 0.359898i \(0.117188\pi\)
−0.932992 + 0.359898i \(0.882812\pi\)
\(458\) 11.0880 0.518109
\(459\) 0 0
\(460\) 9.74378 0.454306
\(461\) 20.8006i 0.968780i 0.874852 + 0.484390i \(0.160958\pi\)
−0.874852 + 0.484390i \(0.839042\pi\)
\(462\) −1.00000 1.00000i −0.0465242 0.0465242i
\(463\) 26.4325 1.22842 0.614212 0.789141i \(-0.289474\pi\)
0.614212 + 0.789141i \(0.289474\pi\)
\(464\) −3.65685 3.65685i −0.169765 0.169765i
\(465\) −15.1223 + 15.1223i −0.701279 + 0.701279i
\(466\) −10.3358 + 10.3358i −0.478796 + 0.478796i
\(467\) 7.17088i 0.331829i −0.986140 0.165914i \(-0.946942\pi\)
0.986140 0.165914i \(-0.0530576\pi\)
\(468\) 5.81204i 0.268662i
\(469\) −1.84776 + 1.84776i −0.0853216 + 0.0853216i
\(470\) −1.76868 + 1.76868i −0.0815833 + 0.0815833i
\(471\) −2.68937 2.68937i −0.123920 0.123920i
\(472\) −21.0698 −0.969816
\(473\) 3.64686 + 3.64686i 0.167683 + 0.167683i
\(474\) 2.07786i 0.0954391i
\(475\) 4.52076 0.207427
\(476\) 0 0
\(477\) 3.96134 0.181377
\(478\) 0.567114i 0.0259392i
\(479\) −2.07465 2.07465i −0.0947931 0.0947931i 0.658120 0.752913i \(-0.271352\pi\)
−0.752913 + 0.658120i \(0.771352\pi\)
\(480\) −12.2034 −0.557009
\(481\) −11.4408 11.4408i −0.521657 0.521657i
\(482\) 11.5609 11.5609i 0.526584 0.526584i
\(483\) −2.88850 + 2.88850i −0.131431 + 0.131431i
\(484\) 12.3888i 0.563125i
\(485\) 5.59032i 0.253843i
\(486\) −0.541196 + 0.541196i −0.0245492 + 0.0245492i
\(487\) −16.4346 + 16.4346i −0.744721 + 0.744721i −0.973483 0.228761i \(-0.926532\pi\)
0.228761 + 0.973483i \(0.426532\pi\)
\(488\) −6.04826 6.04826i −0.273792 0.273792i
\(489\) 9.06882 0.410106
\(490\) 6.17100 + 6.17100i 0.278777 + 0.278777i
\(491\) 13.6586i 0.616403i −0.951321 0.308202i \(-0.900273\pi\)
0.951321 0.308202i \(-0.0997271\pi\)
\(492\) 17.1644 0.773831
\(493\) 0 0
\(494\) 21.4269 0.964044
\(495\) 3.11652i 0.140077i
\(496\) 6.01602 + 6.01602i 0.270127 + 0.270127i
\(497\) 0.279799 0.0125507
\(498\) −7.80071 7.80071i −0.349558 0.349558i
\(499\) 5.32607 5.32607i 0.238427 0.238427i −0.577771 0.816199i \(-0.696077\pi\)
0.816199 + 0.577771i \(0.196077\pi\)
\(500\) −11.7939 + 11.7939i −0.527440 + 0.527440i
\(501\) 8.88764i 0.397071i
\(502\) 0.718541i 0.0320700i
\(503\) −18.1840 + 18.1840i −0.810785 + 0.810785i −0.984752 0.173967i \(-0.944341\pi\)
0.173967 + 0.984752i \(0.444341\pi\)
\(504\) 2.28130 2.28130i 0.101617 0.101617i
\(505\) 3.50461 + 3.50461i 0.155953 + 0.155953i
\(506\) 3.78989 0.168481
\(507\) −2.75057 2.75057i −0.122157 0.122157i
\(508\) 20.0089i 0.887749i
\(509\) 34.7796 1.54158 0.770789 0.637090i \(-0.219862\pi\)
0.770789 + 0.637090i \(0.219862\pi\)
\(510\) 0 0
\(511\) −0.454632 −0.0201117
\(512\) 9.18440i 0.405897i
\(513\) 4.81684 + 4.81684i 0.212669 + 0.212669i
\(514\) −12.1152 −0.534379
\(515\) 19.5705 + 19.5705i 0.862380 + 0.862380i
\(516\) −3.44609 + 3.44609i −0.151706 + 0.151706i
\(517\) 1.66083 1.66083i 0.0730433 0.0730433i
\(518\) 3.72020i 0.163456i
\(519\) 12.2472i 0.537591i
\(520\) −15.8133 + 15.8133i −0.693457 + 0.693457i
\(521\) 31.5217 31.5217i 1.38099 1.38099i 0.538129 0.842863i \(-0.319131\pi\)
0.842863 0.538129i \(-0.180869\pi\)
\(522\) 3.37849 + 3.37849i 0.147873 + 0.147873i
\(523\) −19.8918 −0.869808 −0.434904 0.900477i \(-0.643218\pi\)
−0.434904 + 0.900477i \(0.643218\pi\)
\(524\) 2.59085 + 2.59085i 0.113182 + 0.113182i
\(525\) 0.819355i 0.0357596i
\(526\) −8.76902 −0.382348
\(527\) 0 0
\(528\) 1.23983 0.0539566
\(529\) 12.0529i 0.524038i
\(530\) −4.46436 4.46436i −0.193919 0.193919i
\(531\) −8.06306 −0.349907
\(532\) −8.41037 8.41037i −0.364636 0.364636i
\(533\) 35.2706 35.2706i 1.52774 1.52774i
\(534\) −7.39782 + 7.39782i −0.320135 + 0.320135i
\(535\) 27.2219i 1.17691i
\(536\) 5.53073i 0.238891i
\(537\) −7.50756 + 7.50756i −0.323975 + 0.323975i
\(538\) 10.3742 10.3742i 0.447262 0.447262i
\(539\) −5.79469 5.79469i −0.249595 0.249595i
\(540\) −2.94495 −0.126730
\(541\) −0.552520 0.552520i −0.0237547 0.0237547i 0.695130 0.718884i \(-0.255347\pi\)
−0.718884 + 0.695130i \(0.755347\pi\)
\(542\) 5.22597i 0.224474i
\(543\) −16.5274 −0.709259
\(544\) 0 0
\(545\) 1.99133 0.0852993
\(546\) 3.88348i 0.166198i
\(547\) −27.6171 27.6171i −1.18082 1.18082i −0.979531 0.201291i \(-0.935486\pi\)
−0.201291 0.979531i \(-0.564514\pi\)
\(548\) 21.5928 0.922397
\(549\) −2.31457 2.31457i −0.0987835 0.0987835i
\(550\) −0.537522 + 0.537522i −0.0229200 + 0.0229200i
\(551\) 30.0698 30.0698i 1.28102 1.28102i
\(552\) 8.64590i 0.367994i
\(553\) 3.35184i 0.142535i
\(554\) 4.39876 4.39876i 0.186885 0.186885i
\(555\) −5.79704 + 5.79704i −0.246071 + 0.246071i
\(556\) 4.04214 + 4.04214i 0.171425 + 0.171425i
\(557\) 13.0371 0.552398 0.276199 0.961100i \(-0.410925\pi\)
0.276199 + 0.961100i \(0.410925\pi\)
\(558\) −5.55807 5.55807i −0.235292 0.235292i
\(559\) 14.1625i 0.599010i
\(560\) 2.12988 0.0900038
\(561\) 0 0
\(562\) −8.88363 −0.374734
\(563\) 11.2168i 0.472733i −0.971664 0.236367i \(-0.924043\pi\)
0.971664 0.236367i \(-0.0759566\pi\)
\(564\) 1.56940 + 1.56940i 0.0660836 + 0.0660836i
\(565\) −17.9700 −0.756005
\(566\) −3.28183 3.28183i −0.137946 0.137946i
\(567\) 0.873017 0.873017i 0.0366633 0.0366633i
\(568\) 0.418749 0.418749i 0.0175703 0.0175703i
\(569\) 36.4695i 1.52888i 0.644694 + 0.764440i \(0.276985\pi\)
−0.644694 + 0.764440i \(0.723015\pi\)
\(570\) 10.8570i 0.454749i
\(571\) 9.57778 9.57778i 0.400818 0.400818i −0.477704 0.878521i \(-0.658531\pi\)
0.878521 + 0.477704i \(0.158531\pi\)
\(572\) 6.15065 6.15065i 0.257172 0.257172i
\(573\) −8.49709 8.49709i −0.354971 0.354971i
\(574\) 11.4689 0.478702
\(575\) 1.55264 + 1.55264i 0.0647494 + 0.0647494i
\(576\) 2.82843i 0.117851i
\(577\) −7.10617 −0.295834 −0.147917 0.989000i \(-0.547257\pi\)
−0.147917 + 0.989000i \(0.547257\pi\)
\(578\) 0 0
\(579\) 10.7183 0.445438
\(580\) 18.3842i 0.763364i
\(581\) 12.5835 + 12.5835i 0.522053 + 0.522053i
\(582\) 2.05468 0.0851692
\(583\) 4.19212 + 4.19212i 0.173620 + 0.173620i
\(584\) −0.680405 + 0.680405i −0.0281554 + 0.0281554i
\(585\) −6.05147 + 6.05147i −0.250198 + 0.250198i
\(586\) 5.26226i 0.217382i
\(587\) 40.2951i 1.66316i 0.555408 + 0.831578i \(0.312562\pi\)
−0.555408 + 0.831578i \(0.687438\pi\)
\(588\) 5.47568 5.47568i 0.225813 0.225813i
\(589\) −49.4688 + 49.4688i −2.03833 + 2.03833i
\(590\) 9.08693 + 9.08693i 0.374103 + 0.374103i
\(591\) −3.16895 −0.130353
\(592\) 2.30621 + 2.30621i 0.0947845 + 0.0947845i
\(593\) 37.8418i 1.55398i 0.629515 + 0.776989i \(0.283254\pi\)
−0.629515 + 0.776989i \(0.716746\pi\)
\(594\) −1.14545 −0.0469985
\(595\) 0 0
\(596\) 25.6282 1.04977
\(597\) 13.6746i 0.559664i
\(598\) 7.35899 + 7.35899i 0.300931 + 0.300931i
\(599\) 10.1505 0.414739 0.207369 0.978263i \(-0.433510\pi\)
0.207369 + 0.978263i \(0.433510\pi\)
\(600\) −1.22625 1.22625i −0.0500615 0.0500615i
\(601\) −24.9282 + 24.9282i −1.01684 + 1.01684i −0.0169861 + 0.999856i \(0.505407\pi\)
−0.999856 + 0.0169861i \(0.994593\pi\)
\(602\) −2.30260 + 2.30260i −0.0938471 + 0.0938471i
\(603\) 2.11652i 0.0861914i
\(604\) 7.45479i 0.303331i
\(605\) 12.8991 12.8991i 0.524424 0.524424i
\(606\) −1.28809 + 1.28809i −0.0523252 + 0.0523252i
\(607\) 33.6497 + 33.6497i 1.36580 + 1.36580i 0.866337 + 0.499461i \(0.166468\pi\)
0.499461 + 0.866337i \(0.333532\pi\)
\(608\) −39.9206 −1.61899
\(609\) −5.44993 5.44993i −0.220842 0.220842i
\(610\) 5.21696i 0.211229i
\(611\) 6.44980 0.260931
\(612\) 0 0
\(613\) −26.9812 −1.08976 −0.544880 0.838514i \(-0.683425\pi\)
−0.544880 + 0.838514i \(0.683425\pi\)
\(614\) 17.0256i 0.687099i
\(615\) −17.8715 17.8715i −0.720649 0.720649i
\(616\) 4.82843 0.194543
\(617\) 10.6009 + 10.6009i 0.426776 + 0.426776i 0.887529 0.460753i \(-0.152420\pi\)
−0.460753 + 0.887529i \(0.652420\pi\)
\(618\) −7.19299 + 7.19299i −0.289344 + 0.289344i
\(619\) −1.55734 + 1.55734i −0.0625949 + 0.0625949i −0.737711 0.675116i \(-0.764093\pi\)
0.675116 + 0.737711i \(0.264093\pi\)
\(620\) 30.2446i 1.21465i
\(621\) 3.30864i 0.132771i
\(622\) −2.93015 + 2.93015i −0.117488 + 0.117488i
\(623\) 11.9336 11.9336i 0.478111 0.478111i
\(624\) 2.40743 + 2.40743i 0.0963741 + 0.0963741i
\(625\) 21.2414 0.849655
\(626\) −6.11254 6.11254i −0.244306 0.244306i
\(627\) 10.1949i 0.407147i
\(628\) 5.37874 0.214635
\(629\) 0 0
\(630\) −1.96775 −0.0783971
\(631\) 34.7230i 1.38230i −0.722710 0.691151i \(-0.757104\pi\)
0.722710 0.691151i \(-0.242896\pi\)
\(632\) 5.01639 + 5.01639i 0.199541 + 0.199541i
\(633\) −5.92856 −0.235639
\(634\) 9.98614 + 9.98614i 0.396600 + 0.396600i
\(635\) −20.8331 + 20.8331i −0.826738 + 0.826738i
\(636\) −3.96134 + 3.96134i −0.157077 + 0.157077i
\(637\) 22.5036i 0.891624i
\(638\) 7.15065i 0.283097i
\(639\) 0.160248 0.160248i 0.00633933 0.00633933i
\(640\) 14.0707 14.0707i 0.556193 0.556193i
\(641\) 17.6282 + 17.6282i 0.696273 + 0.696273i 0.963605 0.267332i \(-0.0861420\pi\)
−0.267332 + 0.963605i \(0.586142\pi\)
\(642\) −10.0052 −0.394874
\(643\) 24.8629 + 24.8629i 0.980496 + 0.980496i 0.999813 0.0193174i \(-0.00614932\pi\)
−0.0193174 + 0.999813i \(0.506149\pi\)
\(644\) 5.77701i 0.227646i
\(645\) 7.17611 0.282559
\(646\) 0 0
\(647\) −28.0142 −1.10135 −0.550677 0.834719i \(-0.685630\pi\)
−0.550677 + 0.834719i \(0.685630\pi\)
\(648\) 2.61313i 0.102653i
\(649\) −8.53281 8.53281i −0.334942 0.334942i
\(650\) −2.08746 −0.0818768
\(651\) 8.96587 + 8.96587i 0.351400 + 0.351400i
\(652\) −9.06882 + 9.06882i −0.355162 + 0.355162i
\(653\) 26.6392 26.6392i 1.04247 1.04247i 0.0434140 0.999057i \(-0.486177\pi\)
0.999057 0.0434140i \(-0.0138235\pi\)
\(654\) 0.731899i 0.0286195i
\(655\) 5.39517i 0.210807i
\(656\) −7.10973 + 7.10973i −0.277588 + 0.277588i
\(657\) −0.260380 + 0.260380i −0.0101584 + 0.0101584i
\(658\) 1.04864 + 1.04864i 0.0408802 + 0.0408802i
\(659\) 13.5356 0.527272 0.263636 0.964622i \(-0.415078\pi\)
0.263636 + 0.964622i \(0.415078\pi\)
\(660\) −3.11652 3.11652i −0.121310 0.121310i
\(661\) 2.00626i 0.0780345i 0.999239 + 0.0390172i \(0.0124227\pi\)
−0.999239 + 0.0390172i \(0.987577\pi\)
\(662\) −4.41315 −0.171522
\(663\) 0 0
\(664\) 37.6652 1.46169
\(665\) 17.5137i 0.679152i
\(666\) −2.13066 2.13066i −0.0825613 0.0825613i
\(667\) 20.6547 0.799752
\(668\) 8.88764 + 8.88764i 0.343873 + 0.343873i
\(669\) −18.4892 + 18.4892i −0.714833 + 0.714833i
\(670\) 2.38528 2.38528i 0.0921515 0.0921515i
\(671\) 4.89884i 0.189117i
\(672\) 7.23532i 0.279109i
\(673\) −11.8535 + 11.8535i −0.456918 + 0.456918i −0.897643 0.440724i \(-0.854722\pi\)
0.440724 + 0.897643i \(0.354722\pi\)
\(674\) −8.80562 + 8.80562i −0.339180 + 0.339180i
\(675\) −0.469266 0.469266i −0.0180621 0.0180621i
\(676\) 5.50114 0.211582
\(677\) 16.3092 + 16.3092i 0.626814 + 0.626814i 0.947265 0.320451i \(-0.103834\pi\)
−0.320451 + 0.947265i \(0.603834\pi\)
\(678\) 6.60474i 0.253654i
\(679\) −3.31446 −0.127197
\(680\) 0 0
\(681\) 10.9746 0.420546
\(682\) 11.7638i 0.450458i
\(683\) −19.8116 19.8116i −0.758071 0.758071i 0.217900 0.975971i \(-0.430079\pi\)
−0.975971 + 0.217900i \(0.930079\pi\)
\(684\) −9.63368 −0.368353
\(685\) −22.4823 22.4823i −0.859004 0.859004i
\(686\) 8.33598 8.33598i 0.318269 0.318269i
\(687\) −10.2440 + 10.2440i −0.390833 + 0.390833i
\(688\) 2.85483i 0.108840i
\(689\) 16.2800i 0.620220i
\(690\) 3.72878 3.72878i 0.141952 0.141952i
\(691\) 18.8629 18.8629i 0.717577 0.717577i −0.250531 0.968109i \(-0.580605\pi\)
0.968109 + 0.250531i \(0.0806052\pi\)
\(692\) 12.2472 + 12.2472i 0.465568 + 0.465568i
\(693\) 1.84776 0.0701906
\(694\) 2.32193 + 2.32193i 0.0881394 + 0.0881394i
\(695\) 8.41731i 0.319287i
\(696\) −16.3128 −0.618335
\(697\) 0 0
\(698\) −10.8340 −0.410074
\(699\) 19.0980i 0.722354i
\(700\) 0.819355 + 0.819355i 0.0309687 + 0.0309687i
\(701\) 9.75054 0.368273 0.184136 0.982901i \(-0.441051\pi\)
0.184136 + 0.982901i \(0.441051\pi\)
\(702\) −2.22417 2.22417i −0.0839459 0.0839459i
\(703\) −18.9636 + 18.9636i −0.715226 + 0.715226i
\(704\) 2.99321 2.99321i 0.112811 0.112811i
\(705\) 3.26810i 0.123084i
\(706\) 18.2266i 0.685968i
\(707\) 2.07786 2.07786i 0.0781458 0.0781458i
\(708\) 8.06306 8.06306i 0.303028 0.303028i
\(709\) −20.3318 20.3318i −0.763575 0.763575i 0.213391 0.976967i \(-0.431549\pi\)
−0.976967 + 0.213391i \(0.931549\pi\)
\(710\) −0.361194 −0.0135554
\(711\) 1.91969 + 1.91969i 0.0719940 + 0.0719940i
\(712\) 35.7199i 1.33866i
\(713\) −33.9797 −1.27255
\(714\) 0 0
\(715\) −12.8081 −0.478994
\(716\) 15.0151i 0.561141i
\(717\) −0.523945 0.523945i −0.0195671 0.0195671i
\(718\) −26.9927 −1.00736
\(719\) 33.3929 + 33.3929i 1.24534 + 1.24534i 0.957753 + 0.287592i \(0.0928546\pi\)
0.287592 + 0.957753i \(0.407145\pi\)
\(720\) 1.21984 1.21984i 0.0454606 0.0454606i
\(721\) 11.6032 11.6032i 0.432125 0.432125i
\(722\) 20.9740i 0.780572i
\(723\) 21.3617i 0.794451i
\(724\) 16.5274 16.5274i 0.614237 0.614237i
\(725\) −2.92946 + 2.92946i −0.108797 + 0.108797i
\(726\) 4.74097 + 4.74097i 0.175954 + 0.175954i
\(727\) 27.7790 1.03027 0.515134 0.857110i \(-0.327742\pi\)
0.515134 + 0.857110i \(0.327742\pi\)
\(728\) 9.37555 + 9.37555i 0.347481 + 0.347481i
\(729\) 1.00000i 0.0370370i
\(730\) 0.586887 0.0217217
\(731\) 0 0
\(732\) 4.62914 0.171098
\(733\) 5.38987i 0.199080i 0.995034 + 0.0995398i \(0.0317371\pi\)
−0.995034 + 0.0995398i \(0.968263\pi\)
\(734\) 8.83296 + 8.83296i 0.326031 + 0.326031i
\(735\) −11.4025 −0.420588
\(736\) −13.7106 13.7106i −0.505378 0.505378i
\(737\) −2.23983 + 2.23983i −0.0825052 + 0.0825052i
\(738\) 6.56854 6.56854i 0.241791 0.241791i
\(739\) 3.61782i 0.133084i −0.997784 0.0665418i \(-0.978803\pi\)
0.997784 0.0665418i \(-0.0211966\pi\)
\(740\) 11.5941i 0.426207i
\(741\) −19.7959 + 19.7959i −0.727221 + 0.727221i
\(742\) −2.64688 + 2.64688i −0.0971700 + 0.0971700i
\(743\) 4.37274 + 4.37274i 0.160420 + 0.160420i 0.782753 0.622333i \(-0.213815\pi\)
−0.622333 + 0.782753i \(0.713815\pi\)
\(744\) 26.8368 0.983883
\(745\) −26.6840 26.6840i −0.977627 0.977627i
\(746\) 19.1461i 0.700990i
\(747\) 14.4138 0.527375
\(748\) 0 0
\(749\) 16.1396 0.589730
\(750\) 9.02668i 0.329608i
\(751\) 36.2970 + 36.2970i 1.32450 + 1.32450i 0.910094 + 0.414401i \(0.136009\pi\)
0.414401 + 0.910094i \(0.363991\pi\)
\(752\) −1.30013 −0.0474109
\(753\) −0.663845 0.663845i −0.0241919 0.0241919i
\(754\) −13.8847 + 13.8847i −0.505651 + 0.505651i
\(755\) −7.76190 + 7.76190i −0.282484 + 0.282484i
\(756\) 1.74603i 0.0635027i
\(757\) 3.83750i 0.139476i 0.997565 + 0.0697381i \(0.0222164\pi\)
−0.997565 + 0.0697381i \(0.977784\pi\)
\(758\) −17.6582 + 17.6582i −0.641375 + 0.641375i
\(759\) −3.50141 + 3.50141i −0.127093 + 0.127093i
\(760\) 26.2111 + 26.2111i 0.950776 + 0.950776i
\(761\) 16.5850 0.601206 0.300603 0.953749i \(-0.402812\pi\)
0.300603 + 0.953749i \(0.402812\pi\)
\(762\) −7.65706 7.65706i −0.277386 0.277386i
\(763\) 1.18064i 0.0427422i
\(764\) 16.9942 0.614828
\(765\) 0 0
\(766\) 0.447937 0.0161846
\(767\) 33.1370i 1.19651i
\(768\) 9.17157 + 9.17157i 0.330951 + 0.330951i
\(769\) 27.7826 1.00187 0.500933 0.865486i \(-0.332990\pi\)
0.500933 + 0.865486i \(0.332990\pi\)
\(770\) −2.08239 2.08239i −0.0750442 0.0750442i
\(771\) 11.1930 11.1930i 0.403106 0.403106i
\(772\) −10.7183 + 10.7183i −0.385761 + 0.385761i
\(773\) 13.9509i 0.501778i −0.968016 0.250889i \(-0.919277\pi\)
0.968016 0.250889i \(-0.0807229\pi\)
\(774\) 2.63752i 0.0948038i
\(775\) 4.81936 4.81936i 0.173116 0.173116i
\(776\) −4.96043 + 4.96043i −0.178069 + 0.178069i
\(777\) 3.43702 + 3.43702i 0.123302 + 0.123302i
\(778\) −16.9346 −0.607133
\(779\) −58.4623 58.4623i −2.09463 2.09463i
\(780\) 12.1029i 0.433355i
\(781\) 0.339169 0.0121364
\(782\) 0 0
\(783\) −6.24264 −0.223094
\(784\) 4.53620i 0.162007i
\(785\) −5.60032 5.60032i −0.199884 0.199884i
\(786\) 1.98295 0.0707295
\(787\) 2.99252 + 2.99252i 0.106672 + 0.106672i 0.758428 0.651756i \(-0.225968\pi\)
−0.651756 + 0.758428i \(0.725968\pi\)
\(788\) 3.16895 3.16895i 0.112889 0.112889i
\(789\) 8.10152 8.10152i 0.288422 0.288422i
\(790\) 4.32691i 0.153945i
\(791\) 10.6543i 0.378823i
\(792\) 2.76537 2.76537i 0.0982630 0.0982630i
\(793\) 9.51226 9.51226i 0.337790 0.337790i
\(794\) 3.15534 + 3.15534i 0.111979 + 0.111979i
\(795\) 8.24906 0.292564
\(796\) 13.6746 + 13.6746i 0.484683 + 0.484683i
\(797\) 27.7502i 0.982962i 0.870888 + 0.491481i \(0.163544\pi\)
−0.870888 + 0.491481i \(0.836456\pi\)
\(798\) −6.43702 −0.227868
\(799\) 0 0
\(800\) 3.88915 0.137502
\(801\) 13.6694i 0.482984i
\(802\) −2.80892 2.80892i −0.0991865 0.0991865i
\(803\) −0.551099 −0.0194479
\(804\) −2.11652 2.11652i −0.0746439 0.0746439i
\(805\) −6.01500 + 6.01500i −0.212001 + 0.212001i
\(806\) 22.8422 22.8422i 0.804582 0.804582i
\(807\) 19.1689i 0.674779i
\(808\) 6.21946i 0.218800i
\(809\) 2.87990 2.87990i 0.101252 0.101252i −0.654666 0.755918i \(-0.727191\pi\)
0.755918 + 0.654666i \(0.227191\pi\)
\(810\) −1.12698 + 1.12698i −0.0395981 + 0.0395981i
\(811\) 4.44540 + 4.44540i 0.156099 + 0.156099i 0.780836 0.624737i \(-0.214794\pi\)
−0.624737 + 0.780836i \(0.714794\pi\)
\(812\) 10.8999 0.382510
\(813\) −4.82816 4.82816i −0.169331 0.169331i
\(814\) 4.50958i 0.158061i
\(815\) 18.8848 0.661507
\(816\) 0 0
\(817\) 23.4749 0.821282
\(818\) 20.8486i 0.728954i
\(819\) 3.58787 + 3.58787i 0.125370 + 0.125370i
\(820\) 35.7430 1.24820
\(821\) −14.0006 14.0006i −0.488624 0.488624i 0.419248 0.907872i \(-0.362294\pi\)
−0.907872 + 0.419248i \(0.862294\pi\)
\(822\) 8.26319 8.26319i 0.288212 0.288212i
\(823\) 8.25470 8.25470i 0.287741 0.287741i −0.548446 0.836186i \(-0.684780\pi\)
0.836186 + 0.548446i \(0.184780\pi\)
\(824\) 34.7308i 1.20991i
\(825\) 0.993212i 0.0345792i
\(826\) 5.38756 5.38756i 0.187457 0.187457i
\(827\) 9.82241 9.82241i 0.341559 0.341559i −0.515394 0.856953i \(-0.672355\pi\)
0.856953 + 0.515394i \(0.172355\pi\)
\(828\) −3.30864 3.30864i −0.114983 0.114983i
\(829\) 34.2670 1.19014 0.595071 0.803673i \(-0.297124\pi\)
0.595071 + 0.803673i \(0.297124\pi\)
\(830\) −16.2441 16.2441i −0.563843 0.563843i
\(831\) 8.12784i 0.281952i
\(832\) 11.6241 0.402992
\(833\) 0 0
\(834\) 3.09372 0.107127
\(835\) 18.5076i 0.640480i
\(836\) −10.1949 10.1949i −0.352599 0.352599i
\(837\) 10.2700 0.354982
\(838\) −7.59305 7.59305i −0.262297 0.262297i
\(839\) 17.1452 17.1452i 0.591918 0.591918i −0.346231 0.938149i \(-0.612539\pi\)
0.938149 + 0.346231i \(0.112539\pi\)
\(840\) 4.75057 4.75057i 0.163910 0.163910i
\(841\) 9.97056i 0.343813i
\(842\) 11.7722i 0.405695i
\(843\) 8.20741 8.20741i 0.282678 0.282678i
\(844\) 5.92856 5.92856i 0.204069 0.204069i
\(845\) −5.72777 5.72777i −0.197041 0.197041i
\(846\) 1.20116 0.0412969
\(847\) −7.64778 7.64778i −0.262781 0.262781i
\(848\) 3.28168i 0.112693i
\(849\) 6.06404 0.208117
\(850\) 0 0
\(851\) −13.0259 −0.446523
\(852\) 0.320497i 0.0109800i
\(853\) 5.22507 + 5.22507i 0.178903 + 0.178903i 0.790878 0.611974i \(-0.209624\pi\)
−0.611974 + 0.790878i \(0.709624\pi\)
\(854\) 3.09309 0.105843
\(855\) 10.0305 + 10.0305i 0.343037 + 0.343037i
\(856\) 24.1547 24.1547i 0.825590 0.825590i
\(857\) 5.68041 5.68041i 0.194039 0.194039i −0.603400 0.797439i \(-0.706188\pi\)
0.797439 + 0.603400i \(0.206188\pi\)
\(858\) 4.70750i 0.160711i
\(859\) 7.66672i 0.261585i −0.991410 0.130793i \(-0.958248\pi\)
0.991410 0.130793i \(-0.0417522\pi\)
\(860\) −7.17611 + 7.17611i −0.244703 + 0.244703i
\(861\) −10.5959 + 10.5959i −0.361106 + 0.361106i
\(862\) 8.87056 + 8.87056i 0.302133 + 0.302133i
\(863\) 14.4183 0.490804 0.245402 0.969421i \(-0.421080\pi\)
0.245402 + 0.969421i \(0.421080\pi\)
\(864\) 4.14386 + 4.14386i 0.140977 + 0.140977i
\(865\) 25.5034i 0.867142i
\(866\) −16.6166 −0.564655
\(867\) 0 0
\(868\) −17.9317 −0.608643
\(869\) 4.06306i 0.137830i
\(870\) 7.03535 + 7.03535i 0.238521 + 0.238521i
\(871\) −8.69833 −0.294732
\(872\) −1.76696 1.76696i −0.0598368 0.0598368i
\(873\) −1.89828 + 1.89828i −0.0642469 + 0.0642469i
\(874\) 12.1978 12.1978i 0.412597 0.412597i
\(875\) 14.5612i 0.492257i
\(876\) 0.520760i 0.0175948i
\(877\) −38.0584 + 38.0584i −1.28514 + 1.28514i −0.347435 + 0.937704i \(0.612947\pi\)
−0.937704 + 0.347435i \(0.887053\pi\)
\(878\) 12.7346 12.7346i 0.429770 0.429770i
\(879\) 4.86169 + 4.86169i 0.163981 + 0.163981i
\(880\) 2.58181 0.0870328
\(881\) −21.0679 21.0679i −0.709795 0.709795i 0.256697 0.966492i \(-0.417366\pi\)
−0.966492 + 0.256697i \(0.917366\pi\)
\(882\) 4.19090i 0.141115i
\(883\) −28.2666 −0.951247 −0.475624 0.879649i \(-0.657778\pi\)
−0.475624 + 0.879649i \(0.657778\pi\)
\(884\) 0 0
\(885\) −16.7905 −0.564405
\(886\) 11.8049i 0.396593i
\(887\) 17.7602 + 17.7602i 0.596330 + 0.596330i 0.939334 0.343004i \(-0.111444\pi\)
−0.343004 + 0.939334i \(0.611444\pi\)
\(888\) 10.2877 0.345233
\(889\) 12.3518 + 12.3518i 0.414266 + 0.414266i
\(890\) −15.4052 + 15.4052i −0.516383 + 0.516383i
\(891\) 1.05826 1.05826i 0.0354530 0.0354530i
\(892\) 36.9784i 1.23813i
\(893\) 10.6908i 0.357754i
\(894\) 9.80750 9.80750i 0.328012 0.328012i
\(895\) −15.6337 + 15.6337i −0.522576 + 0.522576i
\(896\) −8.34240 8.34240i −0.278700 0.278700i
\(897\) −13.5976 −0.454012
\(898\) 7.33291 + 7.33291i 0.244702 + 0.244702i
\(899\) 64.1118i 2.13825i
\(900\) 0.938533 0.0312844
\(901\) 0 0
\(902\) 13.9024 0.462901
\(903\) 4.25466i 0.141586i
\(904\) 15.9453 + 15.9453i 0.530332 + 0.530332i
\(905\) −34.4166 −1.14405
\(906\) −2.85282 2.85282i −0.0947787 0.0947787i
\(907\) 34.7185 34.7185i 1.15281 1.15281i 0.166820 0.985987i \(-0.446650\pi\)
0.985987 0.166820i \(-0.0533500\pi\)
\(908\) −10.9746 + 10.9746i −0.364204 + 0.364204i
\(909\) 2.38009i 0.0789425i
\(910\) 8.08693i 0.268079i
\(911\) 5.64007 5.64007i 0.186864 0.186864i −0.607475 0.794339i \(-0.707817\pi\)
0.794339 + 0.607475i \(0.207817\pi\)
\(912\) 3.99040 3.99040i 0.132135 0.132135i
\(913\) 15.2536 + 15.2536i 0.504820 + 0.504820i
\(914\) −11.7771 −0.389551
\(915\) −4.81984 4.81984i −0.159339 0.159339i
\(916\) 20.4880i 0.676942i
\(917\) −3.19875 −0.105632
\(918\) 0 0
\(919\) 19.8027 0.653229 0.326615 0.945158i \(-0.394092\pi\)
0.326615 + 0.945158i \(0.394092\pi\)
\(920\) 18.0042i 0.593580i
\(921\) −15.7296 15.7296i −0.518309 0.518309i
\(922\) −15.9201 −0.524300
\(923\) 0.658578 + 0.658578i 0.0216774 + 0.0216774i
\(924\) −1.84776 + 1.84776i −0.0607868 + 0.0607868i
\(925\) 1.84747 1.84747i 0.0607445 0.0607445i
\(926\) 20.2306i 0.664818i
\(927\) 13.2909i 0.436531i
\(928\) 25.8686 25.8686i 0.849179 0.849179i
\(929\) 3.94177 3.94177i 0.129325 0.129325i −0.639481 0.768807i \(-0.720851\pi\)
0.768807 + 0.639481i \(0.220851\pi\)
\(930\) −11.5741 11.5741i −0.379529 0.379529i
\(931\) −37.3005 −1.22248
\(932\) 19.0980 + 19.0980i 0.625577 + 0.625577i
\(933\) 5.41421i 0.177253i
\(934\) 5.48836 0.179584
\(935\) 0 0
\(936\) 10.7392 0.351023
\(937\) 0.398572i 0.0130208i −0.999979 0.00651039i \(-0.997928\pi\)
0.999979 0.00651039i \(-0.00207234\pi\)
\(938\) −1.41421 1.41421i −0.0461757 0.0461757i
\(939\) 11.2945 0.368582
\(940\) 3.26810 + 3.26810i 0.106594 + 0.106594i
\(941\) −3.04654 + 3.04654i −0.0993144 + 0.0993144i −0.755018 0.655704i \(-0.772372\pi\)
0.655704 + 0.755018i \(0.272372\pi\)
\(942\) 2.05835 2.05835i 0.0670648 0.0670648i
\(943\) 40.1572i 1.30770i
\(944\) 6.67966i 0.217404i
\(945\) 1.81796 1.81796i 0.0591384 0.0591384i
\(946\) −2.79118 + 2.79118i −0.0907492 + 0.0907492i
\(947\) −8.07204 8.07204i −0.262306 0.262306i 0.563684 0.825990i \(-0.309384\pi\)
−0.825990 + 0.563684i \(0.809384\pi\)
\(948\) −3.83938 −0.124697
\(949\) −1.07009 1.07009i −0.0347366 0.0347366i
\(950\) 3.46004i 0.112259i
\(951\) −18.4520 −0.598346
\(952\) 0 0
\(953\) −40.8932 −1.32466 −0.662330 0.749213i \(-0.730432\pi\)
−0.662330 + 0.749213i \(0.730432\pi\)
\(954\) 3.03188i 0.0981606i
\(955\) −17.6943 17.6943i −0.572574 0.572574i
\(956\) 1.04789 0.0338912
\(957\) −6.60634 6.60634i −0.213553 0.213553i
\(958\) 1.58787 1.58787i 0.0513017 0.0513017i
\(959\) −13.3296 + 13.3296i −0.430434 + 0.430434i
\(960\) 5.88989i 0.190096i
\(961\) 74.4725i 2.40234i
\(962\) 8.75643 8.75643i 0.282319 0.282319i
\(963\) 9.24360 9.24360i 0.297871 0.297871i
\(964\) −21.3617 21.3617i −0.688015 0.688015i
\(965\) 22.3197 0.718498
\(966\) −2.21077 2.21077i −0.0711302 0.0711302i
\(967\) 23.5335i 0.756788i −0.925645 0.378394i \(-0.876476\pi\)
0.925645 0.378394i \(-0.123524\pi\)
\(968\) −22.8914 −0.735758
\(969\) 0 0
\(970\) 4.27865 0.137379
\(971\) 6.44140i 0.206714i −0.994644 0.103357i \(-0.967042\pi\)
0.994644 0.103357i \(-0.0329585\pi\)
\(972\) 1.00000 + 1.00000i 0.0320750 + 0.0320750i
\(973\) −4.99055 −0.159990
\(974\) −12.5785 12.5785i −0.403040 0.403040i
\(975\) 1.92856 1.92856i 0.0617633 0.0617633i
\(976\) −1.91745 + 1.91745i −0.0613762 + 0.0613762i
\(977\) 17.8474i 0.570989i 0.958380 + 0.285495i \(0.0921579\pi\)
−0.958380 + 0.285495i \(0.907842\pi\)
\(978\) 6.94097i 0.221948i
\(979\) 14.4658 14.4658i 0.462328 0.462328i
\(980\) 11.4025 11.4025i 0.364240 0.364240i
\(981\) −0.676186 0.676186i −0.0215890 0.0215890i
\(982\) 10.4538 0.333595
\(983\) 17.0537 + 17.0537i 0.543929 + 0.543929i 0.924678 0.380749i \(-0.124334\pi\)
−0.380749 + 0.924678i \(0.624334\pi\)
\(984\) 31.7157i 1.01106i
\(985\) −6.59899 −0.210261
\(986\) 0 0
\(987\) −1.93763 −0.0616755
\(988\) 39.5918i 1.25958i
\(989\) 8.06235 + 8.06235i 0.256368 + 0.256368i
\(990\) −2.38528 −0.0758092
\(991\) 17.1161 + 17.1161i 0.543712 + 0.543712i 0.924615 0.380903i \(-0.124387\pi\)
−0.380903 + 0.924615i \(0.624387\pi\)
\(992\) −42.5574 + 42.5574i −1.35120 + 1.35120i
\(993\) 4.07722 4.07722i 0.129387 0.129387i
\(994\) 0.214149i 0.00679240i
\(995\) 28.4759i 0.902746i
\(996\) −14.4138 + 14.4138i −0.456720 + 0.456720i
\(997\) 26.1029 26.1029i 0.826688 0.826688i −0.160369 0.987057i \(-0.551268\pi\)
0.987057 + 0.160369i \(0.0512685\pi\)
\(998\) 4.07639 + 4.07639i 0.129036 + 0.129036i
\(999\) 3.93694 0.124559
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.e.i.829.3 8
17.2 even 8 867.2.a.m.1.2 4
17.3 odd 16 867.2.h.g.712.2 8
17.4 even 4 inner 867.2.e.i.616.2 8
17.5 odd 16 867.2.h.b.733.1 8
17.6 odd 16 867.2.h.f.757.1 8
17.7 odd 16 867.2.h.g.688.2 8
17.8 even 8 867.2.d.e.577.6 8
17.9 even 8 867.2.d.e.577.5 8
17.10 odd 16 51.2.h.a.25.2 8
17.11 odd 16 867.2.h.b.757.1 8
17.12 odd 16 867.2.h.f.733.1 8
17.13 even 4 867.2.e.h.616.2 8
17.14 odd 16 51.2.h.a.49.2 yes 8
17.15 even 8 867.2.a.n.1.2 4
17.16 even 2 867.2.e.h.829.3 8
51.2 odd 8 2601.2.a.bc.1.3 4
51.14 even 16 153.2.l.e.100.1 8
51.32 odd 8 2601.2.a.bd.1.3 4
51.44 even 16 153.2.l.e.127.1 8
68.27 even 16 816.2.bq.a.433.1 8
68.31 even 16 816.2.bq.a.49.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.h.a.25.2 8 17.10 odd 16
51.2.h.a.49.2 yes 8 17.14 odd 16
153.2.l.e.100.1 8 51.14 even 16
153.2.l.e.127.1 8 51.44 even 16
816.2.bq.a.49.1 8 68.31 even 16
816.2.bq.a.433.1 8 68.27 even 16
867.2.a.m.1.2 4 17.2 even 8
867.2.a.n.1.2 4 17.15 even 8
867.2.d.e.577.5 8 17.9 even 8
867.2.d.e.577.6 8 17.8 even 8
867.2.e.h.616.2 8 17.13 even 4
867.2.e.h.829.3 8 17.16 even 2
867.2.e.i.616.2 8 17.4 even 4 inner
867.2.e.i.829.3 8 1.1 even 1 trivial
867.2.h.b.733.1 8 17.5 odd 16
867.2.h.b.757.1 8 17.11 odd 16
867.2.h.f.733.1 8 17.12 odd 16
867.2.h.f.757.1 8 17.6 odd 16
867.2.h.g.688.2 8 17.7 odd 16
867.2.h.g.712.2 8 17.3 odd 16
2601.2.a.bc.1.3 4 51.2 odd 8
2601.2.a.bd.1.3 4 51.32 odd 8