Properties

Label 867.2.h.g.712.2
Level $867$
Weight $2$
Character 867.712
Analytic conductor $6.923$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,2,Mod(688,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.688");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.h (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 712.2
Root \(-0.382683 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 867.712
Dual form 867.2.h.g.688.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.541196 + 0.541196i) q^{2} +(-0.382683 - 0.923880i) q^{3} -1.41421i q^{4} +(1.92388 - 0.796897i) q^{5} +(0.292893 - 0.707107i) q^{6} +(1.14065 + 0.472474i) q^{7} +(1.84776 - 1.84776i) q^{8} +(-0.707107 + 0.707107i) q^{9} +(1.47247 + 0.609919i) q^{10} +(0.572726 - 1.38268i) q^{11} +(-1.30656 + 0.541196i) q^{12} -4.10973i q^{13} +(0.361616 + 0.873017i) q^{14} +(-1.47247 - 1.47247i) q^{15} -0.828427 q^{16} -0.765367 q^{18} +(4.81684 + 4.81684i) q^{19} +(-1.12698 - 2.72078i) q^{20} -1.23463i q^{21} +(1.05826 - 0.438346i) q^{22} +(-1.26616 + 3.05679i) q^{23} +(-2.41421 - 1.00000i) q^{24} +(-0.469266 + 0.469266i) q^{25} +(2.22417 - 2.22417i) q^{26} +(0.923880 + 0.382683i) q^{27} +(0.668179 - 1.61313i) q^{28} +(-5.76745 + 2.38896i) q^{29} -1.59379i q^{30} +(-3.93015 - 9.48822i) q^{31} +(-4.14386 - 4.14386i) q^{32} -1.49661 q^{33} +2.57099 q^{35} +(1.00000 + 1.00000i) q^{36} +(1.50660 + 3.63726i) q^{37} +5.21371i q^{38} +(-3.79690 + 1.57273i) q^{39} +(2.08239 - 5.02734i) q^{40} +(11.2132 + 4.64466i) q^{41} +(0.668179 - 0.668179i) q^{42} +(2.43675 - 2.43675i) q^{43} +(-1.95541 - 0.809957i) q^{44} +(-0.796897 + 1.92388i) q^{45} +(-2.33956 + 0.969079i) q^{46} -1.56940i q^{47} +(0.317025 + 0.765367i) q^{48} +(-3.87189 - 3.87189i) q^{49} -0.507930 q^{50} -5.81204 q^{52} +(-2.80109 - 2.80109i) q^{53} +(0.292893 + 0.707107i) q^{54} -3.11652i q^{55} +(2.98067 - 1.23463i) q^{56} +(2.60685 - 6.29350i) q^{57} +(-4.41421 - 1.82843i) q^{58} +(5.70144 - 5.70144i) q^{59} +(-2.08239 + 2.08239i) q^{60} +(-3.02413 - 1.25264i) q^{61} +(3.00801 - 7.26197i) q^{62} +(-1.14065 + 0.472474i) q^{63} -2.82843i q^{64} +(-3.27503 - 7.90663i) q^{65} +(-0.809957 - 0.809957i) q^{66} -2.11652 q^{67} +3.30864 q^{69} +(1.39141 + 1.39141i) q^{70} +(-0.0867259 - 0.209375i) q^{71} +2.61313i q^{72} +(-0.340203 + 0.140917i) q^{73} +(-1.15310 + 2.78384i) q^{74} +(0.613126 + 0.253965i) q^{75} +(6.81204 - 6.81204i) q^{76} +(1.30656 - 1.30656i) q^{77} +(-2.90602 - 1.20371i) q^{78} +(-1.03893 + 2.50819i) q^{79} +(-1.59379 + 0.660171i) q^{80} -1.00000i q^{81} +(3.55487 + 8.58221i) q^{82} +(10.1921 + 10.1921i) q^{83} -1.74603 q^{84} +2.63752 q^{86} +(4.41421 + 4.41421i) q^{87} +(-1.49661 - 3.61313i) q^{88} +13.6694i q^{89} +(-1.47247 + 0.609919i) q^{90} +(1.94174 - 4.68777i) q^{91} +(4.32295 + 1.79063i) q^{92} +(-7.26197 + 7.26197i) q^{93} +(0.849352 - 0.849352i) q^{94} +(13.1055 + 5.42849i) q^{95} +(-2.24264 + 5.41421i) q^{96} +(2.48022 - 1.02734i) q^{97} -4.19090i q^{98} +(0.572726 + 1.38268i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{5} + 8 q^{6} - 8 q^{11} + 16 q^{14} + 16 q^{16} - 8 q^{19} - 16 q^{20} + 8 q^{22} - 8 q^{23} - 8 q^{24} - 16 q^{25} + 16 q^{26} + 8 q^{28} - 8 q^{31} + 8 q^{33} + 32 q^{35} + 8 q^{36} + 8 q^{37}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.541196 + 0.541196i 0.382683 + 0.382683i 0.872068 0.489385i \(-0.162779\pi\)
−0.489385 + 0.872068i \(0.662779\pi\)
\(3\) −0.382683 0.923880i −0.220942 0.533402i
\(4\) 1.41421i 0.707107i
\(5\) 1.92388 0.796897i 0.860385 0.356383i 0.0915270 0.995803i \(-0.470825\pi\)
0.768858 + 0.639419i \(0.220825\pi\)
\(6\) 0.292893 0.707107i 0.119573 0.288675i
\(7\) 1.14065 + 0.472474i 0.431126 + 0.178578i 0.587684 0.809091i \(-0.300040\pi\)
−0.156558 + 0.987669i \(0.550040\pi\)
\(8\) 1.84776 1.84776i 0.653281 0.653281i
\(9\) −0.707107 + 0.707107i −0.235702 + 0.235702i
\(10\) 1.47247 + 0.609919i 0.465637 + 0.192873i
\(11\) 0.572726 1.38268i 0.172683 0.416895i −0.813716 0.581263i \(-0.802559\pi\)
0.986399 + 0.164369i \(0.0525586\pi\)
\(12\) −1.30656 + 0.541196i −0.377172 + 0.156230i
\(13\) 4.10973i 1.13983i −0.821702 0.569917i \(-0.806975\pi\)
0.821702 0.569917i \(-0.193025\pi\)
\(14\) 0.361616 + 0.873017i 0.0966459 + 0.233324i
\(15\) −1.47247 1.47247i −0.380191 0.380191i
\(16\) −0.828427 −0.207107
\(17\) 0 0
\(18\) −0.765367 −0.180399
\(19\) 4.81684 + 4.81684i 1.10506 + 1.10506i 0.993790 + 0.111268i \(0.0354912\pi\)
0.111268 + 0.993790i \(0.464509\pi\)
\(20\) −1.12698 2.72078i −0.252001 0.608384i
\(21\) 1.23463i 0.269419i
\(22\) 1.05826 0.438346i 0.225622 0.0934556i
\(23\) −1.26616 + 3.05679i −0.264013 + 0.637384i −0.999179 0.0405025i \(-0.987104\pi\)
0.735166 + 0.677887i \(0.237104\pi\)
\(24\) −2.41421 1.00000i −0.492799 0.204124i
\(25\) −0.469266 + 0.469266i −0.0938533 + 0.0938533i
\(26\) 2.22417 2.22417i 0.436196 0.436196i
\(27\) 0.923880 + 0.382683i 0.177801 + 0.0736475i
\(28\) 0.668179 1.61313i 0.126274 0.304852i
\(29\) −5.76745 + 2.38896i −1.07099 + 0.443618i −0.847339 0.531052i \(-0.821797\pi\)
−0.223649 + 0.974670i \(0.571797\pi\)
\(30\) 1.59379i 0.290986i
\(31\) −3.93015 9.48822i −0.705876 1.70414i −0.710057 0.704144i \(-0.751331\pi\)
0.00418103 0.999991i \(-0.498669\pi\)
\(32\) −4.14386 4.14386i −0.732538 0.732538i
\(33\) −1.49661 −0.260526
\(34\) 0 0
\(35\) 2.57099 0.434577
\(36\) 1.00000 + 1.00000i 0.166667 + 0.166667i
\(37\) 1.50660 + 3.63726i 0.247684 + 0.597962i 0.998007 0.0631101i \(-0.0201019\pi\)
−0.750323 + 0.661072i \(0.770102\pi\)
\(38\) 5.21371i 0.845775i
\(39\) −3.79690 + 1.57273i −0.607990 + 0.251838i
\(40\) 2.08239 5.02734i 0.329255 0.794892i
\(41\) 11.2132 + 4.64466i 1.75121 + 0.725373i 0.997689 + 0.0679453i \(0.0216443\pi\)
0.753517 + 0.657428i \(0.228356\pi\)
\(42\) 0.668179 0.668179i 0.103102 0.103102i
\(43\) 2.43675 2.43675i 0.371601 0.371601i −0.496459 0.868060i \(-0.665367\pi\)
0.868060 + 0.496459i \(0.165367\pi\)
\(44\) −1.95541 0.809957i −0.294789 0.122106i
\(45\) −0.796897 + 1.92388i −0.118794 + 0.286795i
\(46\) −2.33956 + 0.969079i −0.344950 + 0.142883i
\(47\) 1.56940i 0.228920i −0.993428 0.114460i \(-0.963486\pi\)
0.993428 0.114460i \(-0.0365138\pi\)
\(48\) 0.317025 + 0.765367i 0.0457587 + 0.110471i
\(49\) −3.87189 3.87189i −0.553127 0.553127i
\(50\) −0.507930 −0.0718322
\(51\) 0 0
\(52\) −5.81204 −0.805985
\(53\) −2.80109 2.80109i −0.384759 0.384759i 0.488054 0.872813i \(-0.337707\pi\)
−0.872813 + 0.488054i \(0.837707\pi\)
\(54\) 0.292893 + 0.707107i 0.0398577 + 0.0962250i
\(55\) 3.11652i 0.420231i
\(56\) 2.98067 1.23463i 0.398309 0.164985i
\(57\) 2.60685 6.29350i 0.345286 0.833595i
\(58\) −4.41421 1.82843i −0.579615 0.240084i
\(59\) 5.70144 5.70144i 0.742265 0.742265i −0.230749 0.973013i \(-0.574117\pi\)
0.973013 + 0.230749i \(0.0741175\pi\)
\(60\) −2.08239 + 2.08239i −0.268836 + 0.268836i
\(61\) −3.02413 1.25264i −0.387200 0.160384i 0.180587 0.983559i \(-0.442200\pi\)
−0.567787 + 0.823175i \(0.692200\pi\)
\(62\) 3.00801 7.26197i 0.382017 0.922271i
\(63\) −1.14065 + 0.472474i −0.143709 + 0.0595261i
\(64\) 2.82843i 0.353553i
\(65\) −3.27503 7.90663i −0.406218 0.980697i
\(66\) −0.809957 0.809957i −0.0996988 0.0996988i
\(67\) −2.11652 −0.258574 −0.129287 0.991607i \(-0.541269\pi\)
−0.129287 + 0.991607i \(0.541269\pi\)
\(68\) 0 0
\(69\) 3.30864 0.398314
\(70\) 1.39141 + 1.39141i 0.166305 + 0.166305i
\(71\) −0.0867259 0.209375i −0.0102925 0.0248482i 0.918650 0.395073i \(-0.129281\pi\)
−0.928942 + 0.370225i \(0.879281\pi\)
\(72\) 2.61313i 0.307960i
\(73\) −0.340203 + 0.140917i −0.0398177 + 0.0164930i −0.402503 0.915418i \(-0.631860\pi\)
0.362686 + 0.931912i \(0.381860\pi\)
\(74\) −1.15310 + 2.78384i −0.134045 + 0.323614i
\(75\) 0.613126 + 0.253965i 0.0707977 + 0.0293254i
\(76\) 6.81204 6.81204i 0.781394 0.781394i
\(77\) 1.30656 1.30656i 0.148897 0.148897i
\(78\) −2.90602 1.20371i −0.329042 0.136294i
\(79\) −1.03893 + 2.50819i −0.116889 + 0.282194i −0.971486 0.237097i \(-0.923804\pi\)
0.854597 + 0.519291i \(0.173804\pi\)
\(80\) −1.59379 + 0.660171i −0.178192 + 0.0738094i
\(81\) 1.00000i 0.111111i
\(82\) 3.55487 + 8.58221i 0.392569 + 0.947746i
\(83\) 10.1921 + 10.1921i 1.11873 + 1.11873i 0.991928 + 0.126803i \(0.0404716\pi\)
0.126803 + 0.991928i \(0.459528\pi\)
\(84\) −1.74603 −0.190508
\(85\) 0 0
\(86\) 2.63752 0.284411
\(87\) 4.41421 + 4.41421i 0.473253 + 0.473253i
\(88\) −1.49661 3.61313i −0.159539 0.385161i
\(89\) 13.6694i 1.44895i 0.689299 + 0.724477i \(0.257918\pi\)
−0.689299 + 0.724477i \(0.742082\pi\)
\(90\) −1.47247 + 0.609919i −0.155212 + 0.0642911i
\(91\) 1.94174 4.68777i 0.203550 0.491412i
\(92\) 4.32295 + 1.79063i 0.450699 + 0.186686i
\(93\) −7.26197 + 7.26197i −0.753031 + 0.753031i
\(94\) 0.849352 0.849352i 0.0876040 0.0876040i
\(95\) 13.1055 + 5.42849i 1.34460 + 0.556952i
\(96\) −2.24264 + 5.41421i −0.228889 + 0.552586i
\(97\) 2.48022 1.02734i 0.251828 0.104311i −0.253199 0.967414i \(-0.581483\pi\)
0.505027 + 0.863104i \(0.331483\pi\)
\(98\) 4.19090i 0.423345i
\(99\) 0.572726 + 1.38268i 0.0575612 + 0.138965i
\(100\) 0.663643 + 0.663643i 0.0663643 + 0.0663643i
\(101\) 2.38009 0.236827 0.118414 0.992964i \(-0.462219\pi\)
0.118414 + 0.992964i \(0.462219\pi\)
\(102\) 0 0
\(103\) −13.2909 −1.30959 −0.654796 0.755806i \(-0.727245\pi\)
−0.654796 + 0.755806i \(0.727245\pi\)
\(104\) −7.59379 7.59379i −0.744633 0.744633i
\(105\) −0.983875 2.37529i −0.0960164 0.231804i
\(106\) 3.03188i 0.294482i
\(107\) 12.0773 5.00260i 1.16756 0.483619i 0.287175 0.957878i \(-0.407284\pi\)
0.880386 + 0.474259i \(0.157284\pi\)
\(108\) 0.541196 1.30656i 0.0520766 0.125724i
\(109\) 0.883480 + 0.365949i 0.0846220 + 0.0350516i 0.424593 0.905384i \(-0.360417\pi\)
−0.339971 + 0.940436i \(0.610417\pi\)
\(110\) 1.68665 1.68665i 0.160816 0.160816i
\(111\) 2.78384 2.78384i 0.264230 0.264230i
\(112\) −0.944947 0.391410i −0.0892891 0.0369848i
\(113\) −3.30237 + 7.97263i −0.310661 + 0.750002i 0.689020 + 0.724742i \(0.258041\pi\)
−0.999681 + 0.0252597i \(0.991959\pi\)
\(114\) 4.81684 1.99520i 0.451138 0.186868i
\(115\) 6.88989i 0.642486i
\(116\) 3.37849 + 8.15640i 0.313685 + 0.757303i
\(117\) 2.90602 + 2.90602i 0.268662 + 0.268662i
\(118\) 6.17120 0.568105
\(119\) 0 0
\(120\) −5.44155 −0.496744
\(121\) 6.19438 + 6.19438i 0.563125 + 0.563125i
\(122\) −0.958726 2.31457i −0.0867990 0.209551i
\(123\) 12.1371i 1.09436i
\(124\) −13.4184 + 5.55807i −1.20501 + 0.499130i
\(125\) −4.51334 + 10.8962i −0.403685 + 0.974583i
\(126\) −0.873017 0.361616i −0.0777746 0.0322153i
\(127\) −10.0044 + 10.0044i −0.887749 + 0.887749i −0.994307 0.106557i \(-0.966017\pi\)
0.106557 + 0.994307i \(0.466017\pi\)
\(128\) −6.75699 + 6.75699i −0.597239 + 0.597239i
\(129\) −3.18377 1.31876i −0.280315 0.116110i
\(130\) 2.50660 6.05147i 0.219844 0.530749i
\(131\) 2.39363 0.991476i 0.209133 0.0866256i −0.275658 0.961256i \(-0.588896\pi\)
0.484791 + 0.874630i \(0.338896\pi\)
\(132\) 2.11652i 0.184219i
\(133\) 3.21851 + 7.77017i 0.279080 + 0.673759i
\(134\) −1.14545 1.14545i −0.0989520 0.0989520i
\(135\) 2.08239 0.179224
\(136\) 0 0
\(137\) 15.2684 1.30447 0.652233 0.758018i \(-0.273832\pi\)
0.652233 + 0.758018i \(0.273832\pi\)
\(138\) 1.79063 + 1.79063i 0.152428 + 0.152428i
\(139\) 1.54686 + 3.73445i 0.131203 + 0.316752i 0.975805 0.218643i \(-0.0701630\pi\)
−0.844602 + 0.535394i \(0.820163\pi\)
\(140\) 3.63593i 0.307292i
\(141\) −1.44993 + 0.600582i −0.122106 + 0.0505782i
\(142\) 0.0663771 0.160248i 0.00557024 0.0134478i
\(143\) −5.68246 2.35375i −0.475191 0.196831i
\(144\) 0.585786 0.585786i 0.0488155 0.0488155i
\(145\) −9.19212 + 9.19212i −0.763364 + 0.763364i
\(146\) −0.260380 0.107853i −0.0215492 0.00892597i
\(147\) −2.09545 + 5.05887i −0.172830 + 0.417249i
\(148\) 5.14386 2.13066i 0.422823 0.175139i
\(149\) 18.1219i 1.48460i 0.670065 + 0.742302i \(0.266266\pi\)
−0.670065 + 0.742302i \(0.733734\pi\)
\(150\) 0.194376 + 0.469266i 0.0158708 + 0.0383154i
\(151\) 3.72739 + 3.72739i 0.303331 + 0.303331i 0.842316 0.538985i \(-0.181192\pi\)
−0.538985 + 0.842316i \(0.681192\pi\)
\(152\) 17.8007 1.44383
\(153\) 0 0
\(154\) 1.41421 0.113961
\(155\) −15.1223 15.1223i −1.21465 1.21465i
\(156\) 2.22417 + 5.36962i 0.178076 + 0.429914i
\(157\) 3.80334i 0.303540i −0.988416 0.151770i \(-0.951503\pi\)
0.988416 0.151770i \(-0.0484972\pi\)
\(158\) −1.91969 + 0.795161i −0.152722 + 0.0632596i
\(159\) −1.51594 + 3.65980i −0.120222 + 0.290241i
\(160\) −11.2745 4.67006i −0.891329 0.369200i
\(161\) −2.88850 + 2.88850i −0.227646 + 0.227646i
\(162\) 0.541196 0.541196i 0.0425204 0.0425204i
\(163\) −8.37849 3.47049i −0.656254 0.271829i 0.0296072 0.999562i \(-0.490574\pi\)
−0.685861 + 0.727732i \(0.740574\pi\)
\(164\) 6.56854 15.8578i 0.512916 1.23829i
\(165\) −2.87929 + 1.19264i −0.224152 + 0.0928469i
\(166\) 11.0319i 0.856240i
\(167\) −3.40115 8.21111i −0.263189 0.635395i 0.735943 0.677043i \(-0.236739\pi\)
−0.999132 + 0.0416485i \(0.986739\pi\)
\(168\) −2.28130 2.28130i −0.176006 0.176006i
\(169\) −3.88989 −0.299223
\(170\) 0 0
\(171\) −6.81204 −0.520930
\(172\) −3.44609 3.44609i −0.262762 0.262762i
\(173\) 4.68679 + 11.3149i 0.356330 + 0.860257i 0.995810 + 0.0914490i \(0.0291499\pi\)
−0.639480 + 0.768808i \(0.720850\pi\)
\(174\) 4.77791i 0.362212i
\(175\) −0.756986 + 0.313554i −0.0572227 + 0.0237024i
\(176\) −0.474462 + 1.14545i −0.0357639 + 0.0863417i
\(177\) −7.44930 3.08560i −0.559923 0.231928i
\(178\) −7.39782 + 7.39782i −0.554490 + 0.554490i
\(179\) 7.50756 7.50756i 0.561141 0.561141i −0.368490 0.929632i \(-0.620125\pi\)
0.929632 + 0.368490i \(0.120125\pi\)
\(180\) 2.72078 + 1.12698i 0.202795 + 0.0840003i
\(181\) −6.32477 + 15.2693i −0.470116 + 1.13496i 0.493995 + 0.869465i \(0.335536\pi\)
−0.964112 + 0.265497i \(0.914464\pi\)
\(182\) 3.58787 1.48614i 0.265950 0.110160i
\(183\) 3.27330i 0.241969i
\(184\) 3.30864 + 7.98777i 0.243916 + 0.588866i
\(185\) 5.79704 + 5.79704i 0.426207 + 0.426207i
\(186\) −7.86030 −0.576345
\(187\) 0 0
\(188\) −2.21946 −0.161871
\(189\) 0.873017 + 0.873017i 0.0635027 + 0.0635027i
\(190\) 4.15479 + 10.0305i 0.301420 + 0.727692i
\(191\) 12.0167i 0.869498i −0.900552 0.434749i \(-0.856837\pi\)
0.900552 0.434749i \(-0.143163\pi\)
\(192\) −2.61313 + 1.08239i −0.188586 + 0.0781149i
\(193\) −4.10172 + 9.90244i −0.295249 + 0.712793i 0.704746 + 0.709460i \(0.251061\pi\)
−0.999994 + 0.00333326i \(0.998939\pi\)
\(194\) 1.89828 + 0.786292i 0.136288 + 0.0564524i
\(195\) −6.05147 + 6.05147i −0.433355 + 0.433355i
\(196\) −5.47568 + 5.47568i −0.391120 + 0.391120i
\(197\) 2.92772 + 1.21270i 0.208592 + 0.0864015i 0.484533 0.874773i \(-0.338990\pi\)
−0.275941 + 0.961174i \(0.588990\pi\)
\(198\) −0.438346 + 1.05826i −0.0311519 + 0.0752073i
\(199\) 12.6337 5.23304i 0.895578 0.370960i 0.113060 0.993588i \(-0.463935\pi\)
0.782518 + 0.622628i \(0.213935\pi\)
\(200\) 1.73418i 0.122625i
\(201\) 0.809957 + 1.95541i 0.0571300 + 0.137924i
\(202\) 1.28809 + 1.28809i 0.0906299 + 0.0906299i
\(203\) −7.70737 −0.540951
\(204\) 0 0
\(205\) 25.2741 1.76522
\(206\) −7.19299 7.19299i −0.501159 0.501159i
\(207\) −1.26616 3.05679i −0.0880044 0.212461i
\(208\) 3.40461i 0.236067i
\(209\) 9.41889 3.90143i 0.651518 0.269868i
\(210\) 0.753026 1.81796i 0.0519637 0.125451i
\(211\) −5.47727 2.26876i −0.377071 0.156188i 0.186095 0.982532i \(-0.440417\pi\)
−0.563166 + 0.826344i \(0.690417\pi\)
\(212\) −3.96134 + 3.96134i −0.272066 + 0.272066i
\(213\) −0.160248 + 0.160248i −0.0109800 + 0.0109800i
\(214\) 9.24360 + 3.82882i 0.631879 + 0.261733i
\(215\) 2.74618 6.62986i 0.187288 0.452153i
\(216\) 2.41421 1.00000i 0.164266 0.0680414i
\(217\) 12.6797i 0.860751i
\(218\) 0.280085 + 0.676186i 0.0189698 + 0.0457971i
\(219\) 0.260380 + 0.260380i 0.0175948 + 0.0175948i
\(220\) −4.40743 −0.297149
\(221\) 0 0
\(222\) 3.01320 0.202233
\(223\) −18.4892 18.4892i −1.23813 1.23813i −0.960766 0.277361i \(-0.910540\pi\)
−0.277361 0.960766i \(-0.589460\pi\)
\(224\) −2.76884 6.68457i −0.185001 0.446631i
\(225\) 0.663643i 0.0442428i
\(226\) −6.10199 + 2.52753i −0.405898 + 0.168129i
\(227\) −4.19979 + 10.1392i −0.278750 + 0.672961i −0.999802 0.0199199i \(-0.993659\pi\)
0.721052 + 0.692881i \(0.243659\pi\)
\(228\) −8.90036 3.68665i −0.589441 0.244154i
\(229\) −10.2440 + 10.2440i −0.676942 + 0.676942i −0.959307 0.282365i \(-0.908881\pi\)
0.282365 + 0.959307i \(0.408881\pi\)
\(230\) −3.72878 + 3.72878i −0.245869 + 0.245869i
\(231\) −1.70711 0.707107i −0.112319 0.0465242i
\(232\) −6.24264 + 15.0711i −0.409849 + 0.989464i
\(233\) 17.6443 7.30850i 1.15592 0.478796i 0.279402 0.960174i \(-0.409864\pi\)
0.876513 + 0.481378i \(0.159864\pi\)
\(234\) 3.14545i 0.205625i
\(235\) −1.25065 3.01933i −0.0815833 0.196959i
\(236\) −8.06306 8.06306i −0.524861 0.524861i
\(237\) 2.71485 0.176348
\(238\) 0 0
\(239\) 0.740970 0.0479294 0.0239647 0.999713i \(-0.492371\pi\)
0.0239647 + 0.999713i \(0.492371\pi\)
\(240\) 1.21984 + 1.21984i 0.0787401 + 0.0787401i
\(241\) −8.17478 19.7357i −0.526584 1.27129i −0.933748 0.357931i \(-0.883482\pi\)
0.407164 0.913355i \(-0.366518\pi\)
\(242\) 6.70474i 0.430997i
\(243\) −0.923880 + 0.382683i −0.0592669 + 0.0245492i
\(244\) −1.77150 + 4.27677i −0.113408 + 0.273792i
\(245\) −10.5346 4.36355i −0.673028 0.278777i
\(246\) 6.56854 6.56854i 0.418795 0.418795i
\(247\) 19.7959 19.7959i 1.25958 1.25958i
\(248\) −24.7939 10.2700i −1.57442 0.652144i
\(249\) 5.51594 13.3167i 0.349558 0.843909i
\(250\) −8.33956 + 3.45436i −0.527440 + 0.218473i
\(251\) 0.938819i 0.0592577i 0.999561 + 0.0296289i \(0.00943254\pi\)
−0.999561 + 0.0296289i \(0.990567\pi\)
\(252\) 0.668179 + 1.61313i 0.0420913 + 0.101617i
\(253\) 3.50141 + 3.50141i 0.220132 + 0.220132i
\(254\) −10.8287 −0.679454
\(255\) 0 0
\(256\) −12.9706 −0.810660
\(257\) 11.1930 + 11.1930i 0.698199 + 0.698199i 0.964022 0.265823i \(-0.0856436\pi\)
−0.265823 + 0.964022i \(0.585644\pi\)
\(258\) −1.00934 2.43675i −0.0628385 0.151706i
\(259\) 4.86068i 0.302028i
\(260\) −11.1817 + 4.63160i −0.693457 + 0.287239i
\(261\) 2.38896 5.76745i 0.147873 0.356996i
\(262\) 1.83201 + 0.758843i 0.113182 + 0.0468815i
\(263\) 8.10152 8.10152i 0.499561 0.499561i −0.411740 0.911301i \(-0.635079\pi\)
0.911301 + 0.411740i \(0.135079\pi\)
\(264\) −2.76537 + 2.76537i −0.170197 + 0.170197i
\(265\) −7.62113 3.15678i −0.468163 0.193919i
\(266\) −2.46334 + 5.94703i −0.151037 + 0.364636i
\(267\) 12.6289 5.23105i 0.772875 0.320135i
\(268\) 2.99321i 0.182839i
\(269\) 7.33564 + 17.7098i 0.447262 + 1.07979i 0.973344 + 0.229351i \(0.0736605\pi\)
−0.526082 + 0.850434i \(0.676339\pi\)
\(270\) 1.12698 + 1.12698i 0.0685860 + 0.0685860i
\(271\) −6.82805 −0.414775 −0.207387 0.978259i \(-0.566496\pi\)
−0.207387 + 0.978259i \(0.566496\pi\)
\(272\) 0 0
\(273\) −5.07401 −0.307093
\(274\) 8.26319 + 8.26319i 0.499198 + 0.499198i
\(275\) 0.380086 + 0.917608i 0.0229200 + 0.0553338i
\(276\) 4.67913i 0.281650i
\(277\) 7.50915 3.11039i 0.451181 0.186885i −0.145509 0.989357i \(-0.546482\pi\)
0.596690 + 0.802472i \(0.296482\pi\)
\(278\) −1.18391 + 2.85822i −0.0710064 + 0.171425i
\(279\) 9.48822 + 3.93015i 0.568045 + 0.235292i
\(280\) 4.75057 4.75057i 0.283901 0.283901i
\(281\) −8.20741 + 8.20741i −0.489613 + 0.489613i −0.908184 0.418571i \(-0.862531\pi\)
0.418571 + 0.908184i \(0.362531\pi\)
\(282\) −1.10973 0.459666i −0.0660836 0.0273727i
\(283\) 2.32061 5.60244i 0.137946 0.333030i −0.839777 0.542932i \(-0.817314\pi\)
0.977723 + 0.209901i \(0.0673142\pi\)
\(284\) −0.296101 + 0.122649i −0.0175703 + 0.00727787i
\(285\) 14.1853i 0.840267i
\(286\) −1.80148 4.34917i −0.106524 0.257172i
\(287\) 10.5959 + 10.5959i 0.625455 + 0.625455i
\(288\) 5.86030 0.345322
\(289\) 0 0
\(290\) −9.94948 −0.584254
\(291\) −1.89828 1.89828i −0.111279 0.111279i
\(292\) 0.199286 + 0.481119i 0.0116623 + 0.0281554i
\(293\) 6.87547i 0.401669i 0.979625 + 0.200835i \(0.0643654\pi\)
−0.979625 + 0.200835i \(0.935635\pi\)
\(294\) −3.87189 + 1.60379i −0.225813 + 0.0935349i
\(295\) 6.42543 15.5124i 0.374103 0.903164i
\(296\) 9.50461 + 3.93694i 0.552444 + 0.228830i
\(297\) 1.05826 1.05826i 0.0614065 0.0614065i
\(298\) −9.80750 + 9.80750i −0.568133 + 0.568133i
\(299\) 12.5626 + 5.20359i 0.726513 + 0.300931i
\(300\) 0.359161 0.867091i 0.0207362 0.0500615i
\(301\) 3.93079 1.62819i 0.226567 0.0938471i
\(302\) 4.03450i 0.232159i
\(303\) −0.910819 2.19891i −0.0523252 0.126324i
\(304\) −3.99040 3.99040i −0.228865 0.228865i
\(305\) −6.81629 −0.390300
\(306\) 0 0
\(307\) 22.2451 1.26959 0.634797 0.772679i \(-0.281084\pi\)
0.634797 + 0.772679i \(0.281084\pi\)
\(308\) −1.84776 1.84776i −0.105286 0.105286i
\(309\) 5.08621 + 12.2792i 0.289344 + 0.698539i
\(310\) 16.3682i 0.929653i
\(311\) −5.00208 + 2.07193i −0.283642 + 0.117488i −0.519969 0.854185i \(-0.674056\pi\)
0.236327 + 0.971674i \(0.424056\pi\)
\(312\) −4.10973 + 9.92177i −0.232668 + 0.561710i
\(313\) 10.4348 + 4.32222i 0.589808 + 0.244306i 0.657568 0.753395i \(-0.271585\pi\)
−0.0677602 + 0.997702i \(0.521585\pi\)
\(314\) 2.05835 2.05835i 0.116160 0.116160i
\(315\) −1.81796 + 1.81796i −0.102431 + 0.102431i
\(316\) 3.54712 + 1.46927i 0.199541 + 0.0826527i
\(317\) −7.06127 + 17.0474i −0.396600 + 0.957477i 0.591866 + 0.806036i \(0.298391\pi\)
−0.988466 + 0.151441i \(0.951609\pi\)
\(318\) −2.80109 + 1.16025i −0.157077 + 0.0650635i
\(319\) 9.34277i 0.523095i
\(320\) −2.25397 5.44155i −0.126000 0.304192i
\(321\) −9.24360 9.24360i −0.515927 0.515927i
\(322\) −3.12649 −0.174233
\(323\) 0 0
\(324\) −1.41421 −0.0785674
\(325\) 1.92856 + 1.92856i 0.106977 + 0.106977i
\(326\) −2.65619 6.41262i −0.147113 0.355162i
\(327\) 0.956272i 0.0528819i
\(328\) 29.3015 12.1371i 1.61790 0.670158i
\(329\) 0.741499 1.79014i 0.0408802 0.0986934i
\(330\) −2.20371 0.912808i −0.121310 0.0502484i
\(331\) 4.07722 4.07722i 0.224104 0.224104i −0.586120 0.810224i \(-0.699345\pi\)
0.810224 + 0.586120i \(0.199345\pi\)
\(332\) 14.4138 14.4138i 0.791062 0.791062i
\(333\) −3.63726 1.50660i −0.199321 0.0825613i
\(334\) 2.60313 6.28451i 0.142437 0.343873i
\(335\) −4.07193 + 1.68665i −0.222473 + 0.0921515i
\(336\) 1.02280i 0.0557985i
\(337\) −6.22652 15.0321i −0.339180 0.818853i −0.997795 0.0663727i \(-0.978857\pi\)
0.658615 0.752480i \(-0.271143\pi\)
\(338\) −2.10520 2.10520i −0.114508 0.114508i
\(339\) 8.62951 0.468691
\(340\) 0 0
\(341\) −15.3701 −0.832338
\(342\) −3.68665 3.68665i −0.199351 0.199351i
\(343\) −5.89443 14.2304i −0.318269 0.768370i
\(344\) 9.00506i 0.485521i
\(345\) 6.36543 2.63665i 0.342703 0.141952i
\(346\) −3.58711 + 8.66006i −0.192844 + 0.465568i
\(347\) −3.96379 1.64186i −0.212787 0.0881394i 0.273744 0.961803i \(-0.411738\pi\)
−0.486531 + 0.873663i \(0.661738\pi\)
\(348\) 6.24264 6.24264i 0.334641 0.334641i
\(349\) −10.0093 + 10.0093i −0.535787 + 0.535787i −0.922289 0.386501i \(-0.873683\pi\)
0.386501 + 0.922289i \(0.373683\pi\)
\(350\) −0.579372 0.239984i −0.0309687 0.0128277i
\(351\) 1.57273 3.79690i 0.0839459 0.202663i
\(352\) −8.10294 + 3.35635i −0.431888 + 0.178894i
\(353\) 23.8142i 1.26750i −0.773536 0.633752i \(-0.781514\pi\)
0.773536 0.633752i \(-0.218486\pi\)
\(354\) −2.36162 5.70144i −0.125518 0.303028i
\(355\) −0.333700 0.333700i −0.0177110 0.0177110i
\(356\) 19.3314 1.02456
\(357\) 0 0
\(358\) 8.12612 0.429479
\(359\) 24.9380 + 24.9380i 1.31618 + 1.31618i 0.916777 + 0.399400i \(0.130781\pi\)
0.399400 + 0.916777i \(0.369219\pi\)
\(360\) 2.08239 + 5.02734i 0.109752 + 0.264964i
\(361\) 27.4039i 1.44231i
\(362\) −11.6866 + 4.84077i −0.614237 + 0.254425i
\(363\) 3.35237 8.09334i 0.175954 0.424790i
\(364\) −6.62951 2.74603i −0.347481 0.143931i
\(365\) −0.542213 + 0.542213i −0.0283807 + 0.0283807i
\(366\) −1.77150 + 1.77150i −0.0925976 + 0.0925976i
\(367\) 15.0788 + 6.24585i 0.787108 + 0.326031i 0.739780 0.672849i \(-0.234930\pi\)
0.0473275 + 0.998879i \(0.484930\pi\)
\(368\) 1.04892 2.53233i 0.0546789 0.132007i
\(369\) −11.2132 + 4.64466i −0.583735 + 0.241791i
\(370\) 6.27467i 0.326205i
\(371\) −1.87163 4.51851i −0.0971700 0.234589i
\(372\) 10.2700 + 10.2700i 0.532474 + 0.532474i
\(373\) 25.0156 1.29526 0.647630 0.761955i \(-0.275760\pi\)
0.647630 + 0.761955i \(0.275760\pi\)
\(374\) 0 0
\(375\) 11.7939 0.609036
\(376\) −2.89987 2.89987i −0.149549 0.149549i
\(377\) 9.81796 + 23.7027i 0.505651 + 1.22075i
\(378\) 0.944947i 0.0486028i
\(379\) −30.1444 + 12.4862i −1.54842 + 0.641375i −0.983029 0.183451i \(-0.941273\pi\)
−0.565387 + 0.824826i \(0.691273\pi\)
\(380\) 7.67705 18.5340i 0.393824 0.950776i
\(381\) 13.0714 + 5.41436i 0.669669 + 0.277386i
\(382\) 6.50339 6.50339i 0.332743 0.332743i
\(383\) 0.413840 0.413840i 0.0211462 0.0211462i −0.696455 0.717601i \(-0.745240\pi\)
0.717601 + 0.696455i \(0.245240\pi\)
\(384\) 8.82843 + 3.65685i 0.450524 + 0.186613i
\(385\) 1.47247 3.55487i 0.0750442 0.181173i
\(386\) −7.57900 + 3.13932i −0.385761 + 0.159787i
\(387\) 3.44609i 0.175175i
\(388\) −1.45288 3.50756i −0.0737587 0.178069i
\(389\) −15.6455 15.6455i −0.793258 0.793258i 0.188765 0.982022i \(-0.439552\pi\)
−0.982022 + 0.188765i \(0.939552\pi\)
\(390\) −6.55007 −0.331675
\(391\) 0 0
\(392\) −14.3086 −0.722696
\(393\) −1.83201 1.83201i −0.0924126 0.0924126i
\(394\) 0.928163 + 2.24078i 0.0467602 + 0.112889i
\(395\) 5.65338i 0.284453i
\(396\) 1.95541 0.809957i 0.0982630 0.0407019i
\(397\) 2.23116 5.38650i 0.111979 0.270341i −0.857948 0.513736i \(-0.828261\pi\)
0.969927 + 0.243395i \(0.0782612\pi\)
\(398\) 9.66940 + 4.00520i 0.484683 + 0.200762i
\(399\) 5.94703 5.94703i 0.297724 0.297724i
\(400\) 0.388753 0.388753i 0.0194376 0.0194376i
\(401\) −4.79513 1.98621i −0.239458 0.0991865i 0.259728 0.965682i \(-0.416367\pi\)
−0.499185 + 0.866495i \(0.666367\pi\)
\(402\) −0.619914 + 1.49661i −0.0309185 + 0.0746439i
\(403\) −38.9941 + 16.1519i −1.94243 + 0.804582i
\(404\) 3.36595i 0.167462i
\(405\) −0.796897 1.92388i −0.0395981 0.0955983i
\(406\) −4.17120 4.17120i −0.207013 0.207013i
\(407\) 5.89205 0.292058
\(408\) 0 0
\(409\) −27.2400 −1.34693 −0.673465 0.739219i \(-0.735195\pi\)
−0.673465 + 0.739219i \(0.735195\pi\)
\(410\) 13.6783 + 13.6783i 0.675521 + 0.675521i
\(411\) −5.84296 14.1062i −0.288212 0.695805i
\(412\) 18.7962i 0.926021i
\(413\) 9.19715 3.80958i 0.452562 0.187457i
\(414\) 0.969079 2.33956i 0.0476277 0.114983i
\(415\) 27.7305 + 11.4863i 1.36124 + 0.563843i
\(416\) −17.0302 + 17.0302i −0.834972 + 0.834972i
\(417\) 2.85822 2.85822i 0.139968 0.139968i
\(418\) 7.20891 + 2.98603i 0.352599 + 0.146051i
\(419\) 5.36909 12.9621i 0.262297 0.633242i −0.736782 0.676130i \(-0.763656\pi\)
0.999080 + 0.0428878i \(0.0136558\pi\)
\(420\) −3.35916 + 1.39141i −0.163910 + 0.0678939i
\(421\) 15.3811i 0.749627i −0.927100 0.374814i \(-0.877707\pi\)
0.927100 0.374814i \(-0.122293\pi\)
\(422\) −1.73643 4.19212i −0.0845283 0.204069i
\(423\) 1.10973 + 1.10973i 0.0539570 + 0.0539570i
\(424\) −10.3515 −0.502712
\(425\) 0 0
\(426\) −0.173452 −0.00840376
\(427\) −2.85765 2.85765i −0.138291 0.138291i
\(428\) −7.07474 17.0799i −0.341971 0.825590i
\(429\) 6.15065i 0.296956i
\(430\) 5.07428 2.10183i 0.244703 0.101359i
\(431\) 6.27243 15.1430i 0.302133 0.729413i −0.697782 0.716311i \(-0.745829\pi\)
0.999914 0.0131020i \(-0.00417060\pi\)
\(432\) −0.765367 0.317025i −0.0368237 0.0152529i
\(433\) 15.3517 15.3517i 0.737757 0.737757i −0.234386 0.972144i \(-0.575308\pi\)
0.972144 + 0.234386i \(0.0753080\pi\)
\(434\) 6.86218 6.86218i 0.329395 0.329395i
\(435\) 12.0101 + 4.97474i 0.575840 + 0.238521i
\(436\) 0.517531 1.24943i 0.0247852 0.0598368i
\(437\) −20.8230 + 8.62515i −0.996097 + 0.412597i
\(438\) 0.281833i 0.0134665i
\(439\) 9.00469 + 21.7392i 0.429770 + 1.03756i 0.979360 + 0.202123i \(0.0647841\pi\)
−0.549590 + 0.835435i \(0.685216\pi\)
\(440\) −5.75858 5.75858i −0.274529 0.274529i
\(441\) 5.47568 0.260747
\(442\) 0 0
\(443\) −15.4238 −0.732808 −0.366404 0.930456i \(-0.619411\pi\)
−0.366404 + 0.930456i \(0.619411\pi\)
\(444\) −3.93694 3.93694i −0.186839 0.186839i
\(445\) 10.8931 + 26.2983i 0.516383 + 1.24666i
\(446\) 20.0125i 0.947621i
\(447\) 16.7425 6.93495i 0.791891 0.328012i
\(448\) 1.33636 3.22625i 0.0631369 0.152426i
\(449\) −12.5181 5.18515i −0.590764 0.244702i 0.0672154 0.997738i \(-0.478589\pi\)
−0.657979 + 0.753036i \(0.728589\pi\)
\(450\) 0.359161 0.359161i 0.0169310 0.0169310i
\(451\) 12.8442 12.8442i 0.604809 0.604809i
\(452\) 11.2750 + 4.67026i 0.530332 + 0.219671i
\(453\) 2.01725 4.87007i 0.0947787 0.228816i
\(454\) −7.76019 + 3.21438i −0.364204 + 0.150858i
\(455\) 10.5661i 0.495346i
\(456\) −6.81204 16.4457i −0.319003 0.770141i
\(457\) −10.8806 10.8806i −0.508972 0.508972i 0.405239 0.914211i \(-0.367188\pi\)
−0.914211 + 0.405239i \(0.867188\pi\)
\(458\) −11.0880 −0.518109
\(459\) 0 0
\(460\) 9.74378 0.454306
\(461\) 14.7082 + 14.7082i 0.685031 + 0.685031i 0.961129 0.276099i \(-0.0890416\pi\)
−0.276099 + 0.961129i \(0.589042\pi\)
\(462\) −0.541196 1.30656i −0.0251787 0.0607868i
\(463\) 26.4325i 1.22842i −0.789141 0.614212i \(-0.789474\pi\)
0.789141 0.614212i \(-0.210526\pi\)
\(464\) 4.77791 1.97908i 0.221809 0.0918763i
\(465\) −8.18412 + 19.7582i −0.379529 + 0.916265i
\(466\) 13.5043 + 5.59368i 0.625577 + 0.259122i
\(467\) −5.07058 + 5.07058i −0.234638 + 0.234638i −0.814626 0.579987i \(-0.803058\pi\)
0.579987 + 0.814626i \(0.303058\pi\)
\(468\) 4.10973 4.10973i 0.189972 0.189972i
\(469\) −2.41421 1.00000i −0.111478 0.0461757i
\(470\) 0.957205 2.31090i 0.0441526 0.106594i
\(471\) −3.51383 + 1.45548i −0.161909 + 0.0670648i
\(472\) 21.0698i 0.969816i
\(473\) −1.97367 4.76485i −0.0907492 0.219088i
\(474\) 1.46927 + 1.46927i 0.0674856 + 0.0674856i
\(475\) −4.52076 −0.207427
\(476\) 0 0
\(477\) 3.96134 0.181377
\(478\) 0.401010 + 0.401010i 0.0183418 + 0.0183418i
\(479\) −1.12279 2.71066i −0.0513017 0.123853i 0.896151 0.443749i \(-0.146352\pi\)
−0.947453 + 0.319896i \(0.896352\pi\)
\(480\) 12.2034i 0.557009i
\(481\) 14.9482 6.19173i 0.681577 0.282319i
\(482\) 6.25671 15.1050i 0.284985 0.688015i
\(483\) 3.77401 + 1.56325i 0.171724 + 0.0711302i
\(484\) 8.76017 8.76017i 0.398190 0.398190i
\(485\) 3.95295 3.95295i 0.179494 0.179494i
\(486\) −0.707107 0.292893i −0.0320750 0.0132859i
\(487\) 8.89432 21.4728i 0.403040 0.973025i −0.583884 0.811837i \(-0.698468\pi\)
0.986924 0.161188i \(-0.0515324\pi\)
\(488\) −7.90244 + 3.27330i −0.357727 + 0.148175i
\(489\) 9.06882i 0.410106i
\(490\) −3.33972 8.06280i −0.150873 0.364240i
\(491\) 9.65807 + 9.65807i 0.435863 + 0.435863i 0.890617 0.454754i \(-0.150273\pi\)
−0.454754 + 0.890617i \(0.650273\pi\)
\(492\) −17.1644 −0.773831
\(493\) 0 0
\(494\) 21.4269 0.964044
\(495\) 2.20371 + 2.20371i 0.0990495 + 0.0990495i
\(496\) 3.25584 + 7.86030i 0.146192 + 0.352938i
\(497\) 0.279799i 0.0125507i
\(498\) 10.1921 4.22172i 0.456720 0.189180i
\(499\) 2.88245 6.95884i 0.129036 0.311521i −0.846137 0.532966i \(-0.821077\pi\)
0.975173 + 0.221445i \(0.0710774\pi\)
\(500\) 15.4095 + 6.38283i 0.689134 + 0.285449i
\(501\) −6.28451 + 6.28451i −0.280771 + 0.280771i
\(502\) −0.508085 + 0.508085i −0.0226769 + 0.0226769i
\(503\) −23.7585 9.84111i −1.05934 0.438794i −0.216124 0.976366i \(-0.569341\pi\)
−0.843218 + 0.537572i \(0.819341\pi\)
\(504\) −1.23463 + 2.98067i −0.0549949 + 0.132770i
\(505\) 4.57900 1.89668i 0.203763 0.0844013i
\(506\) 3.78989i 0.168481i
\(507\) 1.48860 + 3.59379i 0.0661110 + 0.159606i
\(508\) 14.1484 + 14.1484i 0.627734 + 0.627734i
\(509\) −34.7796 −1.54158 −0.770789 0.637090i \(-0.780138\pi\)
−0.770789 + 0.637090i \(0.780138\pi\)
\(510\) 0 0
\(511\) −0.454632 −0.0201117
\(512\) 6.49435 + 6.49435i 0.287013 + 0.287013i
\(513\) 2.60685 + 6.29350i 0.115095 + 0.277865i
\(514\) 12.1152i 0.534379i
\(515\) −25.5701 + 10.5915i −1.12675 + 0.466716i
\(516\) −1.86501 + 4.50253i −0.0821025 + 0.198213i
\(517\) −2.16998 0.898835i −0.0954356 0.0395307i
\(518\) −2.63058 + 2.63058i −0.115581 + 0.115581i
\(519\) 8.66006 8.66006i 0.380135 0.380135i
\(520\) −20.6610 8.55807i −0.906046 0.375296i
\(521\) −17.0594 + 41.1851i −0.747387 + 1.80435i −0.174617 + 0.984637i \(0.555869\pi\)
−0.572771 + 0.819716i \(0.694131\pi\)
\(522\) 4.41421 1.82843i 0.193205 0.0800281i
\(523\) 19.8918i 0.869808i −0.900477 0.434904i \(-0.856782\pi\)
0.900477 0.434904i \(-0.143218\pi\)
\(524\) −1.40216 3.38511i −0.0612536 0.147879i
\(525\) 0.579372 + 0.579372i 0.0252859 + 0.0252859i
\(526\) 8.76902 0.382348
\(527\) 0 0
\(528\) 1.23983 0.0539566
\(529\) 8.52267 + 8.52267i 0.370551 + 0.370551i
\(530\) −2.41609 5.83296i −0.104948 0.253368i
\(531\) 8.06306i 0.349907i
\(532\) 10.9887 4.55166i 0.476420 0.197339i
\(533\) 19.0883 46.0832i 0.826806 1.99609i
\(534\) 9.66572 + 4.00367i 0.418277 + 0.173256i
\(535\) 19.2488 19.2488i 0.832198 0.832198i
\(536\) −3.91082 + 3.91082i −0.168922 + 0.168922i
\(537\) −9.80910 4.06306i −0.423294 0.175334i
\(538\) −5.61445 + 13.5545i −0.242056 + 0.584376i
\(539\) −7.57113 + 3.13607i −0.326112 + 0.135080i
\(540\) 2.94495i 0.126730i
\(541\) 0.299022 + 0.721903i 0.0128560 + 0.0310370i 0.930177 0.367111i \(-0.119653\pi\)
−0.917321 + 0.398148i \(0.869653\pi\)
\(542\) −3.69532 3.69532i −0.158727 0.158727i
\(543\) 16.5274 0.709259
\(544\) 0 0
\(545\) 1.99133 0.0852993
\(546\) −2.74603 2.74603i −0.117519 0.117519i
\(547\) −14.9463 36.0835i −0.639057 1.54282i −0.827938 0.560819i \(-0.810486\pi\)
0.188882 0.982000i \(-0.439514\pi\)
\(548\) 21.5928i 0.922397i
\(549\) 3.02413 1.25264i 0.129067 0.0534612i
\(550\) −0.290905 + 0.702307i −0.0124042 + 0.0299465i
\(551\) −39.2881 16.2737i −1.67373 0.693281i
\(552\) 6.11358 6.11358i 0.260211 0.260211i
\(553\) −2.37011 + 2.37011i −0.100787 + 0.100787i
\(554\) 5.74725 + 2.38059i 0.244177 + 0.101142i
\(555\) 3.13734 7.57420i 0.133172 0.321507i
\(556\) 5.28130 2.18759i 0.223977 0.0927744i
\(557\) 13.0371i 0.552398i 0.961100 + 0.276199i \(0.0890750\pi\)
−0.961100 + 0.276199i \(0.910925\pi\)
\(558\) 3.00801 + 7.26197i 0.127339 + 0.307424i
\(559\) −10.0144 10.0144i −0.423564 0.423564i
\(560\) −2.12988 −0.0900038
\(561\) 0 0
\(562\) −8.88363 −0.374734
\(563\) −7.93150 7.93150i −0.334273 0.334273i 0.519934 0.854207i \(-0.325957\pi\)
−0.854207 + 0.519934i \(0.825957\pi\)
\(564\) 0.849352 + 2.05052i 0.0357642 + 0.0863423i
\(565\) 17.9700i 0.756005i
\(566\) 4.28792 1.77612i 0.180235 0.0746557i
\(567\) 0.472474 1.14065i 0.0198420 0.0479029i
\(568\) −0.547123 0.226626i −0.0229568 0.00950900i
\(569\) 25.7878 25.7878i 1.08108 1.08108i 0.0846732 0.996409i \(-0.473015\pi\)
0.996409 0.0846732i \(-0.0269846\pi\)
\(570\) 7.67705 7.67705i 0.321556 0.321556i
\(571\) 12.5140 + 5.18346i 0.523693 + 0.216921i 0.628838 0.777536i \(-0.283531\pi\)
−0.105145 + 0.994457i \(0.533531\pi\)
\(572\) −3.32871 + 8.03621i −0.139180 + 0.336011i
\(573\) −11.1020 + 4.59859i −0.463792 + 0.192109i
\(574\) 11.4689i 0.478702i
\(575\) −0.840280 2.02862i −0.0350421 0.0845991i
\(576\) 2.00000 + 2.00000i 0.0833333 + 0.0833333i
\(577\) 7.10617 0.295834 0.147917 0.989000i \(-0.452743\pi\)
0.147917 + 0.989000i \(0.452743\pi\)
\(578\) 0 0
\(579\) 10.7183 0.445438
\(580\) 12.9996 + 12.9996i 0.539780 + 0.539780i
\(581\) 6.81016 + 16.4412i 0.282533 + 0.682095i
\(582\) 2.05468i 0.0851692i
\(583\) −5.47727 + 2.26876i −0.226846 + 0.0939625i
\(584\) −0.368233 + 0.888992i −0.0152376 + 0.0367868i
\(585\) 7.90663 + 3.27503i 0.326899 + 0.135406i
\(586\) −3.72098 + 3.72098i −0.153712 + 0.153712i
\(587\) −28.4929 + 28.4929i −1.17603 + 1.17603i −0.195281 + 0.980747i \(0.562562\pi\)
−0.980747 + 0.195281i \(0.937438\pi\)
\(588\) 7.15432 + 2.96342i 0.295039 + 0.122209i
\(589\) 26.7723 64.6341i 1.10314 2.66320i
\(590\) 11.8726 4.91781i 0.488789 0.202463i
\(591\) 3.16895i 0.130353i
\(592\) −1.24811 3.01320i −0.0512970 0.123842i
\(593\) −26.7582 26.7582i −1.09883 1.09883i −0.994548 0.104280i \(-0.966746\pi\)
−0.104280 0.994548i \(-0.533254\pi\)
\(594\) 1.14545 0.0469985
\(595\) 0 0
\(596\) 25.6282 1.04977
\(597\) −9.66940 9.66940i −0.395742 0.395742i
\(598\) 3.98266 + 9.61498i 0.162863 + 0.393186i
\(599\) 10.1505i 0.414739i −0.978263 0.207369i \(-0.933510\pi\)
0.978263 0.207369i \(-0.0664902\pi\)
\(600\) 1.60218 0.663643i 0.0654085 0.0270931i
\(601\) −13.4910 + 32.5702i −0.550311 + 1.32857i 0.366935 + 0.930247i \(0.380407\pi\)
−0.917246 + 0.398321i \(0.869593\pi\)
\(602\) 3.00850 + 1.24616i 0.122617 + 0.0507897i
\(603\) 1.49661 1.49661i 0.0609465 0.0609465i
\(604\) 5.27133 5.27133i 0.214487 0.214487i
\(605\) 16.8535 + 6.98095i 0.685193 + 0.283816i
\(606\) 0.697111 1.68297i 0.0283182 0.0683662i
\(607\) 43.9654 18.2111i 1.78450 0.739164i 0.792974 0.609255i \(-0.208532\pi\)
0.991526 0.129909i \(-0.0414685\pi\)
\(608\) 39.9206i 1.61899i
\(609\) 2.94948 + 7.12068i 0.119519 + 0.288545i
\(610\) −3.68895 3.68895i −0.149361 0.149361i
\(611\) −6.44980 −0.260931
\(612\) 0 0
\(613\) −26.9812 −1.08976 −0.544880 0.838514i \(-0.683425\pi\)
−0.544880 + 0.838514i \(0.683425\pi\)
\(614\) 12.0389 + 12.0389i 0.485852 + 0.485852i
\(615\) −9.67200 23.3503i −0.390013 0.941573i
\(616\) 4.82843i 0.194543i
\(617\) −13.8507 + 5.73717i −0.557610 + 0.230970i −0.643647 0.765322i \(-0.722580\pi\)
0.0860373 + 0.996292i \(0.472580\pi\)
\(618\) −3.89282 + 9.39809i −0.156592 + 0.378047i
\(619\) 2.03477 + 0.842828i 0.0817841 + 0.0338761i 0.423200 0.906036i \(-0.360907\pi\)
−0.341416 + 0.939912i \(0.610907\pi\)
\(620\) −21.3861 + 21.3861i −0.858888 + 0.858888i
\(621\) −2.33956 + 2.33956i −0.0938835 + 0.0938835i
\(622\) −3.82843 1.58579i −0.153506 0.0635842i
\(623\) −6.45843 + 15.5920i −0.258752 + 0.624681i
\(624\) 3.14545 1.30289i 0.125919 0.0521573i
\(625\) 21.2414i 0.849655i
\(626\) 3.30808 + 7.98642i 0.132218 + 0.319202i
\(627\) −7.20891 7.20891i −0.287896 0.287896i
\(628\) −5.37874 −0.214635
\(629\) 0 0
\(630\) −1.96775 −0.0783971
\(631\) −24.5529 24.5529i −0.977435 0.977435i 0.0223155 0.999751i \(-0.492896\pi\)
−0.999751 + 0.0223155i \(0.992896\pi\)
\(632\) 2.71485 + 6.55423i 0.107991 + 0.260713i
\(633\) 5.92856i 0.235639i
\(634\) −13.0475 + 5.40446i −0.518183 + 0.214638i
\(635\) −11.2748 + 27.2198i −0.447427 + 1.08019i
\(636\) 5.17574 + 2.14386i 0.205231 + 0.0850096i
\(637\) −15.9124 + 15.9124i −0.630474 + 0.630474i
\(638\) −5.05627 + 5.05627i −0.200180 + 0.200180i
\(639\) 0.209375 + 0.0867259i 0.00828274 + 0.00343082i
\(640\) −7.61500 + 18.3842i −0.301009 + 0.726701i
\(641\) 23.0324 9.54032i 0.909724 0.376820i 0.121773 0.992558i \(-0.461142\pi\)
0.787951 + 0.615738i \(0.211142\pi\)
\(642\) 10.0052i 0.394874i
\(643\) −13.4557 32.4849i −0.530641 1.28108i −0.931100 0.364765i \(-0.881149\pi\)
0.400459 0.916315i \(-0.368851\pi\)
\(644\) 4.08496 + 4.08496i 0.160970 + 0.160970i
\(645\) −7.17611 −0.282559
\(646\) 0 0
\(647\) −28.0142 −1.10135 −0.550677 0.834719i \(-0.685630\pi\)
−0.550677 + 0.834719i \(0.685630\pi\)
\(648\) −1.84776 1.84776i −0.0725868 0.0725868i
\(649\) −4.61793 11.1487i −0.181269 0.437623i
\(650\) 2.08746i 0.0818768i
\(651\) −11.7145 + 4.85229i −0.459127 + 0.190176i
\(652\) −4.90801 + 11.8490i −0.192212 + 0.464042i
\(653\) −34.8057 14.4170i −1.36205 0.564181i −0.422432 0.906395i \(-0.638823\pi\)
−0.939622 + 0.342213i \(0.888823\pi\)
\(654\) 0.517531 0.517531i 0.0202370 0.0202370i
\(655\) 3.81496 3.81496i 0.149063 0.149063i
\(656\) −9.28931 3.84776i −0.362687 0.150230i
\(657\) 0.140917 0.340203i 0.00549768 0.0132726i
\(658\) 1.37011 0.567519i 0.0534125 0.0221242i
\(659\) 13.5356i 0.527272i 0.964622 + 0.263636i \(0.0849217\pi\)
−0.964622 + 0.263636i \(0.915078\pi\)
\(660\) 1.68665 + 4.07193i 0.0656527 + 0.158500i
\(661\) −1.41864 1.41864i −0.0551787 0.0551787i 0.678979 0.734158i \(-0.262423\pi\)
−0.734158 + 0.678979i \(0.762423\pi\)
\(662\) 4.41315 0.171522
\(663\) 0 0
\(664\) 37.6652 1.46169
\(665\) 12.3840 + 12.3840i 0.480233 + 0.480233i
\(666\) −1.15310 2.78384i −0.0446818 0.107871i
\(667\) 20.6547i 0.799752i
\(668\) −11.6123 + 4.80996i −0.449292 + 0.186103i
\(669\) −10.0063 + 24.1573i −0.386865 + 0.933974i
\(670\) −3.11652 1.29090i −0.120402 0.0498720i
\(671\) −3.46400 + 3.46400i −0.133726 + 0.133726i
\(672\) −5.11615 + 5.11615i −0.197360 + 0.197360i
\(673\) −15.4873 6.41506i −0.596992 0.247282i 0.0636633 0.997971i \(-0.479722\pi\)
−0.660656 + 0.750689i \(0.729722\pi\)
\(674\) 4.76557 11.5051i 0.183563 0.443160i
\(675\) −0.613126 + 0.253965i −0.0235992 + 0.00977512i
\(676\) 5.50114i 0.211582i
\(677\) −8.82649 21.3090i −0.339230 0.818973i −0.997790 0.0664448i \(-0.978834\pi\)
0.658561 0.752528i \(-0.271166\pi\)
\(678\) 4.67026 + 4.67026i 0.179360 + 0.179360i
\(679\) 3.31446 0.127197
\(680\) 0 0
\(681\) 10.9746 0.420546
\(682\) −8.31824 8.31824i −0.318522 0.318522i
\(683\) −10.7220 25.8852i −0.410265 0.990468i −0.985066 0.172175i \(-0.944921\pi\)
0.574801 0.818293i \(-0.305079\pi\)
\(684\) 9.63368i 0.368353i
\(685\) 29.3745 12.1673i 1.12234 0.464890i
\(686\) 4.51140 10.8915i 0.172246 0.415839i
\(687\) 13.3844 + 5.54401i 0.510647 + 0.211517i
\(688\) −2.01867 + 2.01867i −0.0769612 + 0.0769612i
\(689\) −11.5117 + 11.5117i −0.438562 + 0.438562i
\(690\) 4.87189 + 2.01800i 0.185470 + 0.0768241i
\(691\) −10.2085 + 24.6455i −0.388350 + 0.937560i 0.601940 + 0.798542i \(0.294395\pi\)
−0.990290 + 0.139019i \(0.955605\pi\)
\(692\) 16.0017 6.62812i 0.608294 0.251963i
\(693\) 1.84776i 0.0701906i
\(694\) −1.25662 3.03375i −0.0477007 0.115160i
\(695\) 5.95194 + 5.95194i 0.225770 + 0.225770i
\(696\) 16.3128 0.618335
\(697\) 0 0
\(698\) −10.8340 −0.410074
\(699\) −13.5043 13.5043i −0.510781 0.510781i
\(700\) 0.443432 + 1.07054i 0.0167602 + 0.0404626i
\(701\) 9.75054i 0.368273i −0.982901 0.184136i \(-0.941051\pi\)
0.982901 0.184136i \(-0.0589488\pi\)
\(702\) 2.90602 1.20371i 0.109681 0.0454312i
\(703\) −10.2630 + 24.7771i −0.387077 + 0.934488i
\(704\) −3.91082 1.61991i −0.147395 0.0610528i
\(705\) −2.31090 + 2.31090i −0.0870334 + 0.0870334i
\(706\) 12.8882 12.8882i 0.485053 0.485053i
\(707\) 2.71485 + 1.12453i 0.102102 + 0.0422922i
\(708\) −4.36370 + 10.5349i −0.163998 + 0.395926i
\(709\) −26.5647 + 11.0035i −0.997659 + 0.413244i −0.820938 0.571017i \(-0.806549\pi\)
−0.176721 + 0.984261i \(0.556549\pi\)
\(710\) 0.361194i 0.0135554i
\(711\) −1.03893 2.50819i −0.0389628 0.0940646i
\(712\) 25.2578 + 25.2578i 0.946574 + 0.946574i
\(713\) 33.9797 1.27255
\(714\) 0 0
\(715\) −12.8081 −0.478994
\(716\) −10.6173 10.6173i −0.396787 0.396787i
\(717\) −0.283557 0.684567i −0.0105896 0.0255656i
\(718\) 26.9927i 1.00736i
\(719\) −43.6299 + 18.0721i −1.62712 + 0.673976i −0.994905 0.100816i \(-0.967855\pi\)
−0.632216 + 0.774792i \(0.717855\pi\)
\(720\) 0.660171 1.59379i 0.0246031 0.0593972i
\(721\) −15.1603 6.27960i −0.564599 0.233865i
\(722\) −14.8309 + 14.8309i −0.551948 + 0.551948i
\(723\) −15.1050 + 15.1050i −0.561762 + 0.561762i
\(724\) 21.5941 + 8.94457i 0.802539 + 0.332422i
\(725\) 1.58541 3.82752i 0.0588808 0.142151i
\(726\) 6.19438 2.56579i 0.229895 0.0952256i
\(727\) 27.7790i 1.03027i 0.857110 + 0.515134i \(0.172258\pi\)
−0.857110 + 0.515134i \(0.827742\pi\)
\(728\) −5.07401 12.2497i −0.188055 0.454006i
\(729\) 0.707107 + 0.707107i 0.0261891 + 0.0261891i
\(730\) −0.586887 −0.0217217
\(731\) 0 0
\(732\) 4.62914 0.171098
\(733\) 3.81122 + 3.81122i 0.140770 + 0.140770i 0.773980 0.633210i \(-0.218263\pi\)
−0.633210 + 0.773980i \(0.718263\pi\)
\(734\) 4.78037 + 11.5408i 0.176446 + 0.425980i
\(735\) 11.4025i 0.420588i
\(736\) 17.9137 7.42010i 0.660308 0.273509i
\(737\) −1.21219 + 2.92648i −0.0446515 + 0.107798i
\(738\) −8.58221 3.55487i −0.315915 0.130856i
\(739\) −2.55818 + 2.55818i −0.0941043 + 0.0941043i −0.752592 0.658487i \(-0.771197\pi\)
0.658487 + 0.752592i \(0.271197\pi\)
\(740\) 8.19825 8.19825i 0.301374 0.301374i
\(741\) −25.8646 10.7135i −0.950160 0.393569i
\(742\) 1.43248 3.45832i 0.0525880 0.126959i
\(743\) 5.71326 2.36651i 0.209599 0.0868188i −0.275414 0.961326i \(-0.588815\pi\)
0.485013 + 0.874507i \(0.338815\pi\)
\(744\) 26.8368i 0.983883i
\(745\) 14.4413 + 34.8644i 0.529088 + 1.27733i
\(746\) 13.5384 + 13.5384i 0.495675 + 0.495675i
\(747\) −14.4138 −0.527375
\(748\) 0 0
\(749\) 16.1396 0.589730
\(750\) 6.38283 + 6.38283i 0.233068 + 0.233068i
\(751\) 19.6438 + 47.4243i 0.716812 + 1.73054i 0.682233 + 0.731135i \(0.261009\pi\)
0.0345787 + 0.999402i \(0.488991\pi\)
\(752\) 1.30013i 0.0474109i
\(753\) 0.867355 0.359270i 0.0316082 0.0130925i
\(754\) −7.51434 + 18.1412i −0.273656 + 0.660665i
\(755\) 10.1414 + 4.20071i 0.369084 + 0.152879i
\(756\) 1.23463 1.23463i 0.0449032 0.0449032i
\(757\) −2.71352 + 2.71352i −0.0986246 + 0.0986246i −0.754698 0.656073i \(-0.772216\pi\)
0.656073 + 0.754698i \(0.272216\pi\)
\(758\) −23.0716 9.55655i −0.837997 0.347110i
\(759\) 1.89495 4.57481i 0.0687822 0.166055i
\(760\) 34.2464 14.1853i 1.24225 0.514556i
\(761\) 16.5850i 0.601206i 0.953749 + 0.300603i \(0.0971878\pi\)
−0.953749 + 0.300603i \(0.902812\pi\)
\(762\) 4.14397 + 10.0044i 0.150120 + 0.362422i
\(763\) 0.834842 + 0.834842i 0.0302233 + 0.0302233i
\(764\) −16.9942 −0.614828
\(765\) 0 0
\(766\) 0.447937 0.0161846
\(767\) −23.4314 23.4314i −0.846059 0.846059i
\(768\) 4.96362 + 11.9832i 0.179109 + 0.432408i
\(769\) 27.7826i 1.00187i −0.865486 0.500933i \(-0.832990\pi\)
0.865486 0.500933i \(-0.167010\pi\)
\(770\) 2.72078 1.12698i 0.0980500 0.0406136i
\(771\) 6.05760 14.6243i 0.218159 0.526683i
\(772\) 14.0042 + 5.80071i 0.504021 + 0.208772i
\(773\) −9.86475 + 9.86475i −0.354810 + 0.354810i −0.861896 0.507085i \(-0.830723\pi\)
0.507085 + 0.861896i \(0.330723\pi\)
\(774\) −1.86501 + 1.86501i −0.0670364 + 0.0670364i
\(775\) 6.29679 + 2.60822i 0.226187 + 0.0936899i
\(776\) 2.68457 6.48112i 0.0963704 0.232659i
\(777\) 4.49068 1.86010i 0.161102 0.0667307i
\(778\) 16.9346i 0.607133i
\(779\) 31.6396 + 76.3847i 1.13361 + 2.73677i
\(780\) 8.55807 + 8.55807i 0.306428 + 0.306428i
\(781\) −0.339169 −0.0121364
\(782\) 0 0
\(783\) −6.24264 −0.223094
\(784\) 3.20758 + 3.20758i 0.114556 + 0.114556i
\(785\) −3.03087 7.31717i −0.108176 0.261161i
\(786\) 1.98295i 0.0707295i
\(787\) −3.90992 + 1.61954i −0.139373 + 0.0577304i −0.451280 0.892382i \(-0.649032\pi\)
0.311907 + 0.950113i \(0.399032\pi\)
\(788\) 1.71502 4.14043i 0.0610951 0.147497i
\(789\) −10.5851 4.38451i −0.376841 0.156093i
\(790\) −3.05959 + 3.05959i −0.108855 + 0.108855i
\(791\) −7.53372 + 7.53372i −0.267868 + 0.267868i
\(792\) 3.61313 + 1.49661i 0.128387 + 0.0531796i
\(793\) −5.14800 + 12.4284i −0.182811 + 0.441344i
\(794\) 4.12265 1.70766i 0.146307 0.0606025i
\(795\) 8.24906i 0.292564i
\(796\) −7.40064 17.8667i −0.262309 0.633269i
\(797\) −19.6224 19.6224i −0.695059 0.695059i 0.268281 0.963341i \(-0.413544\pi\)
−0.963341 + 0.268281i \(0.913544\pi\)
\(798\) 6.43702 0.227868
\(799\) 0 0
\(800\) 3.88915 0.137502
\(801\) −9.66572 9.66572i −0.341522 0.341522i
\(802\) −1.52018 3.67004i −0.0536794 0.129593i
\(803\) 0.551099i 0.0194479i
\(804\) 2.76537 1.14545i 0.0975270 0.0403970i
\(805\) −3.25529 + 7.85897i −0.114734 + 0.276992i
\(806\) −29.8448 12.3621i −1.05124 0.435437i
\(807\) 13.5545 13.5545i 0.477141 0.477141i
\(808\) 4.39782 4.39782i 0.154715 0.154715i
\(809\) 3.76277 + 1.55859i 0.132292 + 0.0547971i 0.447847 0.894110i \(-0.352191\pi\)
−0.315555 + 0.948907i \(0.602191\pi\)
\(810\) 0.609919 1.47247i 0.0214304 0.0517375i
\(811\) 5.80819 2.40583i 0.203953 0.0844802i −0.278368 0.960474i \(-0.589794\pi\)
0.482322 + 0.875994i \(0.339794\pi\)
\(812\) 10.8999i 0.382510i
\(813\) 2.61298 + 6.30830i 0.0916413 + 0.221242i
\(814\) 3.18875 + 3.18875i 0.111766 + 0.111766i
\(815\) −18.8848 −0.661507
\(816\) 0 0
\(817\) 23.4749 0.821282
\(818\) −14.7422 14.7422i −0.515448 0.515448i
\(819\) 1.94174 + 4.68777i 0.0678499 + 0.163804i
\(820\) 35.7430i 1.24820i
\(821\) 18.2926 7.57706i 0.638418 0.264441i −0.0399072 0.999203i \(-0.512706\pi\)
0.678325 + 0.734762i \(0.262706\pi\)
\(822\) 4.47201 10.7964i 0.155979 0.376567i
\(823\) −10.7853 4.46741i −0.375951 0.155724i 0.186703 0.982416i \(-0.440220\pi\)
−0.562654 + 0.826692i \(0.690220\pi\)
\(824\) −24.5584 + 24.5584i −0.855532 + 0.855532i
\(825\) 0.702307 0.702307i 0.0244512 0.0244512i
\(826\) 7.03919 + 2.91573i 0.244925 + 0.101451i
\(827\) −5.31585 + 12.8336i −0.184850 + 0.446268i −0.988954 0.148221i \(-0.952645\pi\)
0.804104 + 0.594488i \(0.202645\pi\)
\(828\) −4.32295 + 1.79063i −0.150233 + 0.0622285i
\(829\) 34.2670i 1.19014i 0.803673 + 0.595071i \(0.202876\pi\)
−0.803673 + 0.595071i \(0.797124\pi\)
\(830\) 8.79127 + 21.2240i 0.305149 + 0.736696i
\(831\) −5.74725 5.74725i −0.199370 0.199370i
\(832\) −11.6241 −0.402992
\(833\) 0 0
\(834\) 3.09372 0.107127
\(835\) −13.0868 13.0868i −0.452888 0.452888i
\(836\) −5.51746 13.3203i −0.190825 0.460693i
\(837\) 10.2700i 0.354982i
\(838\) 9.92079 4.10933i 0.342708 0.141954i
\(839\) 9.27891 22.4013i 0.320344 0.773378i −0.678890 0.734240i \(-0.737539\pi\)
0.999234 0.0391379i \(-0.0124612\pi\)
\(840\) −6.20692 2.57099i −0.214159 0.0887076i
\(841\) 7.05025 7.05025i 0.243112 0.243112i
\(842\) 8.32417 8.32417i 0.286870 0.286870i
\(843\) 10.7235 + 4.44182i 0.369337 + 0.152984i
\(844\) −3.20851 + 7.74603i −0.110442 + 0.266630i
\(845\) −7.48369 + 3.09985i −0.257447 + 0.106638i
\(846\) 1.20116i 0.0412969i
\(847\) 4.13895 + 9.99231i 0.142216 + 0.343340i
\(848\) 2.32050 + 2.32050i 0.0796862 + 0.0796862i
\(849\) −6.06404 −0.208117
\(850\) 0 0
\(851\) −13.0259 −0.446523
\(852\) 0.226626 + 0.226626i 0.00776406 + 0.00776406i
\(853\) 2.82779 + 6.82689i 0.0968217 + 0.233748i 0.964868 0.262735i \(-0.0846245\pi\)
−0.868046 + 0.496483i \(0.834624\pi\)
\(854\) 3.09309i 0.105843i
\(855\) −13.1055 + 5.42849i −0.448200 + 0.185651i
\(856\) 13.0724 31.5596i 0.446806 1.07869i
\(857\) −7.42181 3.07421i −0.253524 0.105013i 0.252302 0.967649i \(-0.418812\pi\)
−0.505826 + 0.862635i \(0.668812\pi\)
\(858\) −3.32871 + 3.32871i −0.113640 + 0.113640i
\(859\) 5.42119 5.42119i 0.184969 0.184969i −0.608548 0.793517i \(-0.708248\pi\)
0.793517 + 0.608548i \(0.208248\pi\)
\(860\) −9.37604 3.88368i −0.319720 0.132432i
\(861\) 5.73445 13.8442i 0.195429 0.471808i
\(862\) 11.5899 4.80071i 0.394755 0.163513i
\(863\) 14.4183i 0.490804i 0.969421 + 0.245402i \(0.0789200\pi\)
−0.969421 + 0.245402i \(0.921080\pi\)
\(864\) −2.24264 5.41421i −0.0762962 0.184195i
\(865\) 18.0336 + 18.0336i 0.613162 + 0.613162i
\(866\) 16.6166 0.564655
\(867\) 0 0
\(868\) −17.9317 −0.608643
\(869\) 2.87302 + 2.87302i 0.0974604 + 0.0974604i
\(870\) 3.80750 + 9.19212i 0.129086 + 0.311642i
\(871\) 8.69833i 0.294732i
\(872\) 2.30864 0.956272i 0.0781806 0.0323834i
\(873\) −1.02734 + 2.48022i −0.0347702 + 0.0839426i
\(874\) −15.9372 6.60141i −0.539084 0.223296i
\(875\) −10.2963 + 10.2963i −0.348079 + 0.348079i
\(876\) 0.368233 0.368233i 0.0124414 0.0124414i
\(877\) −49.7256 20.5970i −1.67912 0.695512i −0.679832 0.733368i \(-0.737947\pi\)
−0.999283 + 0.0378554i \(0.987947\pi\)
\(878\) −6.89189 + 16.6385i −0.232590 + 0.561522i
\(879\) 6.35211 2.63113i 0.214251 0.0887458i
\(880\) 2.58181i 0.0870328i
\(881\) 11.4019 + 27.5265i 0.384138 + 0.927392i 0.991156 + 0.132703i \(0.0423658\pi\)
−0.607018 + 0.794688i \(0.707634\pi\)
\(882\) 2.96342 + 2.96342i 0.0997834 + 0.0997834i
\(883\) 28.2666 0.951247 0.475624 0.879649i \(-0.342222\pi\)
0.475624 + 0.879649i \(0.342222\pi\)
\(884\) 0 0
\(885\) −16.7905 −0.564405
\(886\) −8.34731 8.34731i −0.280433 0.280433i
\(887\) 9.61176 + 23.2049i 0.322731 + 0.779143i 0.999093 + 0.0425732i \(0.0135556\pi\)
−0.676362 + 0.736569i \(0.736444\pi\)
\(888\) 10.2877i 0.345233i
\(889\) −16.1384 + 6.68474i −0.541265 + 0.224199i
\(890\) −8.33722 + 20.1278i −0.279464 + 0.674686i
\(891\) −1.38268 0.572726i −0.0463216 0.0191871i
\(892\) −26.1476 + 26.1476i −0.875488 + 0.875488i
\(893\) 7.55953 7.55953i 0.252970 0.252970i
\(894\) 12.8141 + 5.30778i 0.428568 + 0.177519i
\(895\) 8.46088 20.4264i 0.282816 0.682779i
\(896\) −10.8999 + 4.51487i −0.364139 + 0.150831i
\(897\) 13.5976i 0.454012i
\(898\) −3.96854 9.58091i −0.132432 0.319719i
\(899\) 45.3339 + 45.3339i 1.51197 + 1.51197i
\(900\) −0.938533 −0.0312844
\(901\) 0 0
\(902\) 13.9024 0.462901
\(903\) −3.00850 3.00850i −0.100116 0.100116i
\(904\) 8.62951 + 20.8335i 0.287013 + 0.692912i
\(905\) 34.4166i 1.14405i
\(906\) 3.72739 1.54394i 0.123834 0.0512939i
\(907\) 18.7895 45.3619i 0.623895 1.50622i −0.223199 0.974773i \(-0.571650\pi\)
0.847094 0.531443i \(-0.178350\pi\)
\(908\) 14.3390 + 5.93939i 0.475855 + 0.197106i
\(909\) −1.68297 + 1.68297i −0.0558207 + 0.0558207i
\(910\) 5.71832 5.71832i 0.189561 0.189561i
\(911\) 7.36911 + 3.05238i 0.244149 + 0.101130i 0.501403 0.865214i \(-0.332817\pi\)
−0.257253 + 0.966344i \(0.582817\pi\)
\(912\) −2.15959 + 5.21371i −0.0715111 + 0.172643i
\(913\) 19.9298 8.25518i 0.659579 0.273207i
\(914\) 11.7771i 0.389551i
\(915\) 2.60848 + 6.29743i 0.0862337 + 0.208187i
\(916\) 14.4872 + 14.4872i 0.478670 + 0.478670i
\(917\) 3.19875 0.105632
\(918\) 0 0
\(919\) 19.8027 0.653229 0.326615 0.945158i \(-0.394092\pi\)
0.326615 + 0.945158i \(0.394092\pi\)
\(920\) 12.7309 + 12.7309i 0.419724 + 0.419724i
\(921\) −8.51282 20.5518i −0.280507 0.677204i
\(922\) 15.9201i 0.524300i
\(923\) −0.860474 + 0.356420i −0.0283228 + 0.0117317i
\(924\) −1.00000 + 2.41421i −0.0328976 + 0.0794218i
\(925\) −2.41384 0.999845i −0.0793666 0.0328747i
\(926\) 14.3052 14.3052i 0.470097 0.470097i
\(927\) 9.39809 9.39809i 0.308674 0.308674i
\(928\) 33.7990 + 14.0000i 1.10951 + 0.459573i
\(929\) −2.13327 + 5.15017i −0.0699903 + 0.168972i −0.955004 0.296594i \(-0.904149\pi\)
0.885013 + 0.465566i \(0.154149\pi\)
\(930\) −15.1223 + 6.26385i −0.495879 + 0.205400i
\(931\) 37.3005i 1.22248i
\(932\) −10.3358 24.9528i −0.338560 0.817356i
\(933\) 3.82843 + 3.82843i 0.125337 + 0.125337i
\(934\) −5.48836 −0.179584
\(935\) 0 0
\(936\) 10.7392 0.351023
\(937\) −0.281833 0.281833i −0.00920709 0.00920709i 0.702488 0.711695i \(-0.252072\pi\)
−0.711695 + 0.702488i \(0.752072\pi\)
\(938\) −0.765367 1.84776i −0.0249901 0.0603315i
\(939\) 11.2945i 0.368582i
\(940\) −4.26998 + 1.76868i −0.139271 + 0.0576881i
\(941\) −1.64878 + 3.98050i −0.0537486 + 0.129760i −0.948473 0.316858i \(-0.897372\pi\)
0.894724 + 0.446619i \(0.147372\pi\)
\(942\) −2.68937 1.11397i −0.0876243 0.0362952i
\(943\) −28.3955 + 28.3955i −0.924683 + 0.924683i
\(944\) −4.72323 + 4.72323i −0.153728 + 0.153728i
\(945\) 2.37529 + 0.983875i 0.0772680 + 0.0320055i
\(946\) 1.51058 3.64686i 0.0491131 0.118570i
\(947\) −10.5466 + 4.36856i −0.342720 + 0.141959i −0.547403 0.836869i \(-0.684384\pi\)
0.204683 + 0.978828i \(0.434384\pi\)
\(948\) 3.83938i 0.124697i
\(949\) 0.579129 + 1.39814i 0.0187993 + 0.0453856i
\(950\) −2.44662 2.44662i −0.0793788 0.0793788i
\(951\) 18.4520 0.598346
\(952\) 0 0
\(953\) −40.8932 −1.32466 −0.662330 0.749213i \(-0.730432\pi\)
−0.662330 + 0.749213i \(0.730432\pi\)
\(954\) 2.14386 + 2.14386i 0.0694100 + 0.0694100i
\(955\) −9.57608 23.1187i −0.309875 0.748103i
\(956\) 1.04789i 0.0338912i
\(957\) 8.63160 3.57532i 0.279020 0.115574i
\(958\) 0.859348 2.07465i 0.0277643 0.0670289i
\(959\) 17.4159 + 7.21391i 0.562389 + 0.232949i
\(960\) −4.16478 + 4.16478i −0.134418 + 0.134418i
\(961\) −52.6600 + 52.6600i −1.69871 + 1.69871i
\(962\) 11.4408 + 4.73894i 0.368867 + 0.152790i
\(963\) −5.00260 + 12.0773i −0.161206 + 0.389187i
\(964\) −27.9104 + 11.5609i −0.898935 + 0.372351i
\(965\) 22.3197i 0.718498i
\(966\) 1.19646 + 2.88850i 0.0384954 + 0.0929361i
\(967\) 16.6407 + 16.6407i 0.535130 + 0.535130i 0.922095 0.386965i \(-0.126476\pi\)
−0.386965 + 0.922095i \(0.626476\pi\)
\(968\) 22.8914 0.735758
\(969\) 0 0
\(970\) 4.27865 0.137379
\(971\) −4.55476 4.55476i −0.146169 0.146169i 0.630235 0.776404i \(-0.282958\pi\)
−0.776404 + 0.630235i \(0.782958\pi\)
\(972\) 0.541196 + 1.30656i 0.0173589 + 0.0419080i
\(973\) 4.99055i 0.159990i
\(974\) 16.4346 6.80742i 0.526597 0.218124i
\(975\) 1.04373 2.51978i 0.0334261 0.0806976i
\(976\) 2.50527 + 1.03772i 0.0801918 + 0.0332165i
\(977\) 12.6200 12.6200i 0.403750 0.403750i −0.475802 0.879552i \(-0.657842\pi\)
0.879552 + 0.475802i \(0.157842\pi\)
\(978\) −4.90801 + 4.90801i −0.156941 + 0.156941i
\(979\) 18.9004 + 7.82882i 0.604061 + 0.250210i
\(980\) −6.17100 + 14.8981i −0.197125 + 0.475902i
\(981\) −0.883480 + 0.365949i −0.0282073 + 0.0116839i
\(982\) 10.4538i 0.333595i
\(983\) −9.22941 22.2818i −0.294372 0.710678i −0.999998 0.00209283i \(-0.999334\pi\)
0.705625 0.708585i \(-0.250666\pi\)
\(984\) −22.4264 22.4264i −0.714927 0.714927i
\(985\) 6.59899 0.210261
\(986\) 0 0
\(987\) −1.93763 −0.0616755
\(988\) −27.9956 27.9956i −0.890660 0.890660i
\(989\) 4.36331 + 10.5340i 0.138745 + 0.334961i
\(990\) 2.38528i 0.0758092i
\(991\) −22.3633 + 9.26319i −0.710394 + 0.294255i −0.708468 0.705743i \(-0.750613\pi\)
−0.00192659 + 0.999998i \(0.500613\pi\)
\(992\) −23.0319 + 55.6039i −0.731263 + 1.76542i
\(993\) −5.32714 2.20657i −0.169052 0.0700235i
\(994\) 0.151426 0.151426i 0.00480295 0.00480295i
\(995\) 20.1355 20.1355i 0.638338 0.638338i
\(996\) −18.8326 7.80071i −0.596733 0.247175i
\(997\) −14.1268 + 34.1051i −0.447400 + 1.08012i 0.525892 + 0.850551i \(0.323732\pi\)
−0.973292 + 0.229569i \(0.926268\pi\)
\(998\) 5.32607 2.20613i 0.168594 0.0698338i
\(999\) 3.93694i 0.124559i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.h.g.712.2 8
17.2 even 8 867.2.h.f.757.1 8
17.3 odd 16 867.2.d.e.577.5 8
17.4 even 4 867.2.h.f.733.1 8
17.5 odd 16 867.2.a.n.1.2 4
17.6 odd 16 867.2.e.i.829.3 8
17.7 odd 16 867.2.e.i.616.2 8
17.8 even 8 inner 867.2.h.g.688.2 8
17.9 even 8 51.2.h.a.25.2 8
17.10 odd 16 867.2.e.h.616.2 8
17.11 odd 16 867.2.e.h.829.3 8
17.12 odd 16 867.2.a.m.1.2 4
17.13 even 4 867.2.h.b.733.1 8
17.14 odd 16 867.2.d.e.577.6 8
17.15 even 8 867.2.h.b.757.1 8
17.16 even 2 51.2.h.a.49.2 yes 8
51.5 even 16 2601.2.a.bd.1.3 4
51.26 odd 8 153.2.l.e.127.1 8
51.29 even 16 2601.2.a.bc.1.3 4
51.50 odd 2 153.2.l.e.100.1 8
68.43 odd 8 816.2.bq.a.433.1 8
68.67 odd 2 816.2.bq.a.49.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.h.a.25.2 8 17.9 even 8
51.2.h.a.49.2 yes 8 17.16 even 2
153.2.l.e.100.1 8 51.50 odd 2
153.2.l.e.127.1 8 51.26 odd 8
816.2.bq.a.49.1 8 68.67 odd 2
816.2.bq.a.433.1 8 68.43 odd 8
867.2.a.m.1.2 4 17.12 odd 16
867.2.a.n.1.2 4 17.5 odd 16
867.2.d.e.577.5 8 17.3 odd 16
867.2.d.e.577.6 8 17.14 odd 16
867.2.e.h.616.2 8 17.10 odd 16
867.2.e.h.829.3 8 17.11 odd 16
867.2.e.i.616.2 8 17.7 odd 16
867.2.e.i.829.3 8 17.6 odd 16
867.2.h.b.733.1 8 17.13 even 4
867.2.h.b.757.1 8 17.15 even 8
867.2.h.f.733.1 8 17.4 even 4
867.2.h.f.757.1 8 17.2 even 8
867.2.h.g.688.2 8 17.8 even 8 inner
867.2.h.g.712.2 8 1.1 even 1 trivial
2601.2.a.bc.1.3 4 51.29 even 16
2601.2.a.bd.1.3 4 51.5 even 16