Properties

Label 867.2.e.h.616.2
Level $867$
Weight $2$
Character 867.616
Analytic conductor $6.923$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,2,Mod(616,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.616");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.e (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 616.2
Root \(0.382683 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 867.616
Dual form 867.2.e.h.829.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.765367i q^{2} +(0.707107 - 0.707107i) q^{3} +1.41421 q^{4} +(1.47247 - 1.47247i) q^{5} +(-0.541196 - 0.541196i) q^{6} +(0.873017 + 0.873017i) q^{7} -2.61313i q^{8} -1.00000i q^{9} +(-1.12698 - 1.12698i) q^{10} +(1.05826 + 1.05826i) q^{11} +(1.00000 - 1.00000i) q^{12} -4.10973 q^{13} +(0.668179 - 0.668179i) q^{14} -2.08239i q^{15} +0.828427 q^{16} -0.765367 q^{18} -6.81204i q^{19} +(2.08239 - 2.08239i) q^{20} +1.23463 q^{21} +(0.809957 - 0.809957i) q^{22} +(2.33956 + 2.33956i) q^{23} +(-1.84776 - 1.84776i) q^{24} +0.663643i q^{25} +3.14545i q^{26} +(-0.707107 - 0.707107i) q^{27} +(1.23463 + 1.23463i) q^{28} +(4.41421 - 4.41421i) q^{29} -1.59379 q^{30} +(-7.26197 + 7.26197i) q^{31} -5.86030i q^{32} +1.49661 q^{33} +2.57099 q^{35} -1.41421i q^{36} +(-2.78384 + 2.78384i) q^{37} -5.21371 q^{38} +(-2.90602 + 2.90602i) q^{39} +(-3.84776 - 3.84776i) q^{40} +(8.58221 + 8.58221i) q^{41} -0.944947i q^{42} +3.44609i q^{43} +(1.49661 + 1.49661i) q^{44} +(-1.47247 - 1.47247i) q^{45} +(1.79063 - 1.79063i) q^{46} -1.56940 q^{47} +(0.585786 - 0.585786i) q^{48} -5.47568i q^{49} +0.507930 q^{50} -5.81204 q^{52} +3.96134i q^{53} +(-0.541196 + 0.541196i) q^{54} +3.11652 q^{55} +(2.28130 - 2.28130i) q^{56} +(-4.81684 - 4.81684i) q^{57} +(-3.37849 - 3.37849i) q^{58} -8.06306i q^{59} -2.94495i q^{60} +(2.31457 + 2.31457i) q^{61} +(5.55807 + 5.55807i) q^{62} +(0.873017 - 0.873017i) q^{63} -2.82843 q^{64} +(-6.05147 + 6.05147i) q^{65} -1.14545i q^{66} +2.11652 q^{67} +3.30864 q^{69} -1.96775i q^{70} +(0.160248 - 0.160248i) q^{71} -2.61313 q^{72} +(-0.260380 + 0.260380i) q^{73} +(2.13066 + 2.13066i) q^{74} +(0.469266 + 0.469266i) q^{75} -9.63368i q^{76} +1.84776i q^{77} +(2.22417 + 2.22417i) q^{78} +(-1.91969 - 1.91969i) q^{79} +(1.21984 - 1.21984i) q^{80} -1.00000 q^{81} +(6.56854 - 6.56854i) q^{82} +14.4138i q^{83} +1.74603 q^{84} +2.63752 q^{86} -6.24264i q^{87} +(2.76537 - 2.76537i) q^{88} -13.6694 q^{89} +(-1.12698 + 1.12698i) q^{90} +(-3.58787 - 3.58787i) q^{91} +(3.30864 + 3.30864i) q^{92} +10.2700i q^{93} +1.20116i q^{94} +(-10.0305 - 10.0305i) q^{95} +(-4.14386 - 4.14386i) q^{96} +(-1.89828 + 1.89828i) q^{97} -4.19090 q^{98} +(1.05826 - 1.05826i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{10} + 8 q^{11} + 8 q^{12} + 8 q^{13} + 8 q^{14} - 16 q^{16} + 8 q^{20} + 16 q^{21} + 16 q^{22} + 16 q^{28} + 24 q^{29} + 16 q^{30} - 32 q^{31} - 8 q^{33} + 32 q^{35} + 16 q^{37} - 32 q^{38}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.765367i 0.541196i −0.962692 0.270598i \(-0.912779\pi\)
0.962692 0.270598i \(-0.0872214\pi\)
\(3\) 0.707107 0.707107i 0.408248 0.408248i
\(4\) 1.41421 0.707107
\(5\) 1.47247 1.47247i 0.658510 0.658510i −0.296517 0.955027i \(-0.595825\pi\)
0.955027 + 0.296517i \(0.0958252\pi\)
\(6\) −0.541196 0.541196i −0.220942 0.220942i
\(7\) 0.873017 + 0.873017i 0.329970 + 0.329970i 0.852575 0.522605i \(-0.175040\pi\)
−0.522605 + 0.852575i \(0.675040\pi\)
\(8\) 2.61313i 0.923880i
\(9\) 1.00000i 0.333333i
\(10\) −1.12698 1.12698i −0.356383 0.356383i
\(11\) 1.05826 + 1.05826i 0.319077 + 0.319077i 0.848413 0.529335i \(-0.177559\pi\)
−0.529335 + 0.848413i \(0.677559\pi\)
\(12\) 1.00000 1.00000i 0.288675 0.288675i
\(13\) −4.10973 −1.13983 −0.569917 0.821702i \(-0.693025\pi\)
−0.569917 + 0.821702i \(0.693025\pi\)
\(14\) 0.668179 0.668179i 0.178578 0.178578i
\(15\) 2.08239i 0.537671i
\(16\) 0.828427 0.207107
\(17\) 0 0
\(18\) −0.765367 −0.180399
\(19\) 6.81204i 1.56279i −0.624038 0.781394i \(-0.714509\pi\)
0.624038 0.781394i \(-0.285491\pi\)
\(20\) 2.08239 2.08239i 0.465637 0.465637i
\(21\) 1.23463 0.269419
\(22\) 0.809957 0.809957i 0.172683 0.172683i
\(23\) 2.33956 + 2.33956i 0.487833 + 0.487833i 0.907622 0.419789i \(-0.137896\pi\)
−0.419789 + 0.907622i \(0.637896\pi\)
\(24\) −1.84776 1.84776i −0.377172 0.377172i
\(25\) 0.663643i 0.132729i
\(26\) 3.14545i 0.616874i
\(27\) −0.707107 0.707107i −0.136083 0.136083i
\(28\) 1.23463 + 1.23463i 0.233324 + 0.233324i
\(29\) 4.41421 4.41421i 0.819699 0.819699i −0.166365 0.986064i \(-0.553203\pi\)
0.986064 + 0.166365i \(0.0532031\pi\)
\(30\) −1.59379 −0.290986
\(31\) −7.26197 + 7.26197i −1.30429 + 1.30429i −0.378817 + 0.925471i \(0.623669\pi\)
−0.925471 + 0.378817i \(0.876331\pi\)
\(32\) 5.86030i 1.03596i
\(33\) 1.49661 0.260526
\(34\) 0 0
\(35\) 2.57099 0.434577
\(36\) 1.41421i 0.235702i
\(37\) −2.78384 + 2.78384i −0.457660 + 0.457660i −0.897887 0.440227i \(-0.854898\pi\)
0.440227 + 0.897887i \(0.354898\pi\)
\(38\) −5.21371 −0.845775
\(39\) −2.90602 + 2.90602i −0.465335 + 0.465335i
\(40\) −3.84776 3.84776i −0.608384 0.608384i
\(41\) 8.58221 + 8.58221i 1.34032 + 1.34032i 0.895743 + 0.444572i \(0.146644\pi\)
0.444572 + 0.895743i \(0.353356\pi\)
\(42\) 0.944947i 0.145809i
\(43\) 3.44609i 0.525524i 0.964861 + 0.262762i \(0.0846333\pi\)
−0.964861 + 0.262762i \(0.915367\pi\)
\(44\) 1.49661 + 1.49661i 0.225622 + 0.225622i
\(45\) −1.47247 1.47247i −0.219503 0.219503i
\(46\) 1.79063 1.79063i 0.264013 0.264013i
\(47\) −1.56940 −0.228920 −0.114460 0.993428i \(-0.536514\pi\)
−0.114460 + 0.993428i \(0.536514\pi\)
\(48\) 0.585786 0.585786i 0.0845510 0.0845510i
\(49\) 5.47568i 0.782240i
\(50\) 0.507930 0.0718322
\(51\) 0 0
\(52\) −5.81204 −0.805985
\(53\) 3.96134i 0.544131i 0.962279 + 0.272066i \(0.0877068\pi\)
−0.962279 + 0.272066i \(0.912293\pi\)
\(54\) −0.541196 + 0.541196i −0.0736475 + 0.0736475i
\(55\) 3.11652 0.420231
\(56\) 2.28130 2.28130i 0.304852 0.304852i
\(57\) −4.81684 4.81684i −0.638006 0.638006i
\(58\) −3.37849 3.37849i −0.443618 0.443618i
\(59\) 8.06306i 1.04972i −0.851188 0.524861i \(-0.824117\pi\)
0.851188 0.524861i \(-0.175883\pi\)
\(60\) 2.94495i 0.380191i
\(61\) 2.31457 + 2.31457i 0.296350 + 0.296350i 0.839583 0.543232i \(-0.182800\pi\)
−0.543232 + 0.839583i \(0.682800\pi\)
\(62\) 5.55807 + 5.55807i 0.705876 + 0.705876i
\(63\) 0.873017 0.873017i 0.109990 0.109990i
\(64\) −2.82843 −0.353553
\(65\) −6.05147 + 6.05147i −0.750593 + 0.750593i
\(66\) 1.14545i 0.140995i
\(67\) 2.11652 0.258574 0.129287 0.991607i \(-0.458731\pi\)
0.129287 + 0.991607i \(0.458731\pi\)
\(68\) 0 0
\(69\) 3.30864 0.398314
\(70\) 1.96775i 0.235191i
\(71\) 0.160248 0.160248i 0.0190180 0.0190180i −0.697534 0.716552i \(-0.745719\pi\)
0.716552 + 0.697534i \(0.245719\pi\)
\(72\) −2.61313 −0.307960
\(73\) −0.260380 + 0.260380i −0.0304752 + 0.0304752i −0.722180 0.691705i \(-0.756860\pi\)
0.691705 + 0.722180i \(0.256860\pi\)
\(74\) 2.13066 + 2.13066i 0.247684 + 0.247684i
\(75\) 0.469266 + 0.469266i 0.0541862 + 0.0541862i
\(76\) 9.63368i 1.10506i
\(77\) 1.84776i 0.210572i
\(78\) 2.22417 + 2.22417i 0.251838 + 0.251838i
\(79\) −1.91969 1.91969i −0.215982 0.215982i 0.590821 0.806803i \(-0.298804\pi\)
−0.806803 + 0.590821i \(0.798804\pi\)
\(80\) 1.21984 1.21984i 0.136382 0.136382i
\(81\) −1.00000 −0.111111
\(82\) 6.56854 6.56854i 0.725373 0.725373i
\(83\) 14.4138i 1.58212i 0.611736 + 0.791062i \(0.290472\pi\)
−0.611736 + 0.791062i \(0.709528\pi\)
\(84\) 1.74603 0.190508
\(85\) 0 0
\(86\) 2.63752 0.284411
\(87\) 6.24264i 0.669281i
\(88\) 2.76537 2.76537i 0.294789 0.294789i
\(89\) −13.6694 −1.44895 −0.724477 0.689299i \(-0.757918\pi\)
−0.724477 + 0.689299i \(0.757918\pi\)
\(90\) −1.12698 + 1.12698i −0.118794 + 0.118794i
\(91\) −3.58787 3.58787i −0.376111 0.376111i
\(92\) 3.30864 + 3.30864i 0.344950 + 0.344950i
\(93\) 10.2700i 1.06495i
\(94\) 1.20116i 0.123891i
\(95\) −10.0305 10.0305i −1.02911 1.02911i
\(96\) −4.14386 4.14386i −0.422931 0.422931i
\(97\) −1.89828 + 1.89828i −0.192741 + 0.192741i −0.796879 0.604139i \(-0.793517\pi\)
0.604139 + 0.796879i \(0.293517\pi\)
\(98\) −4.19090 −0.423345
\(99\) 1.05826 1.05826i 0.106359 0.106359i
\(100\) 0.938533i 0.0938533i
\(101\) −2.38009 −0.236827 −0.118414 0.992964i \(-0.537781\pi\)
−0.118414 + 0.992964i \(0.537781\pi\)
\(102\) 0 0
\(103\) −13.2909 −1.30959 −0.654796 0.755806i \(-0.727245\pi\)
−0.654796 + 0.755806i \(0.727245\pi\)
\(104\) 10.7392i 1.05307i
\(105\) 1.81796 1.81796i 0.177415 0.177415i
\(106\) 3.03188 0.294482
\(107\) 9.24360 9.24360i 0.893612 0.893612i −0.101249 0.994861i \(-0.532284\pi\)
0.994861 + 0.101249i \(0.0322839\pi\)
\(108\) −1.00000 1.00000i −0.0962250 0.0962250i
\(109\) 0.676186 + 0.676186i 0.0647669 + 0.0647669i 0.738748 0.673981i \(-0.235417\pi\)
−0.673981 + 0.738748i \(0.735417\pi\)
\(110\) 2.38528i 0.227428i
\(111\) 3.93694i 0.373678i
\(112\) 0.723231 + 0.723231i 0.0683389 + 0.0683389i
\(113\) −6.10199 6.10199i −0.574027 0.574027i 0.359224 0.933251i \(-0.383041\pi\)
−0.933251 + 0.359224i \(0.883041\pi\)
\(114\) −3.68665 + 3.68665i −0.345286 + 0.345286i
\(115\) 6.88989 0.642486
\(116\) 6.24264 6.24264i 0.579615 0.579615i
\(117\) 4.10973i 0.379945i
\(118\) −6.17120 −0.568105
\(119\) 0 0
\(120\) −5.44155 −0.496744
\(121\) 8.76017i 0.796379i
\(122\) 1.77150 1.77150i 0.160384 0.160384i
\(123\) 12.1371 1.09436
\(124\) −10.2700 + 10.2700i −0.922271 + 0.922271i
\(125\) 8.33956 + 8.33956i 0.745913 + 0.745913i
\(126\) −0.668179 0.668179i −0.0595261 0.0595261i
\(127\) 14.1484i 1.25547i 0.778428 + 0.627734i \(0.216017\pi\)
−0.778428 + 0.627734i \(0.783983\pi\)
\(128\) 9.55582i 0.844623i
\(129\) 2.43675 + 2.43675i 0.214544 + 0.214544i
\(130\) 4.63160 + 4.63160i 0.406218 + 0.406218i
\(131\) −1.83201 + 1.83201i −0.160063 + 0.160063i −0.782595 0.622531i \(-0.786104\pi\)
0.622531 + 0.782595i \(0.286104\pi\)
\(132\) 2.11652 0.184219
\(133\) 5.94703 5.94703i 0.515673 0.515673i
\(134\) 1.61991i 0.139939i
\(135\) −2.08239 −0.179224
\(136\) 0 0
\(137\) 15.2684 1.30447 0.652233 0.758018i \(-0.273832\pi\)
0.652233 + 0.758018i \(0.273832\pi\)
\(138\) 2.53233i 0.215566i
\(139\) −2.85822 + 2.85822i −0.242431 + 0.242431i −0.817855 0.575424i \(-0.804837\pi\)
0.575424 + 0.817855i \(0.304837\pi\)
\(140\) 3.63593 0.307292
\(141\) −1.10973 + 1.10973i −0.0934563 + 0.0934563i
\(142\) −0.122649 0.122649i −0.0102925 0.0102925i
\(143\) −4.34917 4.34917i −0.363695 0.363695i
\(144\) 0.828427i 0.0690356i
\(145\) 12.9996i 1.07956i
\(146\) 0.199286 + 0.199286i 0.0164930 + 0.0164930i
\(147\) −3.87189 3.87189i −0.319348 0.319348i
\(148\) −3.93694 + 3.93694i −0.323614 + 0.323614i
\(149\) 18.1219 1.48460 0.742302 0.670065i \(-0.233734\pi\)
0.742302 + 0.670065i \(0.233734\pi\)
\(150\) 0.359161 0.359161i 0.0293254 0.0293254i
\(151\) 5.27133i 0.428975i 0.976727 + 0.214487i \(0.0688081\pi\)
−0.976727 + 0.214487i \(0.931192\pi\)
\(152\) −17.8007 −1.44383
\(153\) 0 0
\(154\) 1.41421 0.113961
\(155\) 21.3861i 1.71778i
\(156\) −4.10973 + 4.10973i −0.329042 + 0.329042i
\(157\) 3.80334 0.303540 0.151770 0.988416i \(-0.451503\pi\)
0.151770 + 0.988416i \(0.451503\pi\)
\(158\) −1.46927 + 1.46927i −0.116889 + 0.116889i
\(159\) 2.80109 + 2.80109i 0.222141 + 0.222141i
\(160\) −8.62914 8.62914i −0.682193 0.682193i
\(161\) 4.08496i 0.321940i
\(162\) 0.765367i 0.0601329i
\(163\) 6.41262 + 6.41262i 0.502275 + 0.502275i 0.912144 0.409869i \(-0.134426\pi\)
−0.409869 + 0.912144i \(0.634426\pi\)
\(164\) 12.1371 + 12.1371i 0.947746 + 0.947746i
\(165\) 2.20371 2.20371i 0.171559 0.171559i
\(166\) 11.0319 0.856240
\(167\) −6.28451 + 6.28451i −0.486310 + 0.486310i −0.907140 0.420830i \(-0.861739\pi\)
0.420830 + 0.907140i \(0.361739\pi\)
\(168\) 3.22625i 0.248911i
\(169\) 3.88989 0.299223
\(170\) 0 0
\(171\) −6.81204 −0.520930
\(172\) 4.87351i 0.371601i
\(173\) −8.66006 + 8.66006i −0.658412 + 0.658412i −0.955004 0.296592i \(-0.904150\pi\)
0.296592 + 0.955004i \(0.404150\pi\)
\(174\) −4.77791 −0.362212
\(175\) −0.579372 + 0.579372i −0.0437964 + 0.0437964i
\(176\) 0.876691 + 0.876691i 0.0660831 + 0.0660831i
\(177\) −5.70144 5.70144i −0.428547 0.428547i
\(178\) 10.4621i 0.784168i
\(179\) 10.6173i 0.793573i 0.917911 + 0.396787i \(0.129875\pi\)
−0.917911 + 0.396787i \(0.870125\pi\)
\(180\) −2.08239 2.08239i −0.155212 0.155212i
\(181\) −11.6866 11.6866i −0.868662 0.868662i 0.123663 0.992324i \(-0.460536\pi\)
−0.992324 + 0.123663i \(0.960536\pi\)
\(182\) −2.74603 + 2.74603i −0.203550 + 0.203550i
\(183\) 3.27330 0.241969
\(184\) 6.11358 6.11358i 0.450699 0.450699i
\(185\) 8.19825i 0.602748i
\(186\) 7.86030 0.576345
\(187\) 0 0
\(188\) −2.21946 −0.161871
\(189\) 1.23463i 0.0898063i
\(190\) −7.67705 + 7.67705i −0.556952 + 0.556952i
\(191\) 12.0167 0.869498 0.434749 0.900552i \(-0.356837\pi\)
0.434749 + 0.900552i \(0.356837\pi\)
\(192\) −2.00000 + 2.00000i −0.144338 + 0.144338i
\(193\) 7.57900 + 7.57900i 0.545548 + 0.545548i 0.925150 0.379602i \(-0.123939\pi\)
−0.379602 + 0.925150i \(0.623939\pi\)
\(194\) 1.45288 + 1.45288i 0.104311 + 0.104311i
\(195\) 8.55807i 0.612856i
\(196\) 7.74378i 0.553127i
\(197\) −2.24078 2.24078i −0.159649 0.159649i 0.622762 0.782411i \(-0.286010\pi\)
−0.782411 + 0.622762i \(0.786010\pi\)
\(198\) −0.809957 0.809957i −0.0575612 0.0575612i
\(199\) −9.66940 + 9.66940i −0.685445 + 0.685445i −0.961222 0.275776i \(-0.911065\pi\)
0.275776 + 0.961222i \(0.411065\pi\)
\(200\) 1.73418 0.122625
\(201\) 1.49661 1.49661i 0.105562 0.105562i
\(202\) 1.82164i 0.128170i
\(203\) 7.70737 0.540951
\(204\) 0 0
\(205\) 25.2741 1.76522
\(206\) 10.1724i 0.708746i
\(207\) 2.33956 2.33956i 0.162611 0.162611i
\(208\) −3.40461 −0.236067
\(209\) 7.20891 7.20891i 0.498651 0.498651i
\(210\) −1.39141 1.39141i −0.0960164 0.0960164i
\(211\) −4.19212 4.19212i −0.288598 0.288598i 0.547928 0.836526i \(-0.315417\pi\)
−0.836526 + 0.547928i \(0.815417\pi\)
\(212\) 5.60218i 0.384759i
\(213\) 0.226626i 0.0155281i
\(214\) −7.07474 7.07474i −0.483619 0.483619i
\(215\) 5.07428 + 5.07428i 0.346063 + 0.346063i
\(216\) −1.84776 + 1.84776i −0.125724 + 0.125724i
\(217\) −12.6797 −0.860751
\(218\) 0.517531 0.517531i 0.0350516 0.0350516i
\(219\) 0.368233i 0.0248829i
\(220\) 4.40743 0.297149
\(221\) 0 0
\(222\) 3.01320 0.202233
\(223\) 26.1476i 1.75098i 0.483240 + 0.875488i \(0.339460\pi\)
−0.483240 + 0.875488i \(0.660540\pi\)
\(224\) 5.11615 5.11615i 0.341837 0.341837i
\(225\) 0.663643 0.0442428
\(226\) −4.67026 + 4.67026i −0.310661 + 0.310661i
\(227\) 7.76019 + 7.76019i 0.515062 + 0.515062i 0.916073 0.401011i \(-0.131341\pi\)
−0.401011 + 0.916073i \(0.631341\pi\)
\(228\) −6.81204 6.81204i −0.451138 0.451138i
\(229\) 14.4872i 0.957341i 0.877995 + 0.478670i \(0.158881\pi\)
−0.877995 + 0.478670i \(0.841119\pi\)
\(230\) 5.27330i 0.347711i
\(231\) 1.30656 + 1.30656i 0.0859655 + 0.0859655i
\(232\) −11.5349 11.5349i −0.757303 0.757303i
\(233\) −13.5043 + 13.5043i −0.884699 + 0.884699i −0.994008 0.109309i \(-0.965136\pi\)
0.109309 + 0.994008i \(0.465136\pi\)
\(234\) 3.14545 0.205625
\(235\) −2.31090 + 2.31090i −0.150746 + 0.150746i
\(236\) 11.4029i 0.742265i
\(237\) −2.71485 −0.176348
\(238\) 0 0
\(239\) 0.740970 0.0479294 0.0239647 0.999713i \(-0.492371\pi\)
0.0239647 + 0.999713i \(0.492371\pi\)
\(240\) 1.72511i 0.111355i
\(241\) 15.1050 15.1050i 0.973000 0.973000i −0.0266448 0.999645i \(-0.508482\pi\)
0.999645 + 0.0266448i \(0.00848231\pi\)
\(242\) −6.70474 −0.430997
\(243\) −0.707107 + 0.707107i −0.0453609 + 0.0453609i
\(244\) 3.27330 + 3.27330i 0.209551 + 0.209551i
\(245\) −8.06280 8.06280i −0.515113 0.515113i
\(246\) 9.28931i 0.592265i
\(247\) 27.9956i 1.78132i
\(248\) 18.9764 + 18.9764i 1.20501 + 1.20501i
\(249\) 10.1921 + 10.1921i 0.645900 + 0.645900i
\(250\) 6.38283 6.38283i 0.403685 0.403685i
\(251\) 0.938819 0.0592577 0.0296289 0.999561i \(-0.490567\pi\)
0.0296289 + 0.999561i \(0.490567\pi\)
\(252\) 1.23463 1.23463i 0.0777746 0.0777746i
\(253\) 4.95174i 0.311313i
\(254\) 10.8287 0.679454
\(255\) 0 0
\(256\) −12.9706 −0.810660
\(257\) 15.8293i 0.987403i −0.869631 0.493701i \(-0.835644\pi\)
0.869631 0.493701i \(-0.164356\pi\)
\(258\) 1.86501 1.86501i 0.116110 0.116110i
\(259\) −4.86068 −0.302028
\(260\) −8.55807 + 8.55807i −0.530749 + 0.530749i
\(261\) −4.41421 4.41421i −0.273233 0.273233i
\(262\) 1.40216 + 1.40216i 0.0866256 + 0.0866256i
\(263\) 11.4573i 0.706486i −0.935532 0.353243i \(-0.885079\pi\)
0.935532 0.353243i \(-0.114921\pi\)
\(264\) 3.91082i 0.240694i
\(265\) 5.83296 + 5.83296i 0.358316 + 0.358316i
\(266\) −4.55166 4.55166i −0.279080 0.279080i
\(267\) −9.66572 + 9.66572i −0.591533 + 0.591533i
\(268\) 2.99321 0.182839
\(269\) 13.5545 13.5545i 0.826432 0.826432i −0.160589 0.987021i \(-0.551339\pi\)
0.987021 + 0.160589i \(0.0513395\pi\)
\(270\) 1.59379i 0.0969952i
\(271\) 6.82805 0.414775 0.207387 0.978259i \(-0.433504\pi\)
0.207387 + 0.978259i \(0.433504\pi\)
\(272\) 0 0
\(273\) −5.07401 −0.307093
\(274\) 11.6859i 0.705972i
\(275\) −0.702307 + 0.702307i −0.0423507 + 0.0423507i
\(276\) 4.67913 0.281650
\(277\) 5.74725 5.74725i 0.345319 0.345319i −0.513044 0.858363i \(-0.671482\pi\)
0.858363 + 0.513044i \(0.171482\pi\)
\(278\) 2.18759 + 2.18759i 0.131203 + 0.131203i
\(279\) 7.26197 + 7.26197i 0.434763 + 0.434763i
\(280\) 6.71832i 0.401497i
\(281\) 11.6070i 0.692417i −0.938158 0.346209i \(-0.887469\pi\)
0.938158 0.346209i \(-0.112531\pi\)
\(282\) 0.849352 + 0.849352i 0.0505782 + 0.0505782i
\(283\) 4.28792 + 4.28792i 0.254890 + 0.254890i 0.822972 0.568082i \(-0.192314\pi\)
−0.568082 + 0.822972i \(0.692314\pi\)
\(284\) 0.226626 0.226626i 0.0134478 0.0134478i
\(285\) −14.1853 −0.840267
\(286\) −3.32871 + 3.32871i −0.196831 + 0.196831i
\(287\) 14.9848i 0.884527i
\(288\) −5.86030 −0.345322
\(289\) 0 0
\(290\) −9.94948 −0.584254
\(291\) 2.68457i 0.157372i
\(292\) −0.368233 + 0.368233i −0.0215492 + 0.0215492i
\(293\) −6.87547 −0.401669 −0.200835 0.979625i \(-0.564365\pi\)
−0.200835 + 0.979625i \(0.564365\pi\)
\(294\) −2.96342 + 2.96342i −0.172830 + 0.172830i
\(295\) −11.8726 11.8726i −0.691252 0.691252i
\(296\) 7.27452 + 7.27452i 0.422823 + 0.422823i
\(297\) 1.49661i 0.0868419i
\(298\) 13.8699i 0.803462i
\(299\) −9.61498 9.61498i −0.556049 0.556049i
\(300\) 0.663643 + 0.663643i 0.0383154 + 0.0383154i
\(301\) −3.00850 + 3.00850i −0.173407 + 0.173407i
\(302\) 4.03450 0.232159
\(303\) −1.68297 + 1.68297i −0.0966844 + 0.0966844i
\(304\) 5.64328i 0.323664i
\(305\) 6.81629 0.390300
\(306\) 0 0
\(307\) 22.2451 1.26959 0.634797 0.772679i \(-0.281084\pi\)
0.634797 + 0.772679i \(0.281084\pi\)
\(308\) 2.61313i 0.148897i
\(309\) −9.39809 + 9.39809i −0.534639 + 0.534639i
\(310\) 16.3682 0.929653
\(311\) −3.82843 + 3.82843i −0.217090 + 0.217090i −0.807271 0.590181i \(-0.799056\pi\)
0.590181 + 0.807271i \(0.299056\pi\)
\(312\) 7.59379 + 7.59379i 0.429914 + 0.429914i
\(313\) 7.98642 + 7.98642i 0.451419 + 0.451419i 0.895825 0.444406i \(-0.146585\pi\)
−0.444406 + 0.895825i \(0.646585\pi\)
\(314\) 2.91095i 0.164274i
\(315\) 2.57099i 0.144859i
\(316\) −2.71485 2.71485i −0.152722 0.152722i
\(317\) −13.0475 13.0475i −0.732822 0.732822i 0.238356 0.971178i \(-0.423391\pi\)
−0.971178 + 0.238356i \(0.923391\pi\)
\(318\) 2.14386 2.14386i 0.120222 0.120222i
\(319\) 9.34277 0.523095
\(320\) −4.16478 + 4.16478i −0.232819 + 0.232819i
\(321\) 13.0724i 0.729631i
\(322\) 3.12649 0.174233
\(323\) 0 0
\(324\) −1.41421 −0.0785674
\(325\) 2.72739i 0.151289i
\(326\) 4.90801 4.90801i 0.271829 0.271829i
\(327\) 0.956272 0.0528819
\(328\) 22.4264 22.4264i 1.23829 1.23829i
\(329\) −1.37011 1.37011i −0.0755367 0.0755367i
\(330\) −1.68665 1.68665i −0.0928469 0.0928469i
\(331\) 5.76606i 0.316931i −0.987365 0.158466i \(-0.949345\pi\)
0.987365 0.158466i \(-0.0506547\pi\)
\(332\) 20.3842i 1.11873i
\(333\) 2.78384 + 2.78384i 0.152553 + 0.152553i
\(334\) 4.80996 + 4.80996i 0.263189 + 0.263189i
\(335\) 3.11652 3.11652i 0.170274 0.170274i
\(336\) 1.02280 0.0557985
\(337\) −11.5051 + 11.5051i −0.626723 + 0.626723i −0.947242 0.320519i \(-0.896143\pi\)
0.320519 + 0.947242i \(0.396143\pi\)
\(338\) 2.97720i 0.161938i
\(339\) −8.62951 −0.468691
\(340\) 0 0
\(341\) −15.3701 −0.832338
\(342\) 5.21371i 0.281925i
\(343\) 10.8915 10.8915i 0.588085 0.588085i
\(344\) 9.00506 0.485521
\(345\) 4.87189 4.87189i 0.262294 0.262294i
\(346\) 6.62812 + 6.62812i 0.356330 + 0.356330i
\(347\) −3.03375 3.03375i −0.162860 0.162860i 0.620972 0.783833i \(-0.286738\pi\)
−0.783833 + 0.620972i \(0.786738\pi\)
\(348\) 8.82843i 0.473253i
\(349\) 14.1553i 0.757718i −0.925454 0.378859i \(-0.876317\pi\)
0.925454 0.378859i \(-0.123683\pi\)
\(350\) 0.443432 + 0.443432i 0.0237024 + 0.0237024i
\(351\) 2.90602 + 2.90602i 0.155112 + 0.155112i
\(352\) 6.20172 6.20172i 0.330553 0.330553i
\(353\) −23.8142 −1.26750 −0.633752 0.773536i \(-0.718486\pi\)
−0.633752 + 0.773536i \(0.718486\pi\)
\(354\) −4.36370 + 4.36370i −0.231928 + 0.231928i
\(355\) 0.471923i 0.0250471i
\(356\) −19.3314 −1.02456
\(357\) 0 0
\(358\) 8.12612 0.429479
\(359\) 35.2676i 1.86135i −0.365841 0.930677i \(-0.619219\pi\)
0.365841 0.930677i \(-0.380781\pi\)
\(360\) −3.84776 + 3.84776i −0.202795 + 0.202795i
\(361\) −27.4039 −1.44231
\(362\) −8.94457 + 8.94457i −0.470116 + 0.470116i
\(363\) −6.19438 6.19438i −0.325120 0.325120i
\(364\) −5.07401 5.07401i −0.265950 0.265950i
\(365\) 0.766805i 0.0401364i
\(366\) 2.50527i 0.130953i
\(367\) −11.5408 11.5408i −0.602426 0.602426i 0.338530 0.940956i \(-0.390070\pi\)
−0.940956 + 0.338530i \(0.890070\pi\)
\(368\) 1.93816 + 1.93816i 0.101034 + 0.101034i
\(369\) 8.58221 8.58221i 0.446772 0.446772i
\(370\) 6.27467 0.326205
\(371\) −3.45832 + 3.45832i −0.179547 + 0.179547i
\(372\) 14.5239i 0.753031i
\(373\) −25.0156 −1.29526 −0.647630 0.761955i \(-0.724240\pi\)
−0.647630 + 0.761955i \(0.724240\pi\)
\(374\) 0 0
\(375\) 11.7939 0.609036
\(376\) 4.10103i 0.211495i
\(377\) −18.1412 + 18.1412i −0.934321 + 0.934321i
\(378\) −0.944947 −0.0486028
\(379\) −23.0716 + 23.0716i −1.18511 + 1.18511i −0.206702 + 0.978404i \(0.566273\pi\)
−0.978404 + 0.206702i \(0.933727\pi\)
\(380\) −14.1853 14.1853i −0.727692 0.727692i
\(381\) 10.0044 + 10.0044i 0.512542 + 0.512542i
\(382\) 9.19719i 0.470569i
\(383\) 0.585258i 0.0299053i 0.999888 + 0.0149526i \(0.00475975\pi\)
−0.999888 + 0.0149526i \(0.995240\pi\)
\(384\) −6.75699 6.75699i −0.344816 0.344816i
\(385\) 2.72078 + 2.72078i 0.138664 + 0.138664i
\(386\) 5.80071 5.80071i 0.295249 0.295249i
\(387\) 3.44609 0.175175
\(388\) −2.68457 + 2.68457i −0.136288 + 0.136288i
\(389\) 22.1261i 1.12184i −0.827871 0.560918i \(-0.810448\pi\)
0.827871 0.560918i \(-0.189552\pi\)
\(390\) 6.55007 0.331675
\(391\) 0 0
\(392\) −14.3086 −0.722696
\(393\) 2.59085i 0.130691i
\(394\) −1.71502 + 1.71502i −0.0864015 + 0.0864015i
\(395\) −5.65338 −0.284453
\(396\) 1.49661 1.49661i 0.0752073 0.0752073i
\(397\) −4.12265 4.12265i −0.206910 0.206910i 0.596043 0.802953i \(-0.296739\pi\)
−0.802953 + 0.596043i \(0.796739\pi\)
\(398\) 7.40064 + 7.40064i 0.370960 + 0.370960i
\(399\) 8.41037i 0.421045i
\(400\) 0.549780i 0.0274890i
\(401\) 3.67004 + 3.67004i 0.183273 + 0.183273i 0.792780 0.609507i \(-0.208633\pi\)
−0.609507 + 0.792780i \(0.708633\pi\)
\(402\) −1.14545 1.14545i −0.0571300 0.0571300i
\(403\) 29.8448 29.8448i 1.48667 1.48667i
\(404\) −3.36595 −0.167462
\(405\) −1.47247 + 1.47247i −0.0731678 + 0.0731678i
\(406\) 5.89897i 0.292761i
\(407\) −5.89205 −0.292058
\(408\) 0 0
\(409\) −27.2400 −1.34693 −0.673465 0.739219i \(-0.735195\pi\)
−0.673465 + 0.739219i \(0.735195\pi\)
\(410\) 19.3440i 0.955332i
\(411\) 10.7964 10.7964i 0.532546 0.532546i
\(412\) −18.7962 −0.926021
\(413\) 7.03919 7.03919i 0.346376 0.346376i
\(414\) −1.79063 1.79063i −0.0880044 0.0880044i
\(415\) 21.2240 + 21.2240i 1.04185 + 1.04185i
\(416\) 24.0843i 1.18083i
\(417\) 4.04214i 0.197944i
\(418\) −5.51746 5.51746i −0.269868 0.269868i
\(419\) 9.92079 + 9.92079i 0.484662 + 0.484662i 0.906617 0.421955i \(-0.138656\pi\)
−0.421955 + 0.906617i \(0.638656\pi\)
\(420\) 2.57099 2.57099i 0.125451 0.125451i
\(421\) −15.3811 −0.749627 −0.374814 0.927100i \(-0.622293\pi\)
−0.374814 + 0.927100i \(0.622293\pi\)
\(422\) −3.20851 + 3.20851i −0.156188 + 0.156188i
\(423\) 1.56940i 0.0763067i
\(424\) 10.3515 0.502712
\(425\) 0 0
\(426\) −0.173452 −0.00840376
\(427\) 4.04132i 0.195573i
\(428\) 13.0724 13.0724i 0.631879 0.631879i
\(429\) −6.15065 −0.296956
\(430\) 3.88368 3.88368i 0.187288 0.187288i
\(431\) −11.5899 11.5899i −0.558268 0.558268i 0.370546 0.928814i \(-0.379171\pi\)
−0.928814 + 0.370546i \(0.879171\pi\)
\(432\) −0.585786 0.585786i −0.0281837 0.0281837i
\(433\) 21.7106i 1.04335i −0.853145 0.521673i \(-0.825308\pi\)
0.853145 0.521673i \(-0.174692\pi\)
\(434\) 9.70459i 0.465835i
\(435\) −9.19212 9.19212i −0.440729 0.440729i
\(436\) 0.956272 + 0.956272i 0.0457971 + 0.0457971i
\(437\) 15.9372 15.9372i 0.762380 0.762380i
\(438\) 0.281833 0.0134665
\(439\) 16.6385 16.6385i 0.794112 0.794112i −0.188048 0.982160i \(-0.560216\pi\)
0.982160 + 0.188048i \(0.0602159\pi\)
\(440\) 8.14386i 0.388243i
\(441\) −5.47568 −0.260747
\(442\) 0 0
\(443\) −15.4238 −0.732808 −0.366404 0.930456i \(-0.619411\pi\)
−0.366404 + 0.930456i \(0.619411\pi\)
\(444\) 5.56767i 0.264230i
\(445\) −20.1278 + 20.1278i −0.954151 + 0.954151i
\(446\) 20.0125 0.947621
\(447\) 12.8141 12.8141i 0.606087 0.606087i
\(448\) −2.46927 2.46927i −0.116662 0.116662i
\(449\) −9.58091 9.58091i −0.452151 0.452151i 0.443917 0.896068i \(-0.353589\pi\)
−0.896068 + 0.443917i \(0.853589\pi\)
\(450\) 0.507930i 0.0239441i
\(451\) 18.1644i 0.855329i
\(452\) −8.62951 8.62951i −0.405898 0.405898i
\(453\) 3.72739 + 3.72739i 0.175128 + 0.175128i
\(454\) 5.93939 5.93939i 0.278750 0.278750i
\(455\) −10.5661 −0.495346
\(456\) −12.5870 + 12.5870i −0.589441 + 0.589441i
\(457\) 15.3875i 0.719796i −0.932992 0.359898i \(-0.882812\pi\)
0.932992 0.359898i \(-0.117188\pi\)
\(458\) 11.0880 0.518109
\(459\) 0 0
\(460\) 9.74378 0.454306
\(461\) 20.8006i 0.968780i −0.874852 0.484390i \(-0.839042\pi\)
0.874852 0.484390i \(-0.160958\pi\)
\(462\) 1.00000 1.00000i 0.0465242 0.0465242i
\(463\) 26.4325 1.22842 0.614212 0.789141i \(-0.289474\pi\)
0.614212 + 0.789141i \(0.289474\pi\)
\(464\) 3.65685 3.65685i 0.169765 0.169765i
\(465\) 15.1223 + 15.1223i 0.701279 + 0.701279i
\(466\) 10.3358 + 10.3358i 0.478796 + 0.478796i
\(467\) 7.17088i 0.331829i 0.986140 + 0.165914i \(0.0530576\pi\)
−0.986140 + 0.165914i \(0.946942\pi\)
\(468\) 5.81204i 0.268662i
\(469\) 1.84776 + 1.84776i 0.0853216 + 0.0853216i
\(470\) 1.76868 + 1.76868i 0.0815833 + 0.0815833i
\(471\) 2.68937 2.68937i 0.123920 0.123920i
\(472\) −21.0698 −0.969816
\(473\) −3.64686 + 3.64686i −0.167683 + 0.167683i
\(474\) 2.07786i 0.0954391i
\(475\) 4.52076 0.207427
\(476\) 0 0
\(477\) 3.96134 0.181377
\(478\) 0.567114i 0.0259392i
\(479\) 2.07465 2.07465i 0.0947931 0.0947931i −0.658120 0.752913i \(-0.728648\pi\)
0.752913 + 0.658120i \(0.228648\pi\)
\(480\) −12.2034 −0.557009
\(481\) 11.4408 11.4408i 0.521657 0.521657i
\(482\) −11.5609 11.5609i −0.526584 0.526584i
\(483\) 2.88850 + 2.88850i 0.131431 + 0.131431i
\(484\) 12.3888i 0.563125i
\(485\) 5.59032i 0.253843i
\(486\) 0.541196 + 0.541196i 0.0245492 + 0.0245492i
\(487\) 16.4346 + 16.4346i 0.744721 + 0.744721i 0.973483 0.228761i \(-0.0734676\pi\)
−0.228761 + 0.973483i \(0.573468\pi\)
\(488\) 6.04826 6.04826i 0.273792 0.273792i
\(489\) 9.06882 0.410106
\(490\) −6.17100 + 6.17100i −0.278777 + 0.278777i
\(491\) 13.6586i 0.616403i 0.951321 + 0.308202i \(0.0997271\pi\)
−0.951321 + 0.308202i \(0.900273\pi\)
\(492\) 17.1644 0.773831
\(493\) 0 0
\(494\) 21.4269 0.964044
\(495\) 3.11652i 0.140077i
\(496\) −6.01602 + 6.01602i −0.270127 + 0.270127i
\(497\) 0.279799 0.0125507
\(498\) 7.80071 7.80071i 0.349558 0.349558i
\(499\) −5.32607 5.32607i −0.238427 0.238427i 0.577771 0.816199i \(-0.303923\pi\)
−0.816199 + 0.577771i \(0.803923\pi\)
\(500\) 11.7939 + 11.7939i 0.527440 + 0.527440i
\(501\) 8.88764i 0.397071i
\(502\) 0.718541i 0.0320700i
\(503\) 18.1840 + 18.1840i 0.810785 + 0.810785i 0.984752 0.173967i \(-0.0556585\pi\)
−0.173967 + 0.984752i \(0.555659\pi\)
\(504\) −2.28130 2.28130i −0.101617 0.101617i
\(505\) −3.50461 + 3.50461i −0.155953 + 0.155953i
\(506\) 3.78989 0.168481
\(507\) 2.75057 2.75057i 0.122157 0.122157i
\(508\) 20.0089i 0.887749i
\(509\) 34.7796 1.54158 0.770789 0.637090i \(-0.219862\pi\)
0.770789 + 0.637090i \(0.219862\pi\)
\(510\) 0 0
\(511\) −0.454632 −0.0201117
\(512\) 9.18440i 0.405897i
\(513\) −4.81684 + 4.81684i −0.212669 + 0.212669i
\(514\) −12.1152 −0.534379
\(515\) −19.5705 + 19.5705i −0.862380 + 0.862380i
\(516\) 3.44609 + 3.44609i 0.151706 + 0.151706i
\(517\) −1.66083 1.66083i −0.0730433 0.0730433i
\(518\) 3.72020i 0.163456i
\(519\) 12.2472i 0.537591i
\(520\) 15.8133 + 15.8133i 0.693457 + 0.693457i
\(521\) −31.5217 31.5217i −1.38099 1.38099i −0.842863 0.538129i \(-0.819131\pi\)
−0.538129 0.842863i \(-0.680869\pi\)
\(522\) −3.37849 + 3.37849i −0.147873 + 0.147873i
\(523\) −19.8918 −0.869808 −0.434904 0.900477i \(-0.643218\pi\)
−0.434904 + 0.900477i \(0.643218\pi\)
\(524\) −2.59085 + 2.59085i −0.113182 + 0.113182i
\(525\) 0.819355i 0.0357596i
\(526\) −8.76902 −0.382348
\(527\) 0 0
\(528\) 1.23983 0.0539566
\(529\) 12.0529i 0.524038i
\(530\) 4.46436 4.46436i 0.193919 0.193919i
\(531\) −8.06306 −0.349907
\(532\) 8.41037 8.41037i 0.364636 0.364636i
\(533\) −35.2706 35.2706i −1.52774 1.52774i
\(534\) 7.39782 + 7.39782i 0.320135 + 0.320135i
\(535\) 27.2219i 1.17691i
\(536\) 5.53073i 0.238891i
\(537\) 7.50756 + 7.50756i 0.323975 + 0.323975i
\(538\) −10.3742 10.3742i −0.447262 0.447262i
\(539\) 5.79469 5.79469i 0.249595 0.249595i
\(540\) −2.94495 −0.126730
\(541\) 0.552520 0.552520i 0.0237547 0.0237547i −0.695130 0.718884i \(-0.744653\pi\)
0.718884 + 0.695130i \(0.244653\pi\)
\(542\) 5.22597i 0.224474i
\(543\) −16.5274 −0.709259
\(544\) 0 0
\(545\) 1.99133 0.0852993
\(546\) 3.88348i 0.166198i
\(547\) 27.6171 27.6171i 1.18082 1.18082i 0.201291 0.979531i \(-0.435486\pi\)
0.979531 0.201291i \(-0.0645137\pi\)
\(548\) 21.5928 0.922397
\(549\) 2.31457 2.31457i 0.0987835 0.0987835i
\(550\) 0.537522 + 0.537522i 0.0229200 + 0.0229200i
\(551\) −30.0698 30.0698i −1.28102 1.28102i
\(552\) 8.64590i 0.367994i
\(553\) 3.35184i 0.142535i
\(554\) −4.39876 4.39876i −0.186885 0.186885i
\(555\) 5.79704 + 5.79704i 0.246071 + 0.246071i
\(556\) −4.04214 + 4.04214i −0.171425 + 0.171425i
\(557\) 13.0371 0.552398 0.276199 0.961100i \(-0.410925\pi\)
0.276199 + 0.961100i \(0.410925\pi\)
\(558\) 5.55807 5.55807i 0.235292 0.235292i
\(559\) 14.1625i 0.599010i
\(560\) 2.12988 0.0900038
\(561\) 0 0
\(562\) −8.88363 −0.374734
\(563\) 11.2168i 0.472733i 0.971664 + 0.236367i \(0.0759566\pi\)
−0.971664 + 0.236367i \(0.924043\pi\)
\(564\) −1.56940 + 1.56940i −0.0660836 + 0.0660836i
\(565\) −17.9700 −0.756005
\(566\) 3.28183 3.28183i 0.137946 0.137946i
\(567\) −0.873017 0.873017i −0.0366633 0.0366633i
\(568\) −0.418749 0.418749i −0.0175703 0.0175703i
\(569\) 36.4695i 1.52888i −0.644694 0.764440i \(-0.723015\pi\)
0.644694 0.764440i \(-0.276985\pi\)
\(570\) 10.8570i 0.454749i
\(571\) −9.57778 9.57778i −0.400818 0.400818i 0.477704 0.878521i \(-0.341469\pi\)
−0.878521 + 0.477704i \(0.841469\pi\)
\(572\) −6.15065 6.15065i −0.257172 0.257172i
\(573\) 8.49709 8.49709i 0.354971 0.354971i
\(574\) 11.4689 0.478702
\(575\) −1.55264 + 1.55264i −0.0647494 + 0.0647494i
\(576\) 2.82843i 0.117851i
\(577\) −7.10617 −0.295834 −0.147917 0.989000i \(-0.547257\pi\)
−0.147917 + 0.989000i \(0.547257\pi\)
\(578\) 0 0
\(579\) 10.7183 0.445438
\(580\) 18.3842i 0.763364i
\(581\) −12.5835 + 12.5835i −0.522053 + 0.522053i
\(582\) 2.05468 0.0851692
\(583\) −4.19212 + 4.19212i −0.173620 + 0.173620i
\(584\) 0.680405 + 0.680405i 0.0281554 + 0.0281554i
\(585\) 6.05147 + 6.05147i 0.250198 + 0.250198i
\(586\) 5.26226i 0.217382i
\(587\) 40.2951i 1.66316i −0.555408 0.831578i \(-0.687438\pi\)
0.555408 0.831578i \(-0.312562\pi\)
\(588\) −5.47568 5.47568i −0.225813 0.225813i
\(589\) 49.4688 + 49.4688i 2.03833 + 2.03833i
\(590\) −9.08693 + 9.08693i −0.374103 + 0.374103i
\(591\) −3.16895 −0.130353
\(592\) −2.30621 + 2.30621i −0.0947845 + 0.0947845i
\(593\) 37.8418i 1.55398i −0.629515 0.776989i \(-0.716746\pi\)
0.629515 0.776989i \(-0.283254\pi\)
\(594\) −1.14545 −0.0469985
\(595\) 0 0
\(596\) 25.6282 1.04977
\(597\) 13.6746i 0.559664i
\(598\) −7.35899 + 7.35899i −0.300931 + 0.300931i
\(599\) 10.1505 0.414739 0.207369 0.978263i \(-0.433510\pi\)
0.207369 + 0.978263i \(0.433510\pi\)
\(600\) 1.22625 1.22625i 0.0500615 0.0500615i
\(601\) 24.9282 + 24.9282i 1.01684 + 1.01684i 0.999856 + 0.0169861i \(0.00540712\pi\)
0.0169861 + 0.999856i \(0.494593\pi\)
\(602\) 2.30260 + 2.30260i 0.0938471 + 0.0938471i
\(603\) 2.11652i 0.0861914i
\(604\) 7.45479i 0.303331i
\(605\) −12.8991 12.8991i −0.524424 0.524424i
\(606\) 1.28809 + 1.28809i 0.0523252 + 0.0523252i
\(607\) −33.6497 + 33.6497i −1.36580 + 1.36580i −0.499461 + 0.866337i \(0.666468\pi\)
−0.866337 + 0.499461i \(0.833532\pi\)
\(608\) −39.9206 −1.61899
\(609\) 5.44993 5.44993i 0.220842 0.220842i
\(610\) 5.21696i 0.211229i
\(611\) 6.44980 0.260931
\(612\) 0 0
\(613\) −26.9812 −1.08976 −0.544880 0.838514i \(-0.683425\pi\)
−0.544880 + 0.838514i \(0.683425\pi\)
\(614\) 17.0256i 0.687099i
\(615\) 17.8715 17.8715i 0.720649 0.720649i
\(616\) 4.82843 0.194543
\(617\) −10.6009 + 10.6009i −0.426776 + 0.426776i −0.887529 0.460753i \(-0.847580\pi\)
0.460753 + 0.887529i \(0.347580\pi\)
\(618\) 7.19299 + 7.19299i 0.289344 + 0.289344i
\(619\) 1.55734 + 1.55734i 0.0625949 + 0.0625949i 0.737711 0.675116i \(-0.235907\pi\)
−0.675116 + 0.737711i \(0.735907\pi\)
\(620\) 30.2446i 1.21465i
\(621\) 3.30864i 0.132771i
\(622\) 2.93015 + 2.93015i 0.117488 + 0.117488i
\(623\) −11.9336 11.9336i −0.478111 0.478111i
\(624\) −2.40743 + 2.40743i −0.0963741 + 0.0963741i
\(625\) 21.2414 0.849655
\(626\) 6.11254 6.11254i 0.244306 0.244306i
\(627\) 10.1949i 0.407147i
\(628\) 5.37874 0.214635
\(629\) 0 0
\(630\) −1.96775 −0.0783971
\(631\) 34.7230i 1.38230i 0.722710 + 0.691151i \(0.242896\pi\)
−0.722710 + 0.691151i \(0.757104\pi\)
\(632\) −5.01639 + 5.01639i −0.199541 + 0.199541i
\(633\) −5.92856 −0.235639
\(634\) −9.98614 + 9.98614i −0.396600 + 0.396600i
\(635\) 20.8331 + 20.8331i 0.826738 + 0.826738i
\(636\) 3.96134 + 3.96134i 0.157077 + 0.157077i
\(637\) 22.5036i 0.891624i
\(638\) 7.15065i 0.283097i
\(639\) −0.160248 0.160248i −0.00633933 0.00633933i
\(640\) −14.0707 14.0707i −0.556193 0.556193i
\(641\) −17.6282 + 17.6282i −0.696273 + 0.696273i −0.963605 0.267332i \(-0.913858\pi\)
0.267332 + 0.963605i \(0.413858\pi\)
\(642\) −10.0052 −0.394874
\(643\) −24.8629 + 24.8629i −0.980496 + 0.980496i −0.999813 0.0193174i \(-0.993851\pi\)
0.0193174 + 0.999813i \(0.493851\pi\)
\(644\) 5.77701i 0.227646i
\(645\) 7.17611 0.282559
\(646\) 0 0
\(647\) −28.0142 −1.10135 −0.550677 0.834719i \(-0.685630\pi\)
−0.550677 + 0.834719i \(0.685630\pi\)
\(648\) 2.61313i 0.102653i
\(649\) 8.53281 8.53281i 0.334942 0.334942i
\(650\) −2.08746 −0.0818768
\(651\) −8.96587 + 8.96587i −0.351400 + 0.351400i
\(652\) 9.06882 + 9.06882i 0.355162 + 0.355162i
\(653\) −26.6392 26.6392i −1.04247 1.04247i −0.999057 0.0434140i \(-0.986177\pi\)
−0.0434140 0.999057i \(-0.513823\pi\)
\(654\) 0.731899i 0.0286195i
\(655\) 5.39517i 0.210807i
\(656\) 7.10973 + 7.10973i 0.277588 + 0.277588i
\(657\) 0.260380 + 0.260380i 0.0101584 + 0.0101584i
\(658\) −1.04864 + 1.04864i −0.0408802 + 0.0408802i
\(659\) 13.5356 0.527272 0.263636 0.964622i \(-0.415078\pi\)
0.263636 + 0.964622i \(0.415078\pi\)
\(660\) 3.11652 3.11652i 0.121310 0.121310i
\(661\) 2.00626i 0.0780345i −0.999239 0.0390172i \(-0.987577\pi\)
0.999239 0.0390172i \(-0.0124227\pi\)
\(662\) −4.41315 −0.171522
\(663\) 0 0
\(664\) 37.6652 1.46169
\(665\) 17.5137i 0.679152i
\(666\) 2.13066 2.13066i 0.0825613 0.0825613i
\(667\) 20.6547 0.799752
\(668\) −8.88764 + 8.88764i −0.343873 + 0.343873i
\(669\) 18.4892 + 18.4892i 0.714833 + 0.714833i
\(670\) −2.38528 2.38528i −0.0921515 0.0921515i
\(671\) 4.89884i 0.189117i
\(672\) 7.23532i 0.279109i
\(673\) 11.8535 + 11.8535i 0.456918 + 0.456918i 0.897643 0.440724i \(-0.145278\pi\)
−0.440724 + 0.897643i \(0.645278\pi\)
\(674\) 8.80562 + 8.80562i 0.339180 + 0.339180i
\(675\) 0.469266 0.469266i 0.0180621 0.0180621i
\(676\) 5.50114 0.211582
\(677\) −16.3092 + 16.3092i −0.626814 + 0.626814i −0.947265 0.320451i \(-0.896166\pi\)
0.320451 + 0.947265i \(0.396166\pi\)
\(678\) 6.60474i 0.253654i
\(679\) −3.31446 −0.127197
\(680\) 0 0
\(681\) 10.9746 0.420546
\(682\) 11.7638i 0.450458i
\(683\) 19.8116 19.8116i 0.758071 0.758071i −0.217900 0.975971i \(-0.569921\pi\)
0.975971 + 0.217900i \(0.0699206\pi\)
\(684\) −9.63368 −0.368353
\(685\) 22.4823 22.4823i 0.859004 0.859004i
\(686\) −8.33598 8.33598i −0.318269 0.318269i
\(687\) 10.2440 + 10.2440i 0.390833 + 0.390833i
\(688\) 2.85483i 0.108840i
\(689\) 16.2800i 0.620220i
\(690\) −3.72878 3.72878i −0.141952 0.141952i
\(691\) −18.8629 18.8629i −0.717577 0.717577i 0.250531 0.968109i \(-0.419395\pi\)
−0.968109 + 0.250531i \(0.919395\pi\)
\(692\) −12.2472 + 12.2472i −0.465568 + 0.465568i
\(693\) 1.84776 0.0701906
\(694\) −2.32193 + 2.32193i −0.0881394 + 0.0881394i
\(695\) 8.41731i 0.319287i
\(696\) −16.3128 −0.618335
\(697\) 0 0
\(698\) −10.8340 −0.410074
\(699\) 19.0980i 0.722354i
\(700\) −0.819355 + 0.819355i −0.0309687 + 0.0309687i
\(701\) 9.75054 0.368273 0.184136 0.982901i \(-0.441051\pi\)
0.184136 + 0.982901i \(0.441051\pi\)
\(702\) 2.22417 2.22417i 0.0839459 0.0839459i
\(703\) 18.9636 + 18.9636i 0.715226 + 0.715226i
\(704\) −2.99321 2.99321i −0.112811 0.112811i
\(705\) 3.26810i 0.123084i
\(706\) 18.2266i 0.685968i
\(707\) −2.07786 2.07786i −0.0781458 0.0781458i
\(708\) −8.06306 8.06306i −0.303028 0.303028i
\(709\) 20.3318 20.3318i 0.763575 0.763575i −0.213391 0.976967i \(-0.568451\pi\)
0.976967 + 0.213391i \(0.0684509\pi\)
\(710\) −0.361194 −0.0135554
\(711\) −1.91969 + 1.91969i −0.0719940 + 0.0719940i
\(712\) 35.7199i 1.33866i
\(713\) −33.9797 −1.27255
\(714\) 0 0
\(715\) −12.8081 −0.478994
\(716\) 15.0151i 0.561141i
\(717\) 0.523945 0.523945i 0.0195671 0.0195671i
\(718\) −26.9927 −1.00736
\(719\) −33.3929 + 33.3929i −1.24534 + 1.24534i −0.287592 + 0.957753i \(0.592855\pi\)
−0.957753 + 0.287592i \(0.907145\pi\)
\(720\) −1.21984 1.21984i −0.0454606 0.0454606i
\(721\) −11.6032 11.6032i −0.432125 0.432125i
\(722\) 20.9740i 0.780572i
\(723\) 21.3617i 0.794451i
\(724\) −16.5274 16.5274i −0.614237 0.614237i
\(725\) 2.92946 + 2.92946i 0.108797 + 0.108797i
\(726\) −4.74097 + 4.74097i −0.175954 + 0.175954i
\(727\) 27.7790 1.03027 0.515134 0.857110i \(-0.327742\pi\)
0.515134 + 0.857110i \(0.327742\pi\)
\(728\) −9.37555 + 9.37555i −0.347481 + 0.347481i
\(729\) 1.00000i 0.0370370i
\(730\) 0.586887 0.0217217
\(731\) 0 0
\(732\) 4.62914 0.171098
\(733\) 5.38987i 0.199080i −0.995034 0.0995398i \(-0.968263\pi\)
0.995034 0.0995398i \(-0.0317371\pi\)
\(734\) −8.83296 + 8.83296i −0.326031 + 0.326031i
\(735\) −11.4025 −0.420588
\(736\) 13.7106 13.7106i 0.505378 0.505378i
\(737\) 2.23983 + 2.23983i 0.0825052 + 0.0825052i
\(738\) −6.56854 6.56854i −0.241791 0.241791i
\(739\) 3.61782i 0.133084i 0.997784 + 0.0665418i \(0.0211966\pi\)
−0.997784 + 0.0665418i \(0.978803\pi\)
\(740\) 11.5941i 0.426207i
\(741\) 19.7959 + 19.7959i 0.727221 + 0.727221i
\(742\) 2.64688 + 2.64688i 0.0971700 + 0.0971700i
\(743\) −4.37274 + 4.37274i −0.160420 + 0.160420i −0.782753 0.622333i \(-0.786185\pi\)
0.622333 + 0.782753i \(0.286185\pi\)
\(744\) 26.8368 0.983883
\(745\) 26.6840 26.6840i 0.977627 0.977627i
\(746\) 19.1461i 0.700990i
\(747\) 14.4138 0.527375
\(748\) 0 0
\(749\) 16.1396 0.589730
\(750\) 9.02668i 0.329608i
\(751\) −36.2970 + 36.2970i −1.32450 + 1.32450i −0.414401 + 0.910094i \(0.636009\pi\)
−0.910094 + 0.414401i \(0.863991\pi\)
\(752\) −1.30013 −0.0474109
\(753\) 0.663845 0.663845i 0.0241919 0.0241919i
\(754\) 13.8847 + 13.8847i 0.505651 + 0.505651i
\(755\) 7.76190 + 7.76190i 0.282484 + 0.282484i
\(756\) 1.74603i 0.0635027i
\(757\) 3.83750i 0.139476i −0.997565 0.0697381i \(-0.977784\pi\)
0.997565 0.0697381i \(-0.0222164\pi\)
\(758\) 17.6582 + 17.6582i 0.641375 + 0.641375i
\(759\) 3.50141 + 3.50141i 0.127093 + 0.127093i
\(760\) −26.2111 + 26.2111i −0.950776 + 0.950776i
\(761\) 16.5850 0.601206 0.300603 0.953749i \(-0.402812\pi\)
0.300603 + 0.953749i \(0.402812\pi\)
\(762\) 7.65706 7.65706i 0.277386 0.277386i
\(763\) 1.18064i 0.0427422i
\(764\) 16.9942 0.614828
\(765\) 0 0
\(766\) 0.447937 0.0161846
\(767\) 33.1370i 1.19651i
\(768\) −9.17157 + 9.17157i −0.330951 + 0.330951i
\(769\) 27.7826 1.00187 0.500933 0.865486i \(-0.332990\pi\)
0.500933 + 0.865486i \(0.332990\pi\)
\(770\) 2.08239 2.08239i 0.0750442 0.0750442i
\(771\) −11.1930 11.1930i −0.403106 0.403106i
\(772\) 10.7183 + 10.7183i 0.385761 + 0.385761i
\(773\) 13.9509i 0.501778i 0.968016 + 0.250889i \(0.0807229\pi\)
−0.968016 + 0.250889i \(0.919277\pi\)
\(774\) 2.63752i 0.0948038i
\(775\) −4.81936 4.81936i −0.173116 0.173116i
\(776\) 4.96043 + 4.96043i 0.178069 + 0.178069i
\(777\) −3.43702 + 3.43702i −0.123302 + 0.123302i
\(778\) −16.9346 −0.607133
\(779\) 58.4623 58.4623i 2.09463 2.09463i
\(780\) 12.1029i 0.433355i
\(781\) 0.339169 0.0121364
\(782\) 0 0
\(783\) −6.24264 −0.223094
\(784\) 4.53620i 0.162007i
\(785\) 5.60032 5.60032i 0.199884 0.199884i
\(786\) 1.98295 0.0707295
\(787\) −2.99252 + 2.99252i −0.106672 + 0.106672i −0.758428 0.651756i \(-0.774032\pi\)
0.651756 + 0.758428i \(0.274032\pi\)
\(788\) −3.16895 3.16895i −0.112889 0.112889i
\(789\) −8.10152 8.10152i −0.288422 0.288422i
\(790\) 4.32691i 0.153945i
\(791\) 10.6543i 0.378823i
\(792\) −2.76537 2.76537i −0.0982630 0.0982630i
\(793\) −9.51226 9.51226i −0.337790 0.337790i
\(794\) −3.15534 + 3.15534i −0.111979 + 0.111979i
\(795\) 8.24906 0.292564
\(796\) −13.6746 + 13.6746i −0.484683 + 0.484683i
\(797\) 27.7502i 0.982962i −0.870888 0.491481i \(-0.836456\pi\)
0.870888 0.491481i \(-0.163544\pi\)
\(798\) −6.43702 −0.227868
\(799\) 0 0
\(800\) 3.88915 0.137502
\(801\) 13.6694i 0.482984i
\(802\) 2.80892 2.80892i 0.0991865 0.0991865i
\(803\) −0.551099 −0.0194479
\(804\) 2.11652 2.11652i 0.0746439 0.0746439i
\(805\) 6.01500 + 6.01500i 0.212001 + 0.212001i
\(806\) −22.8422 22.8422i −0.804582 0.804582i
\(807\) 19.1689i 0.674779i
\(808\) 6.21946i 0.218800i
\(809\) −2.87990 2.87990i −0.101252 0.101252i 0.654666 0.755918i \(-0.272809\pi\)
−0.755918 + 0.654666i \(0.772809\pi\)
\(810\) 1.12698 + 1.12698i 0.0395981 + 0.0395981i
\(811\) −4.44540 + 4.44540i −0.156099 + 0.156099i −0.780836 0.624737i \(-0.785206\pi\)
0.624737 + 0.780836i \(0.285206\pi\)
\(812\) 10.8999 0.382510
\(813\) 4.82816 4.82816i 0.169331 0.169331i
\(814\) 4.50958i 0.158061i
\(815\) 18.8848 0.661507
\(816\) 0 0
\(817\) 23.4749 0.821282
\(818\) 20.8486i 0.728954i
\(819\) −3.58787 + 3.58787i −0.125370 + 0.125370i
\(820\) 35.7430 1.24820
\(821\) 14.0006 14.0006i 0.488624 0.488624i −0.419248 0.907872i \(-0.637706\pi\)
0.907872 + 0.419248i \(0.137706\pi\)
\(822\) −8.26319 8.26319i −0.288212 0.288212i
\(823\) −8.25470 8.25470i −0.287741 0.287741i 0.548446 0.836186i \(-0.315220\pi\)
−0.836186 + 0.548446i \(0.815220\pi\)
\(824\) 34.7308i 1.20991i
\(825\) 0.993212i 0.0345792i
\(826\) −5.38756 5.38756i −0.187457 0.187457i
\(827\) −9.82241 9.82241i −0.341559 0.341559i 0.515394 0.856953i \(-0.327645\pi\)
−0.856953 + 0.515394i \(0.827645\pi\)
\(828\) 3.30864 3.30864i 0.114983 0.114983i
\(829\) 34.2670 1.19014 0.595071 0.803673i \(-0.297124\pi\)
0.595071 + 0.803673i \(0.297124\pi\)
\(830\) 16.2441 16.2441i 0.563843 0.563843i
\(831\) 8.12784i 0.281952i
\(832\) 11.6241 0.402992
\(833\) 0 0
\(834\) 3.09372 0.107127
\(835\) 18.5076i 0.640480i
\(836\) 10.1949 10.1949i 0.352599 0.352599i
\(837\) 10.2700 0.354982
\(838\) 7.59305 7.59305i 0.262297 0.262297i
\(839\) −17.1452 17.1452i −0.591918 0.591918i 0.346231 0.938149i \(-0.387461\pi\)
−0.938149 + 0.346231i \(0.887461\pi\)
\(840\) −4.75057 4.75057i −0.163910 0.163910i
\(841\) 9.97056i 0.343813i
\(842\) 11.7722i 0.405695i
\(843\) −8.20741 8.20741i −0.282678 0.282678i
\(844\) −5.92856 5.92856i −0.204069 0.204069i
\(845\) 5.72777 5.72777i 0.197041 0.197041i
\(846\) 1.20116 0.0412969
\(847\) 7.64778 7.64778i 0.262781 0.262781i
\(848\) 3.28168i 0.112693i
\(849\) 6.06404 0.208117
\(850\) 0 0
\(851\) −13.0259 −0.446523
\(852\) 0.320497i 0.0109800i
\(853\) −5.22507 + 5.22507i −0.178903 + 0.178903i −0.790878 0.611974i \(-0.790376\pi\)
0.611974 + 0.790878i \(0.290376\pi\)
\(854\) 3.09309 0.105843
\(855\) −10.0305 + 10.0305i −0.343037 + 0.343037i
\(856\) −24.1547 24.1547i −0.825590 0.825590i
\(857\) −5.68041 5.68041i −0.194039 0.194039i 0.603400 0.797439i \(-0.293812\pi\)
−0.797439 + 0.603400i \(0.793812\pi\)
\(858\) 4.70750i 0.160711i
\(859\) 7.66672i 0.261585i 0.991410 + 0.130793i \(0.0417522\pi\)
−0.991410 + 0.130793i \(0.958248\pi\)
\(860\) 7.17611 + 7.17611i 0.244703 + 0.244703i
\(861\) 10.5959 + 10.5959i 0.361106 + 0.361106i
\(862\) −8.87056 + 8.87056i −0.302133 + 0.302133i
\(863\) 14.4183 0.490804 0.245402 0.969421i \(-0.421080\pi\)
0.245402 + 0.969421i \(0.421080\pi\)
\(864\) −4.14386 + 4.14386i −0.140977 + 0.140977i
\(865\) 25.5034i 0.867142i
\(866\) −16.6166 −0.564655
\(867\) 0 0
\(868\) −17.9317 −0.608643
\(869\) 4.06306i 0.137830i
\(870\) −7.03535 + 7.03535i −0.238521 + 0.238521i
\(871\) −8.69833 −0.294732
\(872\) 1.76696 1.76696i 0.0598368 0.0598368i
\(873\) 1.89828 + 1.89828i 0.0642469 + 0.0642469i
\(874\) −12.1978 12.1978i −0.412597 0.412597i
\(875\) 14.5612i 0.492257i
\(876\) 0.520760i 0.0175948i
\(877\) 38.0584 + 38.0584i 1.28514 + 1.28514i 0.937704 + 0.347435i \(0.112947\pi\)
0.347435 + 0.937704i \(0.387053\pi\)
\(878\) −12.7346 12.7346i −0.429770 0.429770i
\(879\) −4.86169 + 4.86169i −0.163981 + 0.163981i
\(880\) 2.58181 0.0870328
\(881\) 21.0679 21.0679i 0.709795 0.709795i −0.256697 0.966492i \(-0.582634\pi\)
0.966492 + 0.256697i \(0.0826342\pi\)
\(882\) 4.19090i 0.141115i
\(883\) −28.2666 −0.951247 −0.475624 0.879649i \(-0.657778\pi\)
−0.475624 + 0.879649i \(0.657778\pi\)
\(884\) 0 0
\(885\) −16.7905 −0.564405
\(886\) 11.8049i 0.396593i
\(887\) −17.7602 + 17.7602i −0.596330 + 0.596330i −0.939334 0.343004i \(-0.888556\pi\)
0.343004 + 0.939334i \(0.388556\pi\)
\(888\) 10.2877 0.345233
\(889\) −12.3518 + 12.3518i −0.414266 + 0.414266i
\(890\) 15.4052 + 15.4052i 0.516383 + 0.516383i
\(891\) −1.05826 1.05826i −0.0354530 0.0354530i
\(892\) 36.9784i 1.23813i
\(893\) 10.6908i 0.357754i
\(894\) −9.80750 9.80750i −0.328012 0.328012i
\(895\) 15.6337 + 15.6337i 0.522576 + 0.522576i
\(896\) 8.34240 8.34240i 0.278700 0.278700i
\(897\) −13.5976 −0.454012
\(898\) −7.33291 + 7.33291i −0.244702 + 0.244702i
\(899\) 64.1118i 2.13825i
\(900\) 0.938533 0.0312844
\(901\) 0 0
\(902\) 13.9024 0.462901
\(903\) 4.25466i 0.141586i
\(904\) −15.9453 + 15.9453i −0.530332 + 0.530332i
\(905\) −34.4166 −1.14405
\(906\) 2.85282 2.85282i 0.0947787 0.0947787i
\(907\) −34.7185 34.7185i −1.15281 1.15281i −0.985987 0.166820i \(-0.946650\pi\)
−0.166820 0.985987i \(-0.553350\pi\)
\(908\) 10.9746 + 10.9746i 0.364204 + 0.364204i
\(909\) 2.38009i 0.0789425i
\(910\) 8.08693i 0.268079i
\(911\) −5.64007 5.64007i −0.186864 0.186864i 0.607475 0.794339i \(-0.292183\pi\)
−0.794339 + 0.607475i \(0.792183\pi\)
\(912\) −3.99040 3.99040i −0.132135 0.132135i
\(913\) −15.2536 + 15.2536i −0.504820 + 0.504820i
\(914\) −11.7771 −0.389551
\(915\) 4.81984 4.81984i 0.159339 0.159339i
\(916\) 20.4880i 0.676942i
\(917\) −3.19875 −0.105632
\(918\) 0 0
\(919\) 19.8027 0.653229 0.326615 0.945158i \(-0.394092\pi\)
0.326615 + 0.945158i \(0.394092\pi\)
\(920\) 18.0042i 0.593580i
\(921\) 15.7296 15.7296i 0.518309 0.518309i
\(922\) −15.9201 −0.524300
\(923\) −0.658578 + 0.658578i −0.0216774 + 0.0216774i
\(924\) 1.84776 + 1.84776i 0.0607868 + 0.0607868i
\(925\) −1.84747 1.84747i −0.0607445 0.0607445i
\(926\) 20.2306i 0.664818i
\(927\) 13.2909i 0.436531i
\(928\) −25.8686 25.8686i −0.849179 0.849179i
\(929\) −3.94177 3.94177i −0.129325 0.129325i 0.639481 0.768807i \(-0.279149\pi\)
−0.768807 + 0.639481i \(0.779149\pi\)
\(930\) 11.5741 11.5741i 0.379529 0.379529i
\(931\) −37.3005 −1.22248
\(932\) −19.0980 + 19.0980i −0.625577 + 0.625577i
\(933\) 5.41421i 0.177253i
\(934\) 5.48836 0.179584
\(935\) 0 0
\(936\) 10.7392 0.351023
\(937\) 0.398572i 0.0130208i 0.999979 + 0.00651039i \(0.00207234\pi\)
−0.999979 + 0.00651039i \(0.997928\pi\)
\(938\) 1.41421 1.41421i 0.0461757 0.0461757i
\(939\) 11.2945 0.368582
\(940\) −3.26810 + 3.26810i −0.106594 + 0.106594i
\(941\) 3.04654 + 3.04654i 0.0993144 + 0.0993144i 0.755018 0.655704i \(-0.227628\pi\)
−0.655704 + 0.755018i \(0.727628\pi\)
\(942\) −2.05835 2.05835i −0.0670648 0.0670648i
\(943\) 40.1572i 1.30770i
\(944\) 6.67966i 0.217404i
\(945\) −1.81796 1.81796i −0.0591384 0.0591384i
\(946\) 2.79118 + 2.79118i 0.0907492 + 0.0907492i
\(947\) 8.07204 8.07204i 0.262306 0.262306i −0.563684 0.825990i \(-0.690616\pi\)
0.825990 + 0.563684i \(0.190616\pi\)
\(948\) −3.83938 −0.124697
\(949\) 1.07009 1.07009i 0.0347366 0.0347366i
\(950\) 3.46004i 0.112259i
\(951\) −18.4520 −0.598346
\(952\) 0 0
\(953\) −40.8932 −1.32466 −0.662330 0.749213i \(-0.730432\pi\)
−0.662330 + 0.749213i \(0.730432\pi\)
\(954\) 3.03188i 0.0981606i
\(955\) 17.6943 17.6943i 0.572574 0.572574i
\(956\) 1.04789 0.0338912
\(957\) 6.60634 6.60634i 0.213553 0.213553i
\(958\) −1.58787 1.58787i −0.0513017 0.0513017i
\(959\) 13.3296 + 13.3296i 0.430434 + 0.430434i
\(960\) 5.88989i 0.190096i
\(961\) 74.4725i 2.40234i
\(962\) −8.75643 8.75643i −0.282319 0.282319i
\(963\) −9.24360 9.24360i −0.297871 0.297871i
\(964\) 21.3617 21.3617i 0.688015 0.688015i
\(965\) 22.3197 0.718498
\(966\) 2.21077 2.21077i 0.0711302 0.0711302i
\(967\) 23.5335i 0.756788i 0.925645 + 0.378394i \(0.123524\pi\)
−0.925645 + 0.378394i \(0.876476\pi\)
\(968\) −22.8914 −0.735758
\(969\) 0 0
\(970\) 4.27865 0.137379
\(971\) 6.44140i 0.206714i 0.994644 + 0.103357i \(0.0329585\pi\)
−0.994644 + 0.103357i \(0.967042\pi\)
\(972\) −1.00000 + 1.00000i −0.0320750 + 0.0320750i
\(973\) −4.99055 −0.159990
\(974\) 12.5785 12.5785i 0.403040 0.403040i
\(975\) −1.92856 1.92856i −0.0617633 0.0617633i
\(976\) 1.91745 + 1.91745i 0.0613762 + 0.0613762i
\(977\) 17.8474i 0.570989i −0.958380 0.285495i \(-0.907842\pi\)
0.958380 0.285495i \(-0.0921579\pi\)
\(978\) 6.94097i 0.221948i
\(979\) −14.4658 14.4658i −0.462328 0.462328i
\(980\) −11.4025 11.4025i −0.364240 0.364240i
\(981\) 0.676186 0.676186i 0.0215890 0.0215890i
\(982\) 10.4538 0.333595
\(983\) −17.0537 + 17.0537i −0.543929 + 0.543929i −0.924678 0.380749i \(-0.875666\pi\)
0.380749 + 0.924678i \(0.375666\pi\)
\(984\) 31.7157i 1.01106i
\(985\) −6.59899 −0.210261
\(986\) 0 0
\(987\) −1.93763 −0.0616755
\(988\) 39.5918i 1.25958i
\(989\) −8.06235 + 8.06235i −0.256368 + 0.256368i
\(990\) −2.38528 −0.0758092
\(991\) −17.1161 + 17.1161i −0.543712 + 0.543712i −0.924615 0.380903i \(-0.875613\pi\)
0.380903 + 0.924615i \(0.375613\pi\)
\(992\) 42.5574 + 42.5574i 1.35120 + 1.35120i
\(993\) −4.07722 4.07722i −0.129387 0.129387i
\(994\) 0.214149i 0.00679240i
\(995\) 28.4759i 0.902746i
\(996\) 14.4138 + 14.4138i 0.456720 + 0.456720i
\(997\) −26.1029 26.1029i −0.826688 0.826688i 0.160369 0.987057i \(-0.448732\pi\)
−0.987057 + 0.160369i \(0.948732\pi\)
\(998\) −4.07639 + 4.07639i −0.129036 + 0.129036i
\(999\) 3.93694 0.124559
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.e.h.616.2 8
17.2 even 8 867.2.d.e.577.5 8
17.3 odd 16 867.2.h.b.733.1 8
17.4 even 4 867.2.e.i.829.3 8
17.5 odd 16 51.2.h.a.49.2 yes 8
17.6 odd 16 51.2.h.a.25.2 8
17.7 odd 16 867.2.h.f.757.1 8
17.8 even 8 867.2.a.m.1.2 4
17.9 even 8 867.2.a.n.1.2 4
17.10 odd 16 867.2.h.b.757.1 8
17.11 odd 16 867.2.h.g.688.2 8
17.12 odd 16 867.2.h.g.712.2 8
17.13 even 4 inner 867.2.e.h.829.3 8
17.14 odd 16 867.2.h.f.733.1 8
17.15 even 8 867.2.d.e.577.6 8
17.16 even 2 867.2.e.i.616.2 8
51.5 even 16 153.2.l.e.100.1 8
51.8 odd 8 2601.2.a.bc.1.3 4
51.23 even 16 153.2.l.e.127.1 8
51.26 odd 8 2601.2.a.bd.1.3 4
68.23 even 16 816.2.bq.a.433.1 8
68.39 even 16 816.2.bq.a.49.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.h.a.25.2 8 17.6 odd 16
51.2.h.a.49.2 yes 8 17.5 odd 16
153.2.l.e.100.1 8 51.5 even 16
153.2.l.e.127.1 8 51.23 even 16
816.2.bq.a.49.1 8 68.39 even 16
816.2.bq.a.433.1 8 68.23 even 16
867.2.a.m.1.2 4 17.8 even 8
867.2.a.n.1.2 4 17.9 even 8
867.2.d.e.577.5 8 17.2 even 8
867.2.d.e.577.6 8 17.15 even 8
867.2.e.h.616.2 8 1.1 even 1 trivial
867.2.e.h.829.3 8 17.13 even 4 inner
867.2.e.i.616.2 8 17.16 even 2
867.2.e.i.829.3 8 17.4 even 4
867.2.h.b.733.1 8 17.3 odd 16
867.2.h.b.757.1 8 17.10 odd 16
867.2.h.f.733.1 8 17.14 odd 16
867.2.h.f.757.1 8 17.7 odd 16
867.2.h.g.688.2 8 17.11 odd 16
867.2.h.g.712.2 8 17.12 odd 16
2601.2.a.bc.1.3 4 51.8 odd 8
2601.2.a.bd.1.3 4 51.26 odd 8