L(s) = 1 | + (1.81 − 1.81i)2-s + (0.382 − 0.923i)3-s − 4.56i·4-s + (−3.29 − 1.36i)5-s + (−0.980 − 2.36i)6-s + (−4.63 − 4.63i)8-s + (−0.707 − 0.707i)9-s + (−8.42 + 3.49i)10-s + (0.597 + 1.44i)11-s + (−4.21 − 1.74i)12-s + 0.438i·13-s + (−2.51 + 2.51i)15-s − 7.68·16-s − 2.56·18-s + (3.31 − 3.31i)19-s + (−6.21 + 15.0i)20-s + ⋯ |
L(s) = 1 | + (1.28 − 1.28i)2-s + (0.220 − 0.533i)3-s − 2.28i·4-s + (−1.47 − 0.609i)5-s + (−0.400 − 0.966i)6-s + (−1.64 − 1.64i)8-s + (−0.235 − 0.235i)9-s + (−2.66 + 1.10i)10-s + (0.180 + 0.434i)11-s + (−1.21 − 0.503i)12-s + 0.121i·13-s + (−0.650 + 0.650i)15-s − 1.92·16-s − 0.603·18-s + (0.759 − 0.759i)19-s + (−1.39 + 3.35i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.750 - 0.660i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 867 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.750 - 0.660i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.757026 + 2.00581i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.757026 + 2.00581i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.382 + 0.923i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (-1.81 + 1.81i)T - 2iT^{2} \) |
| 5 | \( 1 + (3.29 + 1.36i)T + (3.53 + 3.53i)T^{2} \) |
| 7 | \( 1 + (4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (-0.597 - 1.44i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 - 0.438iT - 13T^{2} \) |
| 19 | \( 1 + (-3.31 + 3.31i)T - 19iT^{2} \) |
| 23 | \( 1 + (-0.933 - 2.25i)T + (-16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (7.61 + 3.15i)T + (20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (-1.19 + 2.88i)T + (-21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (-1.96 + 4.73i)T + (-26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (-3.29 + 1.36i)T + (28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (3.31 + 3.31i)T + 43iT^{2} \) |
| 47 | \( 1 + 11.1iT - 47T^{2} \) |
| 53 | \( 1 + (8.65 - 8.65i)T - 53iT^{2} \) |
| 59 | \( 1 + (-5.03 - 5.03i)T + 59iT^{2} \) |
| 61 | \( 1 + (-8.42 + 3.49i)T + (43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 + (-2.39 + 5.77i)T + (-50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (-11.3 - 4.68i)T + (51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (3.58 + 8.65i)T + (-55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (0.620 - 0.620i)T - 83iT^{2} \) |
| 89 | \( 1 - 1.12iT - 89T^{2} \) |
| 97 | \( 1 + (2.65 + 1.10i)T + (68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.770380025421790496265724467442, −9.010292891012436839141435844457, −7.82861144252545397339028609383, −7.08295957246280240538629898219, −5.75283896040336432255854553665, −4.81023436042222630387828238812, −4.01316775967871790647930559604, −3.28360464815967888885707128000, −2.02240771998267937032846080967, −0.67423871272799788294863248285,
3.12871371280771715206270827850, 3.57057589002874204818373029215, 4.44892409561905685475486946180, 5.31874939051413367824057901052, 6.37721445776640230683774761374, 7.17543774931723103718054193593, 7.964130175205772935570374675690, 8.412525874548706015904862757594, 9.725298336038569323660693150237, 11.06539955078114013448904030124