Properties

Label 867.2.d.e.577.6
Level $867$
Weight $2$
Character 867.577
Analytic conductor $6.923$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,2,Mod(577,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.577");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.6
Root \(0.923880 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 867.577
Dual form 867.2.d.e.577.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.765367 q^{2} +1.00000i q^{3} -1.41421 q^{4} -2.08239i q^{5} +0.765367i q^{6} +1.23463i q^{7} -2.61313 q^{8} -1.00000 q^{9} -1.59379i q^{10} -1.49661i q^{11} -1.41421i q^{12} +4.10973 q^{13} +0.944947i q^{14} +2.08239 q^{15} +0.828427 q^{16} -0.765367 q^{18} +6.81204 q^{19} +2.94495i q^{20} -1.23463 q^{21} -1.14545i q^{22} -3.30864i q^{23} -2.61313i q^{24} +0.663643 q^{25} +3.14545 q^{26} -1.00000i q^{27} -1.74603i q^{28} -6.24264i q^{29} +1.59379 q^{30} -10.2700i q^{31} +5.86030 q^{32} +1.49661 q^{33} +2.57099 q^{35} +1.41421 q^{36} -3.93694i q^{37} +5.21371 q^{38} +4.10973i q^{39} +5.44155i q^{40} +12.1371i q^{41} -0.944947 q^{42} +3.44609 q^{43} +2.11652i q^{44} +2.08239i q^{45} -2.53233i q^{46} +1.56940 q^{47} +0.828427i q^{48} +5.47568 q^{49} +0.507930 q^{50} -5.81204 q^{52} -3.96134 q^{53} -0.765367i q^{54} -3.11652 q^{55} -3.22625i q^{56} +6.81204i q^{57} -4.77791i q^{58} -8.06306 q^{59} -2.94495 q^{60} +3.27330i q^{61} -7.86030i q^{62} -1.23463i q^{63} +2.82843 q^{64} -8.55807i q^{65} +1.14545 q^{66} +2.11652 q^{67} +3.30864 q^{69} +1.96775 q^{70} +0.226626i q^{71} +2.61313 q^{72} +0.368233i q^{73} -3.01320i q^{74} +0.663643i q^{75} -9.63368 q^{76} +1.84776 q^{77} +3.14545i q^{78} +2.71485i q^{79} -1.72511i q^{80} +1.00000 q^{81} +9.28931i q^{82} -14.4138 q^{83} +1.74603 q^{84} +2.63752 q^{86} +6.24264 q^{87} +3.91082i q^{88} +13.6694 q^{89} +1.59379i q^{90} +5.07401i q^{91} +4.67913i q^{92} +10.2700 q^{93} +1.20116 q^{94} -14.1853i q^{95} +5.86030i q^{96} +2.68457i q^{97} +4.19090 q^{98} +1.49661i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} - 8 q^{13} + 8 q^{15} - 16 q^{16} + 24 q^{19} - 16 q^{21} - 16 q^{30} - 8 q^{33} + 32 q^{35} + 32 q^{38} + 16 q^{42} - 8 q^{43} + 16 q^{47} + 8 q^{49} + 32 q^{50} - 16 q^{52} - 16 q^{53} - 24 q^{55}+ \cdots + 64 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.765367 0.541196 0.270598 0.962692i \(-0.412779\pi\)
0.270598 + 0.962692i \(0.412779\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −1.41421 −0.707107
\(5\) − 2.08239i − 0.931274i −0.884976 0.465637i \(-0.845825\pi\)
0.884976 0.465637i \(-0.154175\pi\)
\(6\) 0.765367i 0.312460i
\(7\) 1.23463i 0.466647i 0.972399 + 0.233324i \(0.0749602\pi\)
−0.972399 + 0.233324i \(0.925040\pi\)
\(8\) −2.61313 −0.923880
\(9\) −1.00000 −0.333333
\(10\) − 1.59379i − 0.504002i
\(11\) − 1.49661i − 0.451244i −0.974215 0.225622i \(-0.927559\pi\)
0.974215 0.225622i \(-0.0724414\pi\)
\(12\) − 1.41421i − 0.408248i
\(13\) 4.10973 1.13983 0.569917 0.821702i \(-0.306975\pi\)
0.569917 + 0.821702i \(0.306975\pi\)
\(14\) 0.944947i 0.252548i
\(15\) 2.08239 0.537671
\(16\) 0.828427 0.207107
\(17\) 0 0
\(18\) −0.765367 −0.180399
\(19\) 6.81204 1.56279 0.781394 0.624038i \(-0.214509\pi\)
0.781394 + 0.624038i \(0.214509\pi\)
\(20\) 2.94495i 0.658510i
\(21\) −1.23463 −0.269419
\(22\) − 1.14545i − 0.244211i
\(23\) − 3.30864i − 0.689900i −0.938621 0.344950i \(-0.887896\pi\)
0.938621 0.344950i \(-0.112104\pi\)
\(24\) − 2.61313i − 0.533402i
\(25\) 0.663643 0.132729
\(26\) 3.14545 0.616874
\(27\) − 1.00000i − 0.192450i
\(28\) − 1.74603i − 0.329970i
\(29\) − 6.24264i − 1.15923i −0.814891 0.579615i \(-0.803203\pi\)
0.814891 0.579615i \(-0.196797\pi\)
\(30\) 1.59379 0.290986
\(31\) − 10.2700i − 1.84454i −0.386543 0.922271i \(-0.626331\pi\)
0.386543 0.922271i \(-0.373669\pi\)
\(32\) 5.86030 1.03596
\(33\) 1.49661 0.260526
\(34\) 0 0
\(35\) 2.57099 0.434577
\(36\) 1.41421 0.235702
\(37\) − 3.93694i − 0.647229i −0.946189 0.323614i \(-0.895102\pi\)
0.946189 0.323614i \(-0.104898\pi\)
\(38\) 5.21371 0.845775
\(39\) 4.10973i 0.658084i
\(40\) 5.44155i 0.860385i
\(41\) 12.1371i 1.89549i 0.319026 + 0.947746i \(0.396644\pi\)
−0.319026 + 0.947746i \(0.603356\pi\)
\(42\) −0.944947 −0.145809
\(43\) 3.44609 0.525524 0.262762 0.964861i \(-0.415367\pi\)
0.262762 + 0.964861i \(0.415367\pi\)
\(44\) 2.11652i 0.319077i
\(45\) 2.08239i 0.310425i
\(46\) − 2.53233i − 0.373371i
\(47\) 1.56940 0.228920 0.114460 0.993428i \(-0.463486\pi\)
0.114460 + 0.993428i \(0.463486\pi\)
\(48\) 0.828427i 0.119573i
\(49\) 5.47568 0.782240
\(50\) 0.507930 0.0718322
\(51\) 0 0
\(52\) −5.81204 −0.805985
\(53\) −3.96134 −0.544131 −0.272066 0.962279i \(-0.587707\pi\)
−0.272066 + 0.962279i \(0.587707\pi\)
\(54\) − 0.765367i − 0.104153i
\(55\) −3.11652 −0.420231
\(56\) − 3.22625i − 0.431126i
\(57\) 6.81204i 0.902277i
\(58\) − 4.77791i − 0.627370i
\(59\) −8.06306 −1.04972 −0.524861 0.851188i \(-0.675883\pi\)
−0.524861 + 0.851188i \(0.675883\pi\)
\(60\) −2.94495 −0.380191
\(61\) 3.27330i 0.419103i 0.977798 + 0.209551i \(0.0672003\pi\)
−0.977798 + 0.209551i \(0.932800\pi\)
\(62\) − 7.86030i − 0.998259i
\(63\) − 1.23463i − 0.155549i
\(64\) 2.82843 0.353553
\(65\) − 8.55807i − 1.06150i
\(66\) 1.14545 0.140995
\(67\) 2.11652 0.258574 0.129287 0.991607i \(-0.458731\pi\)
0.129287 + 0.991607i \(0.458731\pi\)
\(68\) 0 0
\(69\) 3.30864 0.398314
\(70\) 1.96775 0.235191
\(71\) 0.226626i 0.0268955i 0.999910 + 0.0134478i \(0.00428068\pi\)
−0.999910 + 0.0134478i \(0.995719\pi\)
\(72\) 2.61313 0.307960
\(73\) 0.368233i 0.0430984i 0.999768 + 0.0215492i \(0.00685985\pi\)
−0.999768 + 0.0215492i \(0.993140\pi\)
\(74\) − 3.01320i − 0.350278i
\(75\) 0.663643i 0.0766309i
\(76\) −9.63368 −1.10506
\(77\) 1.84776 0.210572
\(78\) 3.14545i 0.356152i
\(79\) 2.71485i 0.305444i 0.988269 + 0.152722i \(0.0488040\pi\)
−0.988269 + 0.152722i \(0.951196\pi\)
\(80\) − 1.72511i − 0.192873i
\(81\) 1.00000 0.111111
\(82\) 9.28931i 1.02583i
\(83\) −14.4138 −1.58212 −0.791062 0.611736i \(-0.790472\pi\)
−0.791062 + 0.611736i \(0.790472\pi\)
\(84\) 1.74603 0.190508
\(85\) 0 0
\(86\) 2.63752 0.284411
\(87\) 6.24264 0.669281
\(88\) 3.91082i 0.416895i
\(89\) 13.6694 1.44895 0.724477 0.689299i \(-0.242082\pi\)
0.724477 + 0.689299i \(0.242082\pi\)
\(90\) 1.59379i 0.168001i
\(91\) 5.07401i 0.531901i
\(92\) 4.67913i 0.487833i
\(93\) 10.2700 1.06495
\(94\) 1.20116 0.123891
\(95\) − 14.1853i − 1.45538i
\(96\) 5.86030i 0.598115i
\(97\) 2.68457i 0.272577i 0.990669 + 0.136288i \(0.0435173\pi\)
−0.990669 + 0.136288i \(0.956483\pi\)
\(98\) 4.19090 0.423345
\(99\) 1.49661i 0.150415i
\(100\) −0.938533 −0.0938533
\(101\) −2.38009 −0.236827 −0.118414 0.992964i \(-0.537781\pi\)
−0.118414 + 0.992964i \(0.537781\pi\)
\(102\) 0 0
\(103\) −13.2909 −1.30959 −0.654796 0.755806i \(-0.727245\pi\)
−0.654796 + 0.755806i \(0.727245\pi\)
\(104\) −10.7392 −1.05307
\(105\) 2.57099i 0.250903i
\(106\) −3.03188 −0.294482
\(107\) − 13.0724i − 1.26376i −0.775067 0.631879i \(-0.782284\pi\)
0.775067 0.631879i \(-0.217716\pi\)
\(108\) 1.41421i 0.136083i
\(109\) 0.956272i 0.0915942i 0.998951 + 0.0457971i \(0.0145828\pi\)
−0.998951 + 0.0457971i \(0.985417\pi\)
\(110\) −2.38528 −0.227428
\(111\) 3.93694 0.373678
\(112\) 1.02280i 0.0966459i
\(113\) 8.62951i 0.811796i 0.913918 + 0.405898i \(0.133041\pi\)
−0.913918 + 0.405898i \(0.866959\pi\)
\(114\) 5.21371i 0.488309i
\(115\) −6.88989 −0.642486
\(116\) 8.82843i 0.819699i
\(117\) −4.10973 −0.379945
\(118\) −6.17120 −0.568105
\(119\) 0 0
\(120\) −5.44155 −0.496744
\(121\) 8.76017 0.796379
\(122\) 2.50527i 0.226817i
\(123\) −12.1371 −1.09436
\(124\) 14.5239i 1.30429i
\(125\) − 11.7939i − 1.05488i
\(126\) − 0.944947i − 0.0841826i
\(127\) 14.1484 1.25547 0.627734 0.778428i \(-0.283983\pi\)
0.627734 + 0.778428i \(0.283983\pi\)
\(128\) −9.55582 −0.844623
\(129\) 3.44609i 0.303411i
\(130\) − 6.55007i − 0.574479i
\(131\) 2.59085i 0.226364i 0.993574 + 0.113182i \(0.0361043\pi\)
−0.993574 + 0.113182i \(0.963896\pi\)
\(132\) −2.11652 −0.184219
\(133\) 8.41037i 0.729271i
\(134\) 1.61991 0.139939
\(135\) −2.08239 −0.179224
\(136\) 0 0
\(137\) 15.2684 1.30447 0.652233 0.758018i \(-0.273832\pi\)
0.652233 + 0.758018i \(0.273832\pi\)
\(138\) 2.53233 0.215566
\(139\) − 4.04214i − 0.342849i −0.985197 0.171425i \(-0.945163\pi\)
0.985197 0.171425i \(-0.0548370\pi\)
\(140\) −3.63593 −0.307292
\(141\) 1.56940i 0.132167i
\(142\) 0.173452i 0.0145557i
\(143\) − 6.15065i − 0.514343i
\(144\) −0.828427 −0.0690356
\(145\) −12.9996 −1.07956
\(146\) 0.281833i 0.0233247i
\(147\) 5.47568i 0.451627i
\(148\) 5.56767i 0.457660i
\(149\) −18.1219 −1.48460 −0.742302 0.670065i \(-0.766266\pi\)
−0.742302 + 0.670065i \(0.766266\pi\)
\(150\) 0.507930i 0.0414723i
\(151\) −5.27133 −0.428975 −0.214487 0.976727i \(-0.568808\pi\)
−0.214487 + 0.976727i \(0.568808\pi\)
\(152\) −17.8007 −1.44383
\(153\) 0 0
\(154\) 1.41421 0.113961
\(155\) −21.3861 −1.71778
\(156\) − 5.81204i − 0.465335i
\(157\) −3.80334 −0.303540 −0.151770 0.988416i \(-0.548497\pi\)
−0.151770 + 0.988416i \(0.548497\pi\)
\(158\) 2.07786i 0.165305i
\(159\) − 3.96134i − 0.314154i
\(160\) − 12.2034i − 0.964767i
\(161\) 4.08496 0.321940
\(162\) 0.765367 0.0601329
\(163\) 9.06882i 0.710324i 0.934805 + 0.355162i \(0.115574\pi\)
−0.934805 + 0.355162i \(0.884426\pi\)
\(164\) − 17.1644i − 1.34032i
\(165\) − 3.11652i − 0.242621i
\(166\) −11.0319 −0.856240
\(167\) − 8.88764i − 0.687746i −0.939016 0.343873i \(-0.888261\pi\)
0.939016 0.343873i \(-0.111739\pi\)
\(168\) 3.22625 0.248911
\(169\) 3.88989 0.299223
\(170\) 0 0
\(171\) −6.81204 −0.520930
\(172\) −4.87351 −0.371601
\(173\) − 12.2472i − 0.931136i −0.885012 0.465568i \(-0.845850\pi\)
0.885012 0.465568i \(-0.154150\pi\)
\(174\) 4.77791 0.362212
\(175\) 0.819355i 0.0619374i
\(176\) − 1.23983i − 0.0934556i
\(177\) − 8.06306i − 0.606057i
\(178\) 10.4621 0.784168
\(179\) 10.6173 0.793573 0.396787 0.917911i \(-0.370125\pi\)
0.396787 + 0.917911i \(0.370125\pi\)
\(180\) − 2.94495i − 0.219503i
\(181\) 16.5274i 1.22847i 0.789122 + 0.614237i \(0.210536\pi\)
−0.789122 + 0.614237i \(0.789464\pi\)
\(182\) 3.88348i 0.287863i
\(183\) −3.27330 −0.241969
\(184\) 8.64590i 0.637384i
\(185\) −8.19825 −0.602748
\(186\) 7.86030 0.576345
\(187\) 0 0
\(188\) −2.21946 −0.161871
\(189\) 1.23463 0.0898063
\(190\) − 10.8570i − 0.787649i
\(191\) −12.0167 −0.869498 −0.434749 0.900552i \(-0.643163\pi\)
−0.434749 + 0.900552i \(0.643163\pi\)
\(192\) 2.82843i 0.204124i
\(193\) − 10.7183i − 0.771522i −0.922599 0.385761i \(-0.873939\pi\)
0.922599 0.385761i \(-0.126061\pi\)
\(194\) 2.05468i 0.147517i
\(195\) 8.55807 0.612856
\(196\) −7.74378 −0.553127
\(197\) − 3.16895i − 0.225778i −0.993608 0.112889i \(-0.963990\pi\)
0.993608 0.112889i \(-0.0360105\pi\)
\(198\) 1.14545i 0.0814038i
\(199\) 13.6746i 0.969366i 0.874690 + 0.484683i \(0.161065\pi\)
−0.874690 + 0.484683i \(0.838935\pi\)
\(200\) −1.73418 −0.122625
\(201\) 2.11652i 0.149288i
\(202\) −1.82164 −0.128170
\(203\) 7.70737 0.540951
\(204\) 0 0
\(205\) 25.2741 1.76522
\(206\) −10.1724 −0.708746
\(207\) 3.30864i 0.229967i
\(208\) 3.40461 0.236067
\(209\) − 10.1949i − 0.705198i
\(210\) 1.96775i 0.135788i
\(211\) − 5.92856i − 0.408139i −0.978956 0.204069i \(-0.934583\pi\)
0.978956 0.204069i \(-0.0654168\pi\)
\(212\) 5.60218 0.384759
\(213\) −0.226626 −0.0155281
\(214\) − 10.0052i − 0.683941i
\(215\) − 7.17611i − 0.489407i
\(216\) 2.61313i 0.177801i
\(217\) 12.6797 0.860751
\(218\) 0.731899i 0.0495704i
\(219\) −0.368233 −0.0248829
\(220\) 4.40743 0.297149
\(221\) 0 0
\(222\) 3.01320 0.202233
\(223\) −26.1476 −1.75098 −0.875488 0.483240i \(-0.839460\pi\)
−0.875488 + 0.483240i \(0.839460\pi\)
\(224\) 7.23532i 0.483430i
\(225\) −0.663643 −0.0442428
\(226\) 6.60474i 0.439341i
\(227\) − 10.9746i − 0.728408i −0.931319 0.364204i \(-0.881341\pi\)
0.931319 0.364204i \(-0.118659\pi\)
\(228\) − 9.63368i − 0.638006i
\(229\) 14.4872 0.957341 0.478670 0.877995i \(-0.341119\pi\)
0.478670 + 0.877995i \(0.341119\pi\)
\(230\) −5.27330 −0.347711
\(231\) 1.84776i 0.121574i
\(232\) 16.3128i 1.07099i
\(233\) 19.0980i 1.25115i 0.780163 + 0.625577i \(0.215136\pi\)
−0.780163 + 0.625577i \(0.784864\pi\)
\(234\) −3.14545 −0.205625
\(235\) − 3.26810i − 0.213187i
\(236\) 11.4029 0.742265
\(237\) −2.71485 −0.176348
\(238\) 0 0
\(239\) 0.740970 0.0479294 0.0239647 0.999713i \(-0.492371\pi\)
0.0239647 + 0.999713i \(0.492371\pi\)
\(240\) 1.72511 0.111355
\(241\) 21.3617i 1.37603i 0.725696 + 0.688015i \(0.241518\pi\)
−0.725696 + 0.688015i \(0.758482\pi\)
\(242\) 6.70474 0.430997
\(243\) 1.00000i 0.0641500i
\(244\) − 4.62914i − 0.296350i
\(245\) − 11.4025i − 0.728480i
\(246\) −9.28931 −0.592265
\(247\) 27.9956 1.78132
\(248\) 26.8368i 1.70414i
\(249\) − 14.4138i − 0.913440i
\(250\) − 9.02668i − 0.570897i
\(251\) −0.938819 −0.0592577 −0.0296289 0.999561i \(-0.509433\pi\)
−0.0296289 + 0.999561i \(0.509433\pi\)
\(252\) 1.74603i 0.109990i
\(253\) −4.95174 −0.311313
\(254\) 10.8287 0.679454
\(255\) 0 0
\(256\) −12.9706 −0.810660
\(257\) 15.8293 0.987403 0.493701 0.869631i \(-0.335644\pi\)
0.493701 + 0.869631i \(0.335644\pi\)
\(258\) 2.63752i 0.164205i
\(259\) 4.86068 0.302028
\(260\) 12.1029i 0.750593i
\(261\) 6.24264i 0.386410i
\(262\) 1.98295i 0.122507i
\(263\) −11.4573 −0.706486 −0.353243 0.935532i \(-0.614921\pi\)
−0.353243 + 0.935532i \(0.614921\pi\)
\(264\) −3.91082 −0.240694
\(265\) 8.24906i 0.506735i
\(266\) 6.43702i 0.394679i
\(267\) 13.6694i 0.836554i
\(268\) −2.99321 −0.182839
\(269\) 19.1689i 1.16875i 0.811483 + 0.584376i \(0.198661\pi\)
−0.811483 + 0.584376i \(0.801339\pi\)
\(270\) −1.59379 −0.0969952
\(271\) 6.82805 0.414775 0.207387 0.978259i \(-0.433504\pi\)
0.207387 + 0.978259i \(0.433504\pi\)
\(272\) 0 0
\(273\) −5.07401 −0.307093
\(274\) 11.6859 0.705972
\(275\) − 0.993212i − 0.0598929i
\(276\) −4.67913 −0.281650
\(277\) − 8.12784i − 0.488355i −0.969731 0.244177i \(-0.921482\pi\)
0.969731 0.244177i \(-0.0785179\pi\)
\(278\) − 3.09372i − 0.185549i
\(279\) 10.2700i 0.614848i
\(280\) −6.71832 −0.401497
\(281\) −11.6070 −0.692417 −0.346209 0.938158i \(-0.612531\pi\)
−0.346209 + 0.938158i \(0.612531\pi\)
\(282\) 1.20116i 0.0715283i
\(283\) − 6.06404i − 0.360470i −0.983624 0.180235i \(-0.942314\pi\)
0.983624 0.180235i \(-0.0576858\pi\)
\(284\) − 0.320497i − 0.0190180i
\(285\) 14.1853 0.840267
\(286\) − 4.70750i − 0.278360i
\(287\) −14.9848 −0.884527
\(288\) −5.86030 −0.345322
\(289\) 0 0
\(290\) −9.94948 −0.584254
\(291\) −2.68457 −0.157372
\(292\) − 0.520760i − 0.0304752i
\(293\) 6.87547 0.401669 0.200835 0.979625i \(-0.435635\pi\)
0.200835 + 0.979625i \(0.435635\pi\)
\(294\) 4.19090i 0.244419i
\(295\) 16.7905i 0.977578i
\(296\) 10.2877i 0.597962i
\(297\) −1.49661 −0.0868419
\(298\) −13.8699 −0.803462
\(299\) − 13.5976i − 0.786372i
\(300\) − 0.938533i − 0.0541862i
\(301\) 4.25466i 0.245234i
\(302\) −4.03450 −0.232159
\(303\) − 2.38009i − 0.136732i
\(304\) 5.64328 0.323664
\(305\) 6.81629 0.390300
\(306\) 0 0
\(307\) 22.2451 1.26959 0.634797 0.772679i \(-0.281084\pi\)
0.634797 + 0.772679i \(0.281084\pi\)
\(308\) −2.61313 −0.148897
\(309\) − 13.2909i − 0.756093i
\(310\) −16.3682 −0.929653
\(311\) 5.41421i 0.307012i 0.988148 + 0.153506i \(0.0490564\pi\)
−0.988148 + 0.153506i \(0.950944\pi\)
\(312\) − 10.7392i − 0.607990i
\(313\) 11.2945i 0.638403i 0.947687 + 0.319202i \(0.103415\pi\)
−0.947687 + 0.319202i \(0.896585\pi\)
\(314\) −2.91095 −0.164274
\(315\) −2.57099 −0.144859
\(316\) − 3.83938i − 0.215982i
\(317\) 18.4520i 1.03637i 0.855270 + 0.518183i \(0.173391\pi\)
−0.855270 + 0.518183i \(0.826609\pi\)
\(318\) − 3.03188i − 0.170019i
\(319\) −9.34277 −0.523095
\(320\) − 5.88989i − 0.329255i
\(321\) 13.0724 0.729631
\(322\) 3.12649 0.174233
\(323\) 0 0
\(324\) −1.41421 −0.0785674
\(325\) 2.72739 0.151289
\(326\) 6.94097i 0.384425i
\(327\) −0.956272 −0.0528819
\(328\) − 31.7157i − 1.75121i
\(329\) 1.93763i 0.106825i
\(330\) − 2.38528i − 0.131305i
\(331\) −5.76606 −0.316931 −0.158466 0.987365i \(-0.550655\pi\)
−0.158466 + 0.987365i \(0.550655\pi\)
\(332\) 20.3842 1.11873
\(333\) 3.93694i 0.215743i
\(334\) − 6.80231i − 0.372206i
\(335\) − 4.40743i − 0.240803i
\(336\) −1.02280 −0.0557985
\(337\) − 16.2707i − 0.886320i −0.896443 0.443160i \(-0.853857\pi\)
0.896443 0.443160i \(-0.146143\pi\)
\(338\) 2.97720 0.161938
\(339\) −8.62951 −0.468691
\(340\) 0 0
\(341\) −15.3701 −0.832338
\(342\) −5.21371 −0.281925
\(343\) 15.4029i 0.831678i
\(344\) −9.00506 −0.485521
\(345\) − 6.88989i − 0.370939i
\(346\) − 9.37358i − 0.503927i
\(347\) − 4.29038i − 0.230319i −0.993347 0.115160i \(-0.963262\pi\)
0.993347 0.115160i \(-0.0367380\pi\)
\(348\) −8.82843 −0.473253
\(349\) −14.1553 −0.757718 −0.378859 0.925454i \(-0.623683\pi\)
−0.378859 + 0.925454i \(0.623683\pi\)
\(350\) 0.627107i 0.0335203i
\(351\) − 4.10973i − 0.219361i
\(352\) − 8.77056i − 0.467473i
\(353\) 23.8142 1.26750 0.633752 0.773536i \(-0.281514\pi\)
0.633752 + 0.773536i \(0.281514\pi\)
\(354\) − 6.17120i − 0.327996i
\(355\) 0.471923 0.0250471
\(356\) −19.3314 −1.02456
\(357\) 0 0
\(358\) 8.12612 0.429479
\(359\) 35.2676 1.86135 0.930677 0.365841i \(-0.119219\pi\)
0.930677 + 0.365841i \(0.119219\pi\)
\(360\) − 5.44155i − 0.286795i
\(361\) 27.4039 1.44231
\(362\) 12.6495i 0.664845i
\(363\) 8.76017i 0.459790i
\(364\) − 7.17574i − 0.376111i
\(365\) 0.766805 0.0401364
\(366\) −2.50527 −0.130953
\(367\) − 16.3212i − 0.851959i −0.904733 0.425980i \(-0.859930\pi\)
0.904733 0.425980i \(-0.140070\pi\)
\(368\) − 2.74097i − 0.142883i
\(369\) − 12.1371i − 0.631831i
\(370\) −6.27467 −0.326205
\(371\) − 4.89080i − 0.253918i
\(372\) −14.5239 −0.753031
\(373\) −25.0156 −1.29526 −0.647630 0.761955i \(-0.724240\pi\)
−0.647630 + 0.761955i \(0.724240\pi\)
\(374\) 0 0
\(375\) 11.7939 0.609036
\(376\) −4.10103 −0.211495
\(377\) − 25.6556i − 1.32133i
\(378\) 0.944947 0.0486028
\(379\) 32.6281i 1.67599i 0.545675 + 0.837997i \(0.316273\pi\)
−0.545675 + 0.837997i \(0.683727\pi\)
\(380\) 20.0611i 1.02911i
\(381\) 14.1484i 0.724844i
\(382\) −9.19719 −0.470569
\(383\) 0.585258 0.0299053 0.0149526 0.999888i \(-0.495240\pi\)
0.0149526 + 0.999888i \(0.495240\pi\)
\(384\) − 9.55582i − 0.487643i
\(385\) − 3.84776i − 0.196100i
\(386\) − 8.20345i − 0.417545i
\(387\) −3.44609 −0.175175
\(388\) − 3.79655i − 0.192741i
\(389\) 22.1261 1.12184 0.560918 0.827871i \(-0.310448\pi\)
0.560918 + 0.827871i \(0.310448\pi\)
\(390\) 6.55007 0.331675
\(391\) 0 0
\(392\) −14.3086 −0.722696
\(393\) −2.59085 −0.130691
\(394\) − 2.42541i − 0.122190i
\(395\) 5.65338 0.284453
\(396\) − 2.11652i − 0.106359i
\(397\) 5.83031i 0.292615i 0.989239 + 0.146307i \(0.0467388\pi\)
−0.989239 + 0.146307i \(0.953261\pi\)
\(398\) 10.4661i 0.524617i
\(399\) −8.41037 −0.421045
\(400\) 0.549780 0.0274890
\(401\) 5.19021i 0.259187i 0.991567 + 0.129593i \(0.0413672\pi\)
−0.991567 + 0.129593i \(0.958633\pi\)
\(402\) 1.61991i 0.0807940i
\(403\) − 42.2069i − 2.10247i
\(404\) 3.36595 0.167462
\(405\) − 2.08239i − 0.103475i
\(406\) 5.89897 0.292761
\(407\) −5.89205 −0.292058
\(408\) 0 0
\(409\) −27.2400 −1.34693 −0.673465 0.739219i \(-0.735195\pi\)
−0.673465 + 0.739219i \(0.735195\pi\)
\(410\) 19.3440 0.955332
\(411\) 15.2684i 0.753134i
\(412\) 18.7962 0.926021
\(413\) − 9.95492i − 0.489850i
\(414\) 2.53233i 0.124457i
\(415\) 30.0153i 1.47339i
\(416\) 24.0843 1.18083
\(417\) 4.04214 0.197944
\(418\) − 7.80287i − 0.381651i
\(419\) − 14.0301i − 0.685416i −0.939442 0.342708i \(-0.888656\pi\)
0.939442 0.342708i \(-0.111344\pi\)
\(420\) − 3.63593i − 0.177415i
\(421\) 15.3811 0.749627 0.374814 0.927100i \(-0.377707\pi\)
0.374814 + 0.927100i \(0.377707\pi\)
\(422\) − 4.53752i − 0.220883i
\(423\) −1.56940 −0.0763067
\(424\) 10.3515 0.502712
\(425\) 0 0
\(426\) −0.173452 −0.00840376
\(427\) −4.04132 −0.195573
\(428\) 18.4872i 0.893612i
\(429\) 6.15065 0.296956
\(430\) − 5.49236i − 0.264865i
\(431\) 16.3907i 0.789510i 0.918786 + 0.394755i \(0.129171\pi\)
−0.918786 + 0.394755i \(0.870829\pi\)
\(432\) − 0.828427i − 0.0398577i
\(433\) −21.7106 −1.04335 −0.521673 0.853145i \(-0.674692\pi\)
−0.521673 + 0.853145i \(0.674692\pi\)
\(434\) 9.70459 0.465835
\(435\) − 12.9996i − 0.623284i
\(436\) − 1.35237i − 0.0647669i
\(437\) − 22.5386i − 1.07817i
\(438\) −0.281833 −0.0134665
\(439\) 23.5304i 1.12304i 0.827462 + 0.561522i \(0.189784\pi\)
−0.827462 + 0.561522i \(0.810216\pi\)
\(440\) 8.14386 0.388243
\(441\) −5.47568 −0.260747
\(442\) 0 0
\(443\) −15.4238 −0.732808 −0.366404 0.930456i \(-0.619411\pi\)
−0.366404 + 0.930456i \(0.619411\pi\)
\(444\) −5.56767 −0.264230
\(445\) − 28.4650i − 1.34937i
\(446\) −20.0125 −0.947621
\(447\) − 18.1219i − 0.857137i
\(448\) 3.49207i 0.164985i
\(449\) − 13.5494i − 0.639438i −0.947512 0.319719i \(-0.896411\pi\)
0.947512 0.319719i \(-0.103589\pi\)
\(450\) −0.507930 −0.0239441
\(451\) 18.1644 0.855329
\(452\) − 12.2040i − 0.574027i
\(453\) − 5.27133i − 0.247669i
\(454\) − 8.39957i − 0.394211i
\(455\) 10.5661 0.495346
\(456\) − 17.8007i − 0.833595i
\(457\) 15.3875 0.719796 0.359898 0.932992i \(-0.382812\pi\)
0.359898 + 0.932992i \(0.382812\pi\)
\(458\) 11.0880 0.518109
\(459\) 0 0
\(460\) 9.74378 0.454306
\(461\) 20.8006 0.968780 0.484390 0.874852i \(-0.339042\pi\)
0.484390 + 0.874852i \(0.339042\pi\)
\(462\) 1.41421i 0.0657952i
\(463\) −26.4325 −1.22842 −0.614212 0.789141i \(-0.710526\pi\)
−0.614212 + 0.789141i \(0.710526\pi\)
\(464\) − 5.17157i − 0.240084i
\(465\) − 21.3861i − 0.991758i
\(466\) 14.6170i 0.677120i
\(467\) 7.17088 0.331829 0.165914 0.986140i \(-0.446942\pi\)
0.165914 + 0.986140i \(0.446942\pi\)
\(468\) 5.81204 0.268662
\(469\) 2.61313i 0.120663i
\(470\) − 2.50130i − 0.115376i
\(471\) − 3.80334i − 0.175249i
\(472\) 21.0698 0.969816
\(473\) − 5.15744i − 0.237139i
\(474\) −2.07786 −0.0954391
\(475\) 4.52076 0.207427
\(476\) 0 0
\(477\) 3.96134 0.181377
\(478\) 0.567114 0.0259392
\(479\) 2.93400i 0.134058i 0.997751 + 0.0670289i \(0.0213520\pi\)
−0.997751 + 0.0670289i \(0.978648\pi\)
\(480\) 12.2034 0.557009
\(481\) − 16.1798i − 0.737734i
\(482\) 16.3496i 0.744702i
\(483\) 4.08496i 0.185872i
\(484\) −12.3888 −0.563125
\(485\) 5.59032 0.253843
\(486\) 0.765367i 0.0347177i
\(487\) − 23.2420i − 1.05319i −0.850115 0.526597i \(-0.823468\pi\)
0.850115 0.526597i \(-0.176532\pi\)
\(488\) − 8.55354i − 0.387200i
\(489\) −9.06882 −0.410106
\(490\) − 8.72711i − 0.394251i
\(491\) −13.6586 −0.616403 −0.308202 0.951321i \(-0.599727\pi\)
−0.308202 + 0.951321i \(0.599727\pi\)
\(492\) 17.1644 0.773831
\(493\) 0 0
\(494\) 21.4269 0.964044
\(495\) 3.11652 0.140077
\(496\) − 8.50793i − 0.382017i
\(497\) −0.279799 −0.0125507
\(498\) − 11.0319i − 0.494350i
\(499\) 7.53220i 0.337187i 0.985686 + 0.168594i \(0.0539226\pi\)
−0.985686 + 0.168594i \(0.946077\pi\)
\(500\) 16.6791i 0.745913i
\(501\) 8.88764 0.397071
\(502\) −0.718541 −0.0320700
\(503\) 25.7161i 1.14662i 0.819338 + 0.573311i \(0.194341\pi\)
−0.819338 + 0.573311i \(0.805659\pi\)
\(504\) 3.22625i 0.143709i
\(505\) 4.95627i 0.220551i
\(506\) −3.78989 −0.168481
\(507\) 3.88989i 0.172756i
\(508\) −20.0089 −0.887749
\(509\) 34.7796 1.54158 0.770789 0.637090i \(-0.219862\pi\)
0.770789 + 0.637090i \(0.219862\pi\)
\(510\) 0 0
\(511\) −0.454632 −0.0201117
\(512\) 9.18440 0.405897
\(513\) − 6.81204i − 0.300759i
\(514\) 12.1152 0.534379
\(515\) 27.6769i 1.21959i
\(516\) − 4.87351i − 0.214544i
\(517\) − 2.34877i − 0.103299i
\(518\) 3.72020 0.163456
\(519\) 12.2472 0.537591
\(520\) 22.3633i 0.980697i
\(521\) 44.5784i 1.95302i 0.215479 + 0.976508i \(0.430869\pi\)
−0.215479 + 0.976508i \(0.569131\pi\)
\(522\) 4.77791i 0.209123i
\(523\) 19.8918 0.869808 0.434904 0.900477i \(-0.356782\pi\)
0.434904 + 0.900477i \(0.356782\pi\)
\(524\) − 3.66402i − 0.160063i
\(525\) −0.819355 −0.0357596
\(526\) −8.76902 −0.382348
\(527\) 0 0
\(528\) 1.23983 0.0539566
\(529\) 12.0529 0.524038
\(530\) 6.31355i 0.274243i
\(531\) 8.06306 0.349907
\(532\) − 11.8941i − 0.515673i
\(533\) 49.8801i 2.16055i
\(534\) 10.4621i 0.452740i
\(535\) −27.2219 −1.17691
\(536\) −5.53073 −0.238891
\(537\) 10.6173i 0.458170i
\(538\) 14.6713i 0.632524i
\(539\) − 8.19494i − 0.352981i
\(540\) 2.94495 0.126730
\(541\) 0.781382i 0.0335942i 0.999859 + 0.0167971i \(0.00534694\pi\)
−0.999859 + 0.0167971i \(0.994653\pi\)
\(542\) 5.22597 0.224474
\(543\) −16.5274 −0.709259
\(544\) 0 0
\(545\) 1.99133 0.0852993
\(546\) −3.88348 −0.166198
\(547\) 39.0565i 1.66994i 0.550299 + 0.834968i \(0.314514\pi\)
−0.550299 + 0.834968i \(0.685486\pi\)
\(548\) −21.5928 −0.922397
\(549\) − 3.27330i − 0.139701i
\(550\) − 0.760171i − 0.0324138i
\(551\) − 42.5251i − 1.81163i
\(552\) −8.64590 −0.367994
\(553\) −3.35184 −0.142535
\(554\) − 6.22078i − 0.264296i
\(555\) − 8.19825i − 0.347996i
\(556\) 5.71644i 0.242431i
\(557\) −13.0371 −0.552398 −0.276199 0.961100i \(-0.589075\pi\)
−0.276199 + 0.961100i \(0.589075\pi\)
\(558\) 7.86030i 0.332753i
\(559\) 14.1625 0.599010
\(560\) 2.12988 0.0900038
\(561\) 0 0
\(562\) −8.88363 −0.374734
\(563\) −11.2168 −0.472733 −0.236367 0.971664i \(-0.575957\pi\)
−0.236367 + 0.971664i \(0.575957\pi\)
\(564\) − 2.21946i − 0.0934563i
\(565\) 17.9700 0.756005
\(566\) − 4.64121i − 0.195085i
\(567\) 1.23463i 0.0518497i
\(568\) − 0.592201i − 0.0248482i
\(569\) −36.4695 −1.52888 −0.764440 0.644694i \(-0.776985\pi\)
−0.764440 + 0.644694i \(0.776985\pi\)
\(570\) 10.8570 0.454749
\(571\) − 13.5450i − 0.566842i −0.958996 0.283421i \(-0.908531\pi\)
0.958996 0.283421i \(-0.0914693\pi\)
\(572\) 8.69833i 0.363695i
\(573\) − 12.0167i − 0.502005i
\(574\) −11.4689 −0.478702
\(575\) − 2.19576i − 0.0915694i
\(576\) −2.82843 −0.117851
\(577\) −7.10617 −0.295834 −0.147917 0.989000i \(-0.547257\pi\)
−0.147917 + 0.989000i \(0.547257\pi\)
\(578\) 0 0
\(579\) 10.7183 0.445438
\(580\) 18.3842 0.763364
\(581\) − 17.7958i − 0.738294i
\(582\) −2.05468 −0.0851692
\(583\) 5.92856i 0.245536i
\(584\) − 0.962238i − 0.0398177i
\(585\) 8.55807i 0.353833i
\(586\) 5.26226 0.217382
\(587\) −40.2951 −1.66316 −0.831578 0.555408i \(-0.812562\pi\)
−0.831578 + 0.555408i \(0.812562\pi\)
\(588\) − 7.74378i − 0.319348i
\(589\) − 69.9595i − 2.88263i
\(590\) 12.8509i 0.529061i
\(591\) 3.16895 0.130353
\(592\) − 3.26147i − 0.134045i
\(593\) 37.8418 1.55398 0.776989 0.629515i \(-0.216746\pi\)
0.776989 + 0.629515i \(0.216746\pi\)
\(594\) −1.14545 −0.0469985
\(595\) 0 0
\(596\) 25.6282 1.04977
\(597\) −13.6746 −0.559664
\(598\) − 10.4072i − 0.425581i
\(599\) −10.1505 −0.414739 −0.207369 0.978263i \(-0.566490\pi\)
−0.207369 + 0.978263i \(0.566490\pi\)
\(600\) − 1.73418i − 0.0707977i
\(601\) − 35.2538i − 1.43803i −0.694994 0.719016i \(-0.744593\pi\)
0.694994 0.719016i \(-0.255407\pi\)
\(602\) 3.25637i 0.132720i
\(603\) −2.11652 −0.0861914
\(604\) 7.45479 0.303331
\(605\) − 18.2421i − 0.741647i
\(606\) − 1.82164i − 0.0739990i
\(607\) 47.5878i 1.93153i 0.259420 + 0.965764i \(0.416468\pi\)
−0.259420 + 0.965764i \(0.583532\pi\)
\(608\) 39.9206 1.61899
\(609\) 7.70737i 0.312318i
\(610\) 5.21696 0.211229
\(611\) 6.44980 0.260931
\(612\) 0 0
\(613\) −26.9812 −1.08976 −0.544880 0.838514i \(-0.683425\pi\)
−0.544880 + 0.838514i \(0.683425\pi\)
\(614\) 17.0256 0.687099
\(615\) 25.2741i 1.01915i
\(616\) −4.82843 −0.194543
\(617\) 14.9919i 0.603553i 0.953379 + 0.301776i \(0.0975796\pi\)
−0.953379 + 0.301776i \(0.902420\pi\)
\(618\) − 10.1724i − 0.409195i
\(619\) 2.20241i 0.0885225i 0.999020 + 0.0442613i \(0.0140934\pi\)
−0.999020 + 0.0442613i \(0.985907\pi\)
\(620\) 30.2446 1.21465
\(621\) −3.30864 −0.132771
\(622\) 4.14386i 0.166154i
\(623\) 16.8767i 0.676150i
\(624\) 3.40461i 0.136294i
\(625\) −21.2414 −0.849655
\(626\) 8.64444i 0.345501i
\(627\) 10.1949 0.407147
\(628\) 5.37874 0.214635
\(629\) 0 0
\(630\) −1.96775 −0.0783971
\(631\) −34.7230 −1.38230 −0.691151 0.722710i \(-0.742896\pi\)
−0.691151 + 0.722710i \(0.742896\pi\)
\(632\) − 7.09425i − 0.282194i
\(633\) 5.92856 0.235639
\(634\) 14.1225i 0.560877i
\(635\) − 29.4625i − 1.16918i
\(636\) 5.60218i 0.222141i
\(637\) 22.5036 0.891624
\(638\) −7.15065 −0.283097
\(639\) − 0.226626i − 0.00896517i
\(640\) 19.8990i 0.786576i
\(641\) 24.9301i 0.984678i 0.870403 + 0.492339i \(0.163858\pi\)
−0.870403 + 0.492339i \(0.836142\pi\)
\(642\) 10.0052 0.394874
\(643\) − 35.1614i − 1.38663i −0.720634 0.693315i \(-0.756149\pi\)
0.720634 0.693315i \(-0.243851\pi\)
\(644\) −5.77701 −0.227646
\(645\) 7.17611 0.282559
\(646\) 0 0
\(647\) −28.0142 −1.10135 −0.550677 0.834719i \(-0.685630\pi\)
−0.550677 + 0.834719i \(0.685630\pi\)
\(648\) −2.61313 −0.102653
\(649\) 12.0672i 0.473680i
\(650\) 2.08746 0.0818768
\(651\) 12.6797i 0.496955i
\(652\) − 12.8252i − 0.502275i
\(653\) − 37.6735i − 1.47428i −0.675742 0.737138i \(-0.736177\pi\)
0.675742 0.737138i \(-0.263823\pi\)
\(654\) −0.731899 −0.0286195
\(655\) 5.39517 0.210807
\(656\) 10.0547i 0.392569i
\(657\) − 0.368233i − 0.0143661i
\(658\) 1.48300i 0.0578133i
\(659\) −13.5356 −0.527272 −0.263636 0.964622i \(-0.584922\pi\)
−0.263636 + 0.964622i \(0.584922\pi\)
\(660\) 4.40743i 0.171559i
\(661\) 2.00626 0.0780345 0.0390172 0.999239i \(-0.487577\pi\)
0.0390172 + 0.999239i \(0.487577\pi\)
\(662\) −4.41315 −0.171522
\(663\) 0 0
\(664\) 37.6652 1.46169
\(665\) 17.5137 0.679152
\(666\) 3.01320i 0.116759i
\(667\) −20.6547 −0.799752
\(668\) 12.5690i 0.486310i
\(669\) − 26.1476i − 1.01093i
\(670\) − 3.37330i − 0.130322i
\(671\) 4.89884 0.189117
\(672\) −7.23532 −0.279109
\(673\) 16.7634i 0.646180i 0.946368 + 0.323090i \(0.104722\pi\)
−0.946368 + 0.323090i \(0.895278\pi\)
\(674\) − 12.4530i − 0.479673i
\(675\) − 0.663643i − 0.0255436i
\(676\) −5.50114 −0.211582
\(677\) − 23.0647i − 0.886449i −0.896411 0.443225i \(-0.853834\pi\)
0.896411 0.443225i \(-0.146166\pi\)
\(678\) −6.60474 −0.253654
\(679\) −3.31446 −0.127197
\(680\) 0 0
\(681\) 10.9746 0.420546
\(682\) −11.7638 −0.450458
\(683\) 28.0179i 1.07207i 0.844194 + 0.536037i \(0.180079\pi\)
−0.844194 + 0.536037i \(0.819921\pi\)
\(684\) 9.63368 0.368353
\(685\) − 31.7948i − 1.21482i
\(686\) 11.7889i 0.450101i
\(687\) 14.4872i 0.552721i
\(688\) 2.85483 0.108840
\(689\) −16.2800 −0.620220
\(690\) − 5.27330i − 0.200751i
\(691\) 26.6761i 1.01481i 0.861708 + 0.507404i \(0.169395\pi\)
−0.861708 + 0.507404i \(0.830605\pi\)
\(692\) 17.3201i 0.658412i
\(693\) −1.84776 −0.0701906
\(694\) − 3.28371i − 0.124648i
\(695\) −8.41731 −0.319287
\(696\) −16.3128 −0.618335
\(697\) 0 0
\(698\) −10.8340 −0.410074
\(699\) −19.0980 −0.722354
\(700\) − 1.15874i − 0.0437964i
\(701\) −9.75054 −0.368273 −0.184136 0.982901i \(-0.558949\pi\)
−0.184136 + 0.982901i \(0.558949\pi\)
\(702\) − 3.14545i − 0.118717i
\(703\) − 26.8186i − 1.01148i
\(704\) − 4.23304i − 0.159539i
\(705\) 3.26810 0.123084
\(706\) 18.2266 0.685968
\(707\) − 2.93853i − 0.110515i
\(708\) 11.4029i 0.428547i
\(709\) − 28.7535i − 1.07986i −0.841710 0.539929i \(-0.818451\pi\)
0.841710 0.539929i \(-0.181549\pi\)
\(710\) 0.361194 0.0135554
\(711\) − 2.71485i − 0.101815i
\(712\) −35.7199 −1.33866
\(713\) −33.9797 −1.27255
\(714\) 0 0
\(715\) −12.8081 −0.478994
\(716\) −15.0151 −0.561141
\(717\) 0.740970i 0.0276720i
\(718\) 26.9927 1.00736
\(719\) 47.2247i 1.76118i 0.473876 + 0.880592i \(0.342855\pi\)
−0.473876 + 0.880592i \(0.657145\pi\)
\(720\) 1.72511i 0.0642911i
\(721\) − 16.4094i − 0.611118i
\(722\) 20.9740 0.780572
\(723\) −21.3617 −0.794451
\(724\) − 23.3733i − 0.868662i
\(725\) − 4.14288i − 0.153863i
\(726\) 6.70474i 0.248836i
\(727\) −27.7790 −1.03027 −0.515134 0.857110i \(-0.672258\pi\)
−0.515134 + 0.857110i \(0.672258\pi\)
\(728\) − 13.2590i − 0.491412i
\(729\) −1.00000 −0.0370370
\(730\) 0.586887 0.0217217
\(731\) 0 0
\(732\) 4.62914 0.171098
\(733\) 5.38987 0.199080 0.0995398 0.995034i \(-0.468263\pi\)
0.0995398 + 0.995034i \(0.468263\pi\)
\(734\) − 12.4917i − 0.461077i
\(735\) 11.4025 0.420588
\(736\) − 19.3897i − 0.714712i
\(737\) − 3.16760i − 0.116680i
\(738\) − 9.28931i − 0.341944i
\(739\) 3.61782 0.133084 0.0665418 0.997784i \(-0.478803\pi\)
0.0665418 + 0.997784i \(0.478803\pi\)
\(740\) 11.5941 0.426207
\(741\) 27.9956i 1.02845i
\(742\) − 3.74325i − 0.137419i
\(743\) 6.18399i 0.226868i 0.993546 + 0.113434i \(0.0361851\pi\)
−0.993546 + 0.113434i \(0.963815\pi\)
\(744\) −26.8368 −0.983883
\(745\) 37.7369i 1.38257i
\(746\) −19.1461 −0.700990
\(747\) 14.4138 0.527375
\(748\) 0 0
\(749\) 16.1396 0.589730
\(750\) 9.02668 0.329608
\(751\) − 51.3317i − 1.87312i −0.350508 0.936560i \(-0.613991\pi\)
0.350508 0.936560i \(-0.386009\pi\)
\(752\) 1.30013 0.0474109
\(753\) − 0.938819i − 0.0342125i
\(754\) − 19.6359i − 0.715098i
\(755\) 10.9770i 0.399493i
\(756\) −1.74603 −0.0635027
\(757\) −3.83750 −0.139476 −0.0697381 0.997565i \(-0.522216\pi\)
−0.0697381 + 0.997565i \(0.522216\pi\)
\(758\) 24.9725i 0.907041i
\(759\) − 4.95174i − 0.179737i
\(760\) 37.0681i 1.34460i
\(761\) −16.5850 −0.601206 −0.300603 0.953749i \(-0.597188\pi\)
−0.300603 + 0.953749i \(0.597188\pi\)
\(762\) 10.8287i 0.392283i
\(763\) −1.18064 −0.0427422
\(764\) 16.9942 0.614828
\(765\) 0 0
\(766\) 0.447937 0.0161846
\(767\) −33.1370 −1.19651
\(768\) − 12.9706i − 0.468035i
\(769\) −27.7826 −1.00187 −0.500933 0.865486i \(-0.667010\pi\)
−0.500933 + 0.865486i \(0.667010\pi\)
\(770\) − 2.94495i − 0.106129i
\(771\) 15.8293i 0.570077i
\(772\) 15.1580i 0.545548i
\(773\) 13.9509 0.501778 0.250889 0.968016i \(-0.419277\pi\)
0.250889 + 0.968016i \(0.419277\pi\)
\(774\) −2.63752 −0.0948038
\(775\) − 6.81560i − 0.244823i
\(776\) − 7.01511i − 0.251828i
\(777\) 4.86068i 0.174376i
\(778\) 16.9346 0.607133
\(779\) 82.6782i 2.96225i
\(780\) −12.1029 −0.433355
\(781\) 0.339169 0.0121364
\(782\) 0 0
\(783\) −6.24264 −0.223094
\(784\) 4.53620 0.162007
\(785\) 7.92005i 0.282679i
\(786\) −1.98295 −0.0707295
\(787\) 4.23206i 0.150857i 0.997151 + 0.0754284i \(0.0240324\pi\)
−0.997151 + 0.0754284i \(0.975968\pi\)
\(788\) 4.48157i 0.159649i
\(789\) − 11.4573i − 0.407890i
\(790\) 4.32691 0.153945
\(791\) −10.6543 −0.378823
\(792\) − 3.91082i − 0.138965i
\(793\) 13.4524i 0.477708i
\(794\) 4.46232i 0.158362i
\(795\) −8.24906 −0.292564
\(796\) − 19.3388i − 0.685445i
\(797\) 27.7502 0.982962 0.491481 0.870888i \(-0.336456\pi\)
0.491481 + 0.870888i \(0.336456\pi\)
\(798\) −6.43702 −0.227868
\(799\) 0 0
\(800\) 3.88915 0.137502
\(801\) −13.6694 −0.482984
\(802\) 3.97242i 0.140271i
\(803\) 0.551099 0.0194479
\(804\) − 2.99321i − 0.105562i
\(805\) − 8.50649i − 0.299814i
\(806\) − 32.3037i − 1.13785i
\(807\) −19.1689 −0.674779
\(808\) 6.21946 0.218800
\(809\) − 4.07279i − 0.143192i −0.997434 0.0715959i \(-0.977191\pi\)
0.997434 0.0715959i \(-0.0228092\pi\)
\(810\) − 1.59379i − 0.0560002i
\(811\) 6.28674i 0.220757i 0.993890 + 0.110379i \(0.0352064\pi\)
−0.993890 + 0.110379i \(0.964794\pi\)
\(812\) −10.8999 −0.382510
\(813\) 6.82805i 0.239470i
\(814\) −4.50958 −0.158061
\(815\) 18.8848 0.661507
\(816\) 0 0
\(817\) 23.4749 0.821282
\(818\) −20.8486 −0.728954
\(819\) − 5.07401i − 0.177300i
\(820\) −35.7430 −1.24820
\(821\) − 19.7998i − 0.691018i −0.938415 0.345509i \(-0.887706\pi\)
0.938415 0.345509i \(-0.112294\pi\)
\(822\) 11.6859i 0.407593i
\(823\) − 11.6739i − 0.406927i −0.979083 0.203463i \(-0.934780\pi\)
0.979083 0.203463i \(-0.0652198\pi\)
\(824\) 34.7308 1.20991
\(825\) 0.993212 0.0345792
\(826\) − 7.61917i − 0.265105i
\(827\) 13.8910i 0.483037i 0.970396 + 0.241518i \(0.0776454\pi\)
−0.970396 + 0.241518i \(0.922355\pi\)
\(828\) − 4.67913i − 0.162611i
\(829\) −34.2670 −1.19014 −0.595071 0.803673i \(-0.702876\pi\)
−0.595071 + 0.803673i \(0.702876\pi\)
\(830\) 22.9727i 0.797394i
\(831\) 8.12784 0.281952
\(832\) 11.6241 0.402992
\(833\) 0 0
\(834\) 3.09372 0.107127
\(835\) −18.5076 −0.640480
\(836\) 14.4178i 0.498651i
\(837\) −10.2700 −0.354982
\(838\) − 10.7382i − 0.370945i
\(839\) 24.2470i 0.837098i 0.908194 + 0.418549i \(0.137461\pi\)
−0.908194 + 0.418549i \(0.862539\pi\)
\(840\) − 6.71832i − 0.231804i
\(841\) −9.97056 −0.343813
\(842\) 11.7722 0.405695
\(843\) − 11.6070i − 0.399767i
\(844\) 8.38425i 0.288598i
\(845\) − 8.10029i − 0.278658i
\(846\) −1.20116 −0.0412969
\(847\) 10.8156i 0.371628i
\(848\) −3.28168 −0.112693
\(849\) 6.06404 0.208117
\(850\) 0 0
\(851\) −13.0259 −0.446523
\(852\) 0.320497 0.0109800
\(853\) − 7.38937i − 0.253007i −0.991966 0.126504i \(-0.959624\pi\)
0.991966 0.126504i \(-0.0403755\pi\)
\(854\) −3.09309 −0.105843
\(855\) 14.1853i 0.485128i
\(856\) 34.1599i 1.16756i
\(857\) − 8.03331i − 0.274413i −0.990542 0.137206i \(-0.956188\pi\)
0.990542 0.137206i \(-0.0438123\pi\)
\(858\) 4.70750 0.160711
\(859\) 7.66672 0.261585 0.130793 0.991410i \(-0.458248\pi\)
0.130793 + 0.991410i \(0.458248\pi\)
\(860\) 10.1486i 0.346063i
\(861\) − 14.9848i − 0.510682i
\(862\) 12.5449i 0.427280i
\(863\) −14.4183 −0.490804 −0.245402 0.969421i \(-0.578920\pi\)
−0.245402 + 0.969421i \(0.578920\pi\)
\(864\) − 5.86030i − 0.199372i
\(865\) −25.5034 −0.867142
\(866\) −16.6166 −0.564655
\(867\) 0 0
\(868\) −17.9317 −0.608643
\(869\) 4.06306 0.137830
\(870\) − 9.94948i − 0.337319i
\(871\) 8.69833 0.294732
\(872\) − 2.49886i − 0.0846220i
\(873\) − 2.68457i − 0.0908588i
\(874\) − 17.2503i − 0.583500i
\(875\) 14.5612 0.492257
\(876\) 0.520760 0.0175948
\(877\) 53.8226i 1.81746i 0.417383 + 0.908731i \(0.362947\pi\)
−0.417383 + 0.908731i \(0.637053\pi\)
\(878\) 18.0094i 0.607787i
\(879\) 6.87547i 0.231904i
\(880\) −2.58181 −0.0870328
\(881\) 29.7945i 1.00380i 0.864925 + 0.501901i \(0.167366\pi\)
−0.864925 + 0.501901i \(0.832634\pi\)
\(882\) −4.19090 −0.141115
\(883\) −28.2666 −0.951247 −0.475624 0.879649i \(-0.657778\pi\)
−0.475624 + 0.879649i \(0.657778\pi\)
\(884\) 0 0
\(885\) −16.7905 −0.564405
\(886\) −11.8049 −0.396593
\(887\) − 25.1167i − 0.843338i −0.906750 0.421669i \(-0.861444\pi\)
0.906750 0.421669i \(-0.138556\pi\)
\(888\) −10.2877 −0.345233
\(889\) 17.4681i 0.585861i
\(890\) − 21.7862i − 0.730275i
\(891\) − 1.49661i − 0.0501382i
\(892\) 36.9784 1.23813
\(893\) 10.6908 0.357754
\(894\) − 13.8699i − 0.463879i
\(895\) − 22.1094i − 0.739034i
\(896\) − 11.7979i − 0.394141i
\(897\) 13.5976 0.454012
\(898\) − 10.3703i − 0.346061i
\(899\) −64.1118 −2.13825
\(900\) 0.938533 0.0312844
\(901\) 0 0
\(902\) 13.9024 0.462901
\(903\) −4.25466 −0.141586
\(904\) − 22.5500i − 0.750002i
\(905\) 34.4166 1.14405
\(906\) − 4.03450i − 0.134037i
\(907\) 49.0993i 1.63032i 0.579238 + 0.815158i \(0.303350\pi\)
−0.579238 + 0.815158i \(0.696650\pi\)
\(908\) 15.5204i 0.515062i
\(909\) 2.38009 0.0789425
\(910\) 8.08693 0.268079
\(911\) − 7.97626i − 0.264265i −0.991232 0.132133i \(-0.957817\pi\)
0.991232 0.132133i \(-0.0421825\pi\)
\(912\) 5.64328i 0.186868i
\(913\) 21.5718i 0.713924i
\(914\) 11.7771 0.389551
\(915\) 6.81629i 0.225340i
\(916\) −20.4880 −0.676942
\(917\) −3.19875 −0.105632
\(918\) 0 0
\(919\) 19.8027 0.653229 0.326615 0.945158i \(-0.394092\pi\)
0.326615 + 0.945158i \(0.394092\pi\)
\(920\) 18.0042 0.593580
\(921\) 22.2451i 0.733000i
\(922\) 15.9201 0.524300
\(923\) 0.931370i 0.0306564i
\(924\) − 2.61313i − 0.0859655i
\(925\) − 2.61272i − 0.0859058i
\(926\) −20.2306 −0.664818
\(927\) 13.2909 0.436531
\(928\) − 36.5838i − 1.20092i
\(929\) 5.57451i 0.182894i 0.995810 + 0.0914468i \(0.0291491\pi\)
−0.995810 + 0.0914468i \(0.970851\pi\)
\(930\) − 16.3682i − 0.536735i
\(931\) 37.3005 1.22248
\(932\) − 27.0087i − 0.884699i
\(933\) −5.41421 −0.177253
\(934\) 5.48836 0.179584
\(935\) 0 0
\(936\) 10.7392 0.351023
\(937\) −0.398572 −0.0130208 −0.00651039 0.999979i \(-0.502072\pi\)
−0.00651039 + 0.999979i \(0.502072\pi\)
\(938\) 2.00000i 0.0653023i
\(939\) −11.2945 −0.368582
\(940\) 4.62179i 0.150746i
\(941\) − 4.30846i − 0.140452i −0.997531 0.0702259i \(-0.977628\pi\)
0.997531 0.0702259i \(-0.0223720\pi\)
\(942\) − 2.91095i − 0.0948439i
\(943\) 40.1572 1.30770
\(944\) −6.67966 −0.217404
\(945\) − 2.57099i − 0.0836343i
\(946\) − 3.94733i − 0.128339i
\(947\) − 11.4156i − 0.370957i −0.982648 0.185478i \(-0.940616\pi\)
0.982648 0.185478i \(-0.0593835\pi\)
\(948\) 3.83938 0.124697
\(949\) 1.51334i 0.0491250i
\(950\) 3.46004 0.112259
\(951\) −18.4520 −0.598346
\(952\) 0 0
\(953\) −40.8932 −1.32466 −0.662330 0.749213i \(-0.730432\pi\)
−0.662330 + 0.749213i \(0.730432\pi\)
\(954\) 3.03188 0.0981606
\(955\) 25.0235i 0.809741i
\(956\) −1.04789 −0.0338912
\(957\) − 9.34277i − 0.302009i
\(958\) 2.24558i 0.0725515i
\(959\) 18.8509i 0.608726i
\(960\) 5.88989 0.190096
\(961\) −74.4725 −2.40234
\(962\) − 12.3835i − 0.399259i
\(963\) 13.0724i 0.421253i
\(964\) − 30.2100i − 0.973000i
\(965\) −22.3197 −0.718498
\(966\) 3.12649i 0.100593i
\(967\) −23.5335 −0.756788 −0.378394 0.925645i \(-0.623524\pi\)
−0.378394 + 0.925645i \(0.623524\pi\)
\(968\) −22.8914 −0.735758
\(969\) 0 0
\(970\) 4.27865 0.137379
\(971\) −6.44140 −0.206714 −0.103357 0.994644i \(-0.532958\pi\)
−0.103357 + 0.994644i \(0.532958\pi\)
\(972\) − 1.41421i − 0.0453609i
\(973\) 4.99055 0.159990
\(974\) − 17.7886i − 0.569985i
\(975\) 2.72739i 0.0873465i
\(976\) 2.71169i 0.0867990i
\(977\) −17.8474 −0.570989 −0.285495 0.958380i \(-0.592158\pi\)
−0.285495 + 0.958380i \(0.592158\pi\)
\(978\) −6.94097 −0.221948
\(979\) − 20.4577i − 0.653831i
\(980\) 16.1256i 0.515113i
\(981\) − 0.956272i − 0.0305314i
\(982\) −10.4538 −0.333595
\(983\) − 24.1176i − 0.769232i −0.923077 0.384616i \(-0.874334\pi\)
0.923077 0.384616i \(-0.125666\pi\)
\(984\) 31.7157 1.01106
\(985\) −6.59899 −0.210261
\(986\) 0 0
\(987\) −1.93763 −0.0616755
\(988\) −39.5918 −1.25958
\(989\) − 11.4019i − 0.362559i
\(990\) 2.38528 0.0758092
\(991\) 24.2059i 0.768925i 0.923141 + 0.384463i \(0.125613\pi\)
−0.923141 + 0.384463i \(0.874387\pi\)
\(992\) − 60.1852i − 1.91088i
\(993\) − 5.76606i − 0.182980i
\(994\) −0.214149 −0.00679240
\(995\) 28.4759 0.902746
\(996\) 20.3842i 0.645900i
\(997\) 36.9151i 1.16911i 0.811353 + 0.584557i \(0.198732\pi\)
−0.811353 + 0.584557i \(0.801268\pi\)
\(998\) 5.76489i 0.182484i
\(999\) −3.93694 −0.124559
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.d.e.577.6 8
17.2 even 8 867.2.e.h.829.3 8
17.3 odd 16 867.2.h.g.688.2 8
17.4 even 4 867.2.a.n.1.2 4
17.5 odd 16 867.2.h.f.757.1 8
17.6 odd 16 51.2.h.a.49.2 yes 8
17.7 odd 16 867.2.h.b.733.1 8
17.8 even 8 867.2.e.h.616.2 8
17.9 even 8 867.2.e.i.616.2 8
17.10 odd 16 867.2.h.f.733.1 8
17.11 odd 16 867.2.h.g.712.2 8
17.12 odd 16 867.2.h.b.757.1 8
17.13 even 4 867.2.a.m.1.2 4
17.14 odd 16 51.2.h.a.25.2 8
17.15 even 8 867.2.e.i.829.3 8
17.16 even 2 inner 867.2.d.e.577.5 8
51.14 even 16 153.2.l.e.127.1 8
51.23 even 16 153.2.l.e.100.1 8
51.38 odd 4 2601.2.a.bd.1.3 4
51.47 odd 4 2601.2.a.bc.1.3 4
68.23 even 16 816.2.bq.a.49.1 8
68.31 even 16 816.2.bq.a.433.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.h.a.25.2 8 17.14 odd 16
51.2.h.a.49.2 yes 8 17.6 odd 16
153.2.l.e.100.1 8 51.23 even 16
153.2.l.e.127.1 8 51.14 even 16
816.2.bq.a.49.1 8 68.23 even 16
816.2.bq.a.433.1 8 68.31 even 16
867.2.a.m.1.2 4 17.13 even 4
867.2.a.n.1.2 4 17.4 even 4
867.2.d.e.577.5 8 17.16 even 2 inner
867.2.d.e.577.6 8 1.1 even 1 trivial
867.2.e.h.616.2 8 17.8 even 8
867.2.e.h.829.3 8 17.2 even 8
867.2.e.i.616.2 8 17.9 even 8
867.2.e.i.829.3 8 17.15 even 8
867.2.h.b.733.1 8 17.7 odd 16
867.2.h.b.757.1 8 17.12 odd 16
867.2.h.f.733.1 8 17.10 odd 16
867.2.h.f.757.1 8 17.5 odd 16
867.2.h.g.688.2 8 17.3 odd 16
867.2.h.g.712.2 8 17.11 odd 16
2601.2.a.bc.1.3 4 51.47 odd 4
2601.2.a.bd.1.3 4 51.38 odd 4