Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [867,2,Mod(688,867)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(867, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("867.688");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 867.h (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 51) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
688.1 |
|
−0.541196 | + | 0.541196i | 0.382683 | − | 0.923880i | 1.41421i | 0.0761205 | + | 0.0315301i | 0.292893 | + | 0.707107i | −2.55487 | + | 1.05826i | −1.84776 | − | 1.84776i | −0.707107 | − | 0.707107i | −0.0582601 | + | 0.0241321i | ||||||||||||||||||||||||||
688.2 | 0.541196 | − | 0.541196i | −0.382683 | + | 0.923880i | 1.41421i | 1.92388 | + | 0.796897i | 0.292893 | + | 0.707107i | 1.14065 | − | 0.472474i | 1.84776 | + | 1.84776i | −0.707107 | − | 0.707107i | 1.47247 | − | 0.609919i | |||||||||||||||||||||||||||
712.1 | −0.541196 | − | 0.541196i | 0.382683 | + | 0.923880i | − | 1.41421i | 0.0761205 | − | 0.0315301i | 0.292893 | − | 0.707107i | −2.55487 | − | 1.05826i | −1.84776 | + | 1.84776i | −0.707107 | + | 0.707107i | −0.0582601 | − | 0.0241321i | ||||||||||||||||||||||||||
712.2 | 0.541196 | + | 0.541196i | −0.382683 | − | 0.923880i | − | 1.41421i | 1.92388 | − | 0.796897i | 0.292893 | − | 0.707107i | 1.14065 | + | 0.472474i | 1.84776 | − | 1.84776i | −0.707107 | + | 0.707107i | 1.47247 | + | 0.609919i | ||||||||||||||||||||||||||
733.1 | −1.30656 | − | 1.30656i | −0.923880 | + | 0.382683i | 1.41421i | 0.617317 | + | 1.49033i | 1.70711 | + | 0.707107i | −0.0582601 | + | 0.140652i | −0.765367 | + | 0.765367i | 0.707107 | − | 0.707107i | 1.14065 | − | 2.75378i | |||||||||||||||||||||||||||
733.2 | 1.30656 | + | 1.30656i | 0.923880 | − | 0.382683i | 1.41421i | 1.38268 | + | 3.33809i | 1.70711 | + | 0.707107i | 1.47247 | − | 3.55487i | 0.765367 | − | 0.765367i | 0.707107 | − | 0.707107i | −2.55487 | + | 6.16799i | |||||||||||||||||||||||||||
757.1 | −1.30656 | + | 1.30656i | −0.923880 | − | 0.382683i | − | 1.41421i | 0.617317 | − | 1.49033i | 1.70711 | − | 0.707107i | −0.0582601 | − | 0.140652i | −0.765367 | − | 0.765367i | 0.707107 | + | 0.707107i | 1.14065 | + | 2.75378i | ||||||||||||||||||||||||||
757.2 | 1.30656 | − | 1.30656i | 0.923880 | + | 0.382683i | − | 1.41421i | 1.38268 | − | 3.33809i | 1.70711 | − | 0.707107i | 1.47247 | + | 3.55487i | 0.765367 | + | 0.765367i | 0.707107 | + | 0.707107i | −2.55487 | − | 6.16799i | ||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.d | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 867.2.h.g | 8 | |
17.b | even | 2 | 1 | 51.2.h.a | ✓ | 8 | |
17.c | even | 4 | 1 | 867.2.h.b | 8 | ||
17.c | even | 4 | 1 | 867.2.h.f | 8 | ||
17.d | even | 8 | 1 | 51.2.h.a | ✓ | 8 | |
17.d | even | 8 | 1 | 867.2.h.b | 8 | ||
17.d | even | 8 | 1 | 867.2.h.f | 8 | ||
17.d | even | 8 | 1 | inner | 867.2.h.g | 8 | |
17.e | odd | 16 | 1 | 867.2.a.m | 4 | ||
17.e | odd | 16 | 1 | 867.2.a.n | 4 | ||
17.e | odd | 16 | 2 | 867.2.d.e | 8 | ||
17.e | odd | 16 | 2 | 867.2.e.h | 8 | ||
17.e | odd | 16 | 2 | 867.2.e.i | 8 | ||
51.c | odd | 2 | 1 | 153.2.l.e | 8 | ||
51.g | odd | 8 | 1 | 153.2.l.e | 8 | ||
51.i | even | 16 | 1 | 2601.2.a.bc | 4 | ||
51.i | even | 16 | 1 | 2601.2.a.bd | 4 | ||
68.d | odd | 2 | 1 | 816.2.bq.a | 8 | ||
68.g | odd | 8 | 1 | 816.2.bq.a | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
51.2.h.a | ✓ | 8 | 17.b | even | 2 | 1 | |
51.2.h.a | ✓ | 8 | 17.d | even | 8 | 1 | |
153.2.l.e | 8 | 51.c | odd | 2 | 1 | ||
153.2.l.e | 8 | 51.g | odd | 8 | 1 | ||
816.2.bq.a | 8 | 68.d | odd | 2 | 1 | ||
816.2.bq.a | 8 | 68.g | odd | 8 | 1 | ||
867.2.a.m | 4 | 17.e | odd | 16 | 1 | ||
867.2.a.n | 4 | 17.e | odd | 16 | 1 | ||
867.2.d.e | 8 | 17.e | odd | 16 | 2 | ||
867.2.e.h | 8 | 17.e | odd | 16 | 2 | ||
867.2.e.i | 8 | 17.e | odd | 16 | 2 | ||
867.2.h.b | 8 | 17.c | even | 4 | 1 | ||
867.2.h.b | 8 | 17.d | even | 8 | 1 | ||
867.2.h.f | 8 | 17.c | even | 4 | 1 | ||
867.2.h.f | 8 | 17.d | even | 8 | 1 | ||
867.2.h.g | 8 | 1.a | even | 1 | 1 | trivial | |
867.2.h.g | 8 | 17.d | even | 8 | 1 | inner | |
2601.2.a.bc | 4 | 51.i | even | 16 | 1 | ||
2601.2.a.bd | 4 | 51.i | even | 16 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|