Properties

Label 867.2.h.g
Level 867867
Weight 22
Character orbit 867.h
Analytic conductor 6.9236.923
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,2,Mod(688,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.688");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 867=3172 867 = 3 \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 867.h (of order 88, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.923029855256.92302985525
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ8)\Q(\zeta_{8})
Coefficient field: Q(ζ16)\Q(\zeta_{16})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+1 x^{8} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: SU(2)[C8]\mathrm{SU}(2)[C_{8}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ16\zeta_{16}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ163+ζ16)q2ζ167q3+(ζ166+ζ162)q4+(ζ166+ζ164++1)q5+(ζ162+1)q6+(ζ166+ζ164)q7++(ζ167+ζ166+1)q99+O(q100) q + (\zeta_{16}^{3} + \zeta_{16}) q^{2} - \zeta_{16}^{7} q^{3} + (\zeta_{16}^{6} + \zeta_{16}^{2}) q^{4} + (\zeta_{16}^{6} + \zeta_{16}^{4} + \cdots + 1) q^{5} + (\zeta_{16}^{2} + 1) q^{6} + ( - \zeta_{16}^{6} + \cdots - \zeta_{16}^{4}) q^{7} + \cdots + ( - \zeta_{16}^{7} + \zeta_{16}^{6} + \cdots - 1) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+8q5+8q68q11+16q14+16q168q1916q20+8q228q238q2416q25+16q26+8q288q31+8q33+32q35+8q36+8q37+8q99+O(q100) 8 q + 8 q^{5} + 8 q^{6} - 8 q^{11} + 16 q^{14} + 16 q^{16} - 8 q^{19} - 16 q^{20} + 8 q^{22} - 8 q^{23} - 8 q^{24} - 16 q^{25} + 16 q^{26} + 8 q^{28} - 8 q^{31} + 8 q^{33} + 32 q^{35} + 8 q^{36} + 8 q^{37}+ \cdots - 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/867Z)×\left(\mathbb{Z}/867\mathbb{Z}\right)^\times.

nn 290290 292292
χ(n)\chi(n) 11 ζ166-\zeta_{16}^{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
688.1
0.382683 + 0.923880i
−0.382683 0.923880i
0.382683 0.923880i
−0.382683 + 0.923880i
−0.923880 0.382683i
0.923880 + 0.382683i
−0.923880 + 0.382683i
0.923880 0.382683i
−0.541196 + 0.541196i 0.382683 0.923880i 1.41421i 0.0761205 + 0.0315301i 0.292893 + 0.707107i −2.55487 + 1.05826i −1.84776 1.84776i −0.707107 0.707107i −0.0582601 + 0.0241321i
688.2 0.541196 0.541196i −0.382683 + 0.923880i 1.41421i 1.92388 + 0.796897i 0.292893 + 0.707107i 1.14065 0.472474i 1.84776 + 1.84776i −0.707107 0.707107i 1.47247 0.609919i
712.1 −0.541196 0.541196i 0.382683 + 0.923880i 1.41421i 0.0761205 0.0315301i 0.292893 0.707107i −2.55487 1.05826i −1.84776 + 1.84776i −0.707107 + 0.707107i −0.0582601 0.0241321i
712.2 0.541196 + 0.541196i −0.382683 0.923880i 1.41421i 1.92388 0.796897i 0.292893 0.707107i 1.14065 + 0.472474i 1.84776 1.84776i −0.707107 + 0.707107i 1.47247 + 0.609919i
733.1 −1.30656 1.30656i −0.923880 + 0.382683i 1.41421i 0.617317 + 1.49033i 1.70711 + 0.707107i −0.0582601 + 0.140652i −0.765367 + 0.765367i 0.707107 0.707107i 1.14065 2.75378i
733.2 1.30656 + 1.30656i 0.923880 0.382683i 1.41421i 1.38268 + 3.33809i 1.70711 + 0.707107i 1.47247 3.55487i 0.765367 0.765367i 0.707107 0.707107i −2.55487 + 6.16799i
757.1 −1.30656 + 1.30656i −0.923880 0.382683i 1.41421i 0.617317 1.49033i 1.70711 0.707107i −0.0582601 0.140652i −0.765367 0.765367i 0.707107 + 0.707107i 1.14065 + 2.75378i
757.2 1.30656 1.30656i 0.923880 + 0.382683i 1.41421i 1.38268 3.33809i 1.70711 0.707107i 1.47247 + 3.55487i 0.765367 + 0.765367i 0.707107 + 0.707107i −2.55487 6.16799i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 688.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.d even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 867.2.h.g 8
17.b even 2 1 51.2.h.a 8
17.c even 4 1 867.2.h.b 8
17.c even 4 1 867.2.h.f 8
17.d even 8 1 51.2.h.a 8
17.d even 8 1 867.2.h.b 8
17.d even 8 1 867.2.h.f 8
17.d even 8 1 inner 867.2.h.g 8
17.e odd 16 1 867.2.a.m 4
17.e odd 16 1 867.2.a.n 4
17.e odd 16 2 867.2.d.e 8
17.e odd 16 2 867.2.e.h 8
17.e odd 16 2 867.2.e.i 8
51.c odd 2 1 153.2.l.e 8
51.g odd 8 1 153.2.l.e 8
51.i even 16 1 2601.2.a.bc 4
51.i even 16 1 2601.2.a.bd 4
68.d odd 2 1 816.2.bq.a 8
68.g odd 8 1 816.2.bq.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.2.h.a 8 17.b even 2 1
51.2.h.a 8 17.d even 8 1
153.2.l.e 8 51.c odd 2 1
153.2.l.e 8 51.g odd 8 1
816.2.bq.a 8 68.d odd 2 1
816.2.bq.a 8 68.g odd 8 1
867.2.a.m 4 17.e odd 16 1
867.2.a.n 4 17.e odd 16 1
867.2.d.e 8 17.e odd 16 2
867.2.e.h 8 17.e odd 16 2
867.2.e.i 8 17.e odd 16 2
867.2.h.b 8 17.c even 4 1
867.2.h.b 8 17.d even 8 1
867.2.h.f 8 17.c even 4 1
867.2.h.f 8 17.d even 8 1
867.2.h.g 8 1.a even 1 1 trivial
867.2.h.g 8 17.d even 8 1 inner
2601.2.a.bc 4 51.i even 16 1
2601.2.a.bd 4 51.i even 16 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(867,[χ])S_{2}^{\mathrm{new}}(867, [\chi]):

T28+12T24+4 T_{2}^{8} + 12T_{2}^{4} + 4 Copy content Toggle raw display
T588T57+40T56120T55+224T54264T53+184T5224T5+1 T_{5}^{8} - 8T_{5}^{7} + 40T_{5}^{6} - 120T_{5}^{5} + 224T_{5}^{4} - 264T_{5}^{3} + 184T_{5}^{2} - 24T_{5} + 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8+12T4+4 T^{8} + 12T^{4} + 4 Copy content Toggle raw display
33 T8+1 T^{8} + 1 Copy content Toggle raw display
55 T88T7++1 T^{8} - 8 T^{7} + \cdots + 1 Copy content Toggle raw display
77 T8+4T6++4 T^{8} + 4 T^{6} + \cdots + 4 Copy content Toggle raw display
1111 T8+8T7++1 T^{8} + 8 T^{7} + \cdots + 1 Copy content Toggle raw display
1313 T8+44T6++2209 T^{8} + 44 T^{6} + \cdots + 2209 Copy content Toggle raw display
1717 T8 T^{8} Copy content Toggle raw display
1919 T8+8T7++134689 T^{8} + 8 T^{7} + \cdots + 134689 Copy content Toggle raw display
2323 T8+8T7++73441 T^{8} + 8 T^{7} + \cdots + 73441 Copy content Toggle raw display
2929 T848T6++38416 T^{8} - 48 T^{6} + \cdots + 38416 Copy content Toggle raw display
3131 T8+8T7++399424 T^{8} + 8 T^{7} + \cdots + 399424 Copy content Toggle raw display
3737 T88T7++498436 T^{8} - 8 T^{7} + \cdots + 498436 Copy content Toggle raw display
4141 T824T7++1 T^{8} - 24 T^{7} + \cdots + 1 Copy content Toggle raw display
4343 T8+8T7++1682209 T^{8} + 8 T^{7} + \cdots + 1682209 Copy content Toggle raw display
4747 T8+208T6++565504 T^{8} + 208 T^{6} + \cdots + 565504 Copy content Toggle raw display
5353 T8+32T7++246016 T^{8} + 32 T^{7} + \cdots + 246016 Copy content Toggle raw display
5959 T816T7++264196 T^{8} - 16 T^{7} + \cdots + 264196 Copy content Toggle raw display
6161 T8+16T7++1110916 T^{8} + 16 T^{7} + \cdots + 1110916 Copy content Toggle raw display
6767 (T4+8T3+4T2++4)2 (T^{4} + 8 T^{3} + 4 T^{2} + \cdots + 4)^{2} Copy content Toggle raw display
7171 T816T7++4624 T^{8} - 16 T^{7} + \cdots + 4624 Copy content Toggle raw display
7373 T8+48T7++565504 T^{8} + 48 T^{7} + \cdots + 565504 Copy content Toggle raw display
7979 T8+36T6++3844 T^{8} + 36 T^{6} + \cdots + 3844 Copy content Toggle raw display
8383 T832T7++73984 T^{8} - 32 T^{7} + \cdots + 73984 Copy content Toggle raw display
8989 T8+296T6++6543364 T^{8} + 296 T^{6} + \cdots + 6543364 Copy content Toggle raw display
9797 T8+8T7++399424 T^{8} + 8 T^{7} + \cdots + 399424 Copy content Toggle raw display
show more
show less