Properties

Label 867.2.h.j.688.4
Level $867$
Weight $2$
Character 867.688
Analytic conductor $6.923$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,2,Mod(688,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.688");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.h (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: 16.0.1963501163244660295991296.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 1889x^{8} + 65536 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 688.4
Root \(-2.36657 + 0.980264i\) of defining polynomial
Character \(\chi\) \(=\) 867.688
Dual form 867.2.h.j.712.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.81129 - 1.81129i) q^{2} +(0.382683 - 0.923880i) q^{3} -4.56155i q^{4} +(-3.29045 - 1.36295i) q^{5} +(-0.980264 - 2.36657i) q^{6} +(-4.63972 - 4.63972i) q^{8} +(-0.707107 - 0.707107i) q^{9} +(-8.42865 + 3.49126i) q^{10} +(0.597580 + 1.44269i) q^{11} +(-4.21433 - 1.74563i) q^{12} +0.438447i q^{13} +(-2.51840 + 2.51840i) q^{15} -7.68466 q^{16} -2.56155 q^{18} +(3.31255 - 3.31255i) q^{19} +(-6.21716 + 15.0095i) q^{20} +(3.69552 + 1.53073i) q^{22} +(0.933153 + 2.25283i) q^{23} +(-6.06208 + 2.51100i) q^{24} +(5.43387 + 5.43387i) q^{25} +(0.794156 + 0.794156i) q^{26} +(-0.923880 + 0.382683i) q^{27} +(-7.61851 - 3.15569i) q^{29} +9.12311i q^{30} +(1.19516 - 2.88537i) q^{31} +(-4.63972 + 4.63972i) q^{32} +1.56155 q^{33} +(-3.22550 + 3.22550i) q^{36} +(1.96053 - 4.73313i) q^{37} -12.0000i q^{38} +(0.405072 + 0.167786i) q^{39} +(8.94305 + 21.5904i) q^{40} +(3.29045 - 1.36295i) q^{41} +(-3.31255 - 3.31255i) q^{43} +(6.58089 - 2.72589i) q^{44} +(1.36295 + 3.29045i) q^{45} +(5.77075 + 2.39032i) q^{46} -11.1231i q^{47} +(-2.94079 + 7.09970i) q^{48} +(-4.94975 + 4.94975i) q^{49} +19.6847 q^{50} +2.00000 q^{52} +(-8.65938 + 8.65938i) q^{53} +(-0.980264 + 2.36657i) q^{54} -5.56155i q^{55} +(-1.79274 - 4.32806i) q^{57} +(-19.5152 + 8.08346i) q^{58} +(5.03680 + 5.03680i) q^{59} +(11.4878 + 11.4878i) q^{60} +(8.42865 - 3.49126i) q^{61} +(-3.06147 - 7.39104i) q^{62} +1.43845i q^{64} +(0.597580 - 1.44269i) q^{65} +(2.82843 - 2.82843i) q^{66} -4.00000 q^{67} +2.43845 q^{69} +(2.39032 - 5.77075i) q^{71} +6.56155i q^{72} +(11.3140 + 4.68642i) q^{73} +(-5.02200 - 12.1242i) q^{74} +(7.09970 - 2.94079i) q^{75} +(-15.1104 - 15.1104i) q^{76} +(1.03761 - 0.429794i) q^{78} +(-3.58548 - 8.65612i) q^{79} +(25.2860 + 10.4738i) q^{80} +1.00000i q^{81} +(3.49126 - 8.42865i) q^{82} +(-0.620058 + 0.620058i) q^{83} -12.0000 q^{86} +(-5.83095 + 5.83095i) q^{87} +(3.92106 - 9.46626i) q^{88} +1.12311i q^{89} +(8.42865 + 3.49126i) q^{90} +(10.2764 - 4.25663i) q^{92} +(-2.20837 - 2.20837i) q^{93} +(-20.1472 - 20.1472i) q^{94} +(-15.4146 + 6.38494i) q^{95} +(2.51100 + 6.06208i) q^{96} +(-2.65790 - 1.10094i) q^{97} +17.9309i q^{98} +(0.597580 - 1.44269i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 24 q^{16} - 8 q^{18} - 8 q^{33} + 216 q^{50} + 32 q^{52} - 64 q^{67} + 72 q^{69} - 192 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.81129 1.81129i 1.28078 1.28078i 0.340550 0.940226i \(-0.389387\pi\)
0.940226 0.340550i \(-0.110613\pi\)
\(3\) 0.382683 0.923880i 0.220942 0.533402i
\(4\) 4.56155i 2.28078i
\(5\) −3.29045 1.36295i −1.47153 0.609529i −0.504324 0.863514i \(-0.668258\pi\)
−0.967208 + 0.253986i \(0.918258\pi\)
\(6\) −0.980264 2.36657i −0.400191 0.966147i
\(7\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(8\) −4.63972 4.63972i −1.64039 1.64039i
\(9\) −0.707107 0.707107i −0.235702 0.235702i
\(10\) −8.42865 + 3.49126i −2.66537 + 1.10403i
\(11\) 0.597580 + 1.44269i 0.180177 + 0.434986i 0.988003 0.154435i \(-0.0493557\pi\)
−0.807826 + 0.589421i \(0.799356\pi\)
\(12\) −4.21433 1.74563i −1.21657 0.503920i
\(13\) 0.438447i 0.121603i 0.998150 + 0.0608017i \(0.0193657\pi\)
−0.998150 + 0.0608017i \(0.980634\pi\)
\(14\) 0 0
\(15\) −2.51840 + 2.51840i −0.650248 + 0.650248i
\(16\) −7.68466 −1.92116
\(17\) 0 0
\(18\) −2.56155 −0.603764
\(19\) 3.31255 3.31255i 0.759952 0.759952i −0.216361 0.976313i \(-0.569419\pi\)
0.976313 + 0.216361i \(0.0694189\pi\)
\(20\) −6.21716 + 15.0095i −1.39020 + 3.35624i
\(21\) 0 0
\(22\) 3.69552 + 1.53073i 0.787887 + 0.326354i
\(23\) 0.933153 + 2.25283i 0.194576 + 0.469748i 0.990813 0.135236i \(-0.0431794\pi\)
−0.796237 + 0.604984i \(0.793179\pi\)
\(24\) −6.06208 + 2.51100i −1.23742 + 0.512555i
\(25\) 5.43387 + 5.43387i 1.08677 + 1.08677i
\(26\) 0.794156 + 0.794156i 0.155747 + 0.155747i
\(27\) −0.923880 + 0.382683i −0.177801 + 0.0736475i
\(28\) 0 0
\(29\) −7.61851 3.15569i −1.41472 0.585997i −0.461193 0.887300i \(-0.652578\pi\)
−0.953528 + 0.301303i \(0.902578\pi\)
\(30\) 9.12311i 1.66564i
\(31\) 1.19516 2.88537i 0.214657 0.518228i −0.779471 0.626439i \(-0.784512\pi\)
0.994128 + 0.108210i \(0.0345119\pi\)
\(32\) −4.63972 + 4.63972i −0.820194 + 0.820194i
\(33\) 1.56155 0.271831
\(34\) 0 0
\(35\) 0 0
\(36\) −3.22550 + 3.22550i −0.537584 + 0.537584i
\(37\) 1.96053 4.73313i 0.322309 0.778122i −0.676810 0.736157i \(-0.736638\pi\)
0.999119 0.0419647i \(-0.0133617\pi\)
\(38\) 12.0000i 1.94666i
\(39\) 0.405072 + 0.167786i 0.0648635 + 0.0268673i
\(40\) 8.94305 + 21.5904i 1.41402 + 3.41375i
\(41\) 3.29045 1.36295i 0.513881 0.212857i −0.110646 0.993860i \(-0.535292\pi\)
0.624527 + 0.781003i \(0.285292\pi\)
\(42\) 0 0
\(43\) −3.31255 3.31255i −0.505160 0.505160i 0.407877 0.913037i \(-0.366269\pi\)
−0.913037 + 0.407877i \(0.866269\pi\)
\(44\) 6.58089 2.72589i 0.992107 0.410944i
\(45\) 1.36295 + 3.29045i 0.203176 + 0.490511i
\(46\) 5.77075 + 2.39032i 0.850850 + 0.352434i
\(47\) 11.1231i 1.62247i −0.584719 0.811236i \(-0.698795\pi\)
0.584719 0.811236i \(-0.301205\pi\)
\(48\) −2.94079 + 7.09970i −0.424467 + 1.02475i
\(49\) −4.94975 + 4.94975i −0.707107 + 0.707107i
\(50\) 19.6847 2.78383
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) −8.65938 + 8.65938i −1.18946 + 1.18946i −0.212240 + 0.977218i \(0.568076\pi\)
−0.977218 + 0.212240i \(0.931924\pi\)
\(54\) −0.980264 + 2.36657i −0.133397 + 0.322049i
\(55\) 5.56155i 0.749920i
\(56\) 0 0
\(57\) −1.79274 4.32806i −0.237454 0.573266i
\(58\) −19.5152 + 8.08346i −2.56247 + 1.06141i
\(59\) 5.03680 + 5.03680i 0.655735 + 0.655735i 0.954368 0.298633i \(-0.0965306\pi\)
−0.298633 + 0.954368i \(0.596531\pi\)
\(60\) 11.4878 + 11.4878i 1.48307 + 1.48307i
\(61\) 8.42865 3.49126i 1.07918 0.447010i 0.228957 0.973436i \(-0.426468\pi\)
0.850221 + 0.526426i \(0.176468\pi\)
\(62\) −3.06147 7.39104i −0.388807 0.938663i
\(63\) 0 0
\(64\) 1.43845i 0.179806i
\(65\) 0.597580 1.44269i 0.0741207 0.178943i
\(66\) 2.82843 2.82843i 0.348155 0.348155i
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) 2.43845 0.293555
\(70\) 0 0
\(71\) 2.39032 5.77075i 0.283679 0.684862i −0.716237 0.697858i \(-0.754137\pi\)
0.999916 + 0.0129959i \(0.00413685\pi\)
\(72\) 6.56155i 0.773286i
\(73\) 11.3140 + 4.68642i 1.32421 + 0.548504i 0.928997 0.370087i \(-0.120672\pi\)
0.395209 + 0.918591i \(0.370672\pi\)
\(74\) −5.02200 12.1242i −0.583795 1.40941i
\(75\) 7.09970 2.94079i 0.819803 0.339573i
\(76\) −15.1104 15.1104i −1.73328 1.73328i
\(77\) 0 0
\(78\) 1.03761 0.429794i 0.117487 0.0486646i
\(79\) −3.58548 8.65612i −0.403398 0.973890i −0.986835 0.161731i \(-0.948292\pi\)
0.583437 0.812159i \(-0.301708\pi\)
\(80\) 25.2860 + 10.4738i 2.82706 + 1.17100i
\(81\) 1.00000i 0.111111i
\(82\) 3.49126 8.42865i 0.385545 0.930789i
\(83\) −0.620058 + 0.620058i −0.0680602 + 0.0680602i −0.740318 0.672257i \(-0.765325\pi\)
0.672257 + 0.740318i \(0.265325\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −12.0000 −1.29399
\(87\) −5.83095 + 5.83095i −0.625144 + 0.625144i
\(88\) 3.92106 9.46626i 0.417986 1.00911i
\(89\) 1.12311i 0.119049i 0.998227 + 0.0595245i \(0.0189584\pi\)
−0.998227 + 0.0595245i \(0.981042\pi\)
\(90\) 8.42865 + 3.49126i 0.888458 + 0.368011i
\(91\) 0 0
\(92\) 10.2764 4.25663i 1.07139 0.443784i
\(93\) −2.20837 2.20837i −0.228997 0.228997i
\(94\) −20.1472 20.1472i −2.07802 2.07802i
\(95\) −15.4146 + 6.38494i −1.58151 + 0.655081i
\(96\) 2.51100 + 6.06208i 0.256278 + 0.618709i
\(97\) −2.65790 1.10094i −0.269869 0.111784i 0.243645 0.969864i \(-0.421657\pi\)
−0.513514 + 0.858081i \(0.671657\pi\)
\(98\) 17.9309i 1.81129i
\(99\) 0.597580 1.44269i 0.0600591 0.144995i
\(100\) 24.7869 24.7869i 2.47869 2.47869i
\(101\) −10.8769 −1.08229 −0.541146 0.840929i \(-0.682009\pi\)
−0.541146 + 0.840929i \(0.682009\pi\)
\(102\) 0 0
\(103\) 16.6847 1.64399 0.821994 0.569496i \(-0.192862\pi\)
0.821994 + 0.569496i \(0.192862\pi\)
\(104\) 2.03427 2.03427i 0.199477 0.199477i
\(105\) 0 0
\(106\) 31.3693i 3.04686i
\(107\) 4.32806 + 1.79274i 0.418409 + 0.173311i 0.581948 0.813226i \(-0.302291\pi\)
−0.163538 + 0.986537i \(0.552291\pi\)
\(108\) 1.74563 + 4.21433i 0.167973 + 0.405524i
\(109\) 6.35342 2.63167i 0.608547 0.252069i −0.0570599 0.998371i \(-0.518173\pi\)
0.665607 + 0.746302i \(0.268173\pi\)
\(110\) −10.0736 10.0736i −0.960479 0.960479i
\(111\) −3.62258 3.62258i −0.343840 0.343840i
\(112\) 0 0
\(113\) −0.167786 0.405072i −0.0157840 0.0381060i 0.915791 0.401655i \(-0.131565\pi\)
−0.931575 + 0.363549i \(0.881565\pi\)
\(114\) −11.0866 4.59220i −1.03835 0.430099i
\(115\) 8.68466i 0.809849i
\(116\) −14.3948 + 34.7522i −1.33653 + 3.22666i
\(117\) 0.310029 0.310029i 0.0286622 0.0286622i
\(118\) 18.2462 1.67970
\(119\) 0 0
\(120\) 23.3693 2.13332
\(121\) 6.05393 6.05393i 0.550357 0.550357i
\(122\) 8.94305 21.5904i 0.809666 1.95471i
\(123\) 3.56155i 0.321134i
\(124\) −13.1618 5.45179i −1.18196 0.489585i
\(125\) −3.65905 8.83372i −0.327275 0.790112i
\(126\) 0 0
\(127\) 14.0062 + 14.0062i 1.24285 + 1.24285i 0.958814 + 0.284036i \(0.0916735\pi\)
0.284036 + 0.958814i \(0.408326\pi\)
\(128\) −6.67399 6.67399i −0.589903 0.589903i
\(129\) −4.32806 + 1.79274i −0.381064 + 0.157842i
\(130\) −1.53073 3.69552i −0.134254 0.324118i
\(131\) 13.3394 + 5.52535i 1.16547 + 0.482752i 0.879692 0.475544i \(-0.157749\pi\)
0.285776 + 0.958297i \(0.407749\pi\)
\(132\) 7.12311i 0.619987i
\(133\) 0 0
\(134\) −7.24517 + 7.24517i −0.625887 + 0.625887i
\(135\) 3.56155 0.306530
\(136\) 0 0
\(137\) 0.246211 0.0210352 0.0105176 0.999945i \(-0.496652\pi\)
0.0105176 + 0.999945i \(0.496652\pi\)
\(138\) 4.41674 4.41674i 0.375978 0.375978i
\(139\) 0.335573 0.810145i 0.0284629 0.0687156i −0.909009 0.416777i \(-0.863160\pi\)
0.937472 + 0.348061i \(0.113160\pi\)
\(140\) 0 0
\(141\) −10.2764 4.25663i −0.865430 0.358473i
\(142\) −6.12293 14.7821i −0.513825 1.24048i
\(143\) −0.632542 + 0.262007i −0.0528958 + 0.0219102i
\(144\) 5.43387 + 5.43387i 0.452823 + 0.452823i
\(145\) 20.7672 + 20.7672i 1.72463 + 1.72463i
\(146\) 28.9815 12.0045i 2.39852 0.993501i
\(147\) 2.67878 + 6.46716i 0.220942 + 0.533402i
\(148\) −21.5904 8.94305i −1.77472 0.735114i
\(149\) 12.2462i 1.00325i 0.865086 + 0.501624i \(0.167264\pi\)
−0.865086 + 0.501624i \(0.832736\pi\)
\(150\) 7.53299 18.1863i 0.615066 1.48490i
\(151\) 5.65685 5.65685i 0.460348 0.460348i −0.438421 0.898770i \(-0.644462\pi\)
0.898770 + 0.438421i \(0.144462\pi\)
\(152\) −30.7386 −2.49323
\(153\) 0 0
\(154\) 0 0
\(155\) −7.86522 + 7.86522i −0.631750 + 0.631750i
\(156\) 0.765367 1.84776i 0.0612784 0.147939i
\(157\) 6.68466i 0.533494i −0.963767 0.266747i \(-0.914051\pi\)
0.963767 0.266747i \(-0.0859488\pi\)
\(158\) −22.1731 9.18440i −1.76400 0.730672i
\(159\) 4.68642 + 11.3140i 0.371657 + 0.897260i
\(160\) 21.5904 8.94305i 1.70687 0.707010i
\(161\) 0 0
\(162\) 1.81129 + 1.81129i 0.142308 + 0.142308i
\(163\) −13.9719 + 5.78736i −1.09437 + 0.453301i −0.855527 0.517758i \(-0.826767\pi\)
−0.238839 + 0.971059i \(0.576767\pi\)
\(164\) −6.21716 15.0095i −0.485478 1.17205i
\(165\) −5.13820 2.12831i −0.400009 0.165689i
\(166\) 2.24621i 0.174340i
\(167\) 7.58010 18.3000i 0.586566 1.41610i −0.300200 0.953876i \(-0.597053\pi\)
0.886766 0.462219i \(-0.152947\pi\)
\(168\) 0 0
\(169\) 12.8078 0.985213
\(170\) 0 0
\(171\) −4.68466 −0.358245
\(172\) −15.1104 + 15.1104i −1.15216 + 1.15216i
\(173\) −0.691801 + 1.67016i −0.0525967 + 0.126980i −0.947994 0.318289i \(-0.896892\pi\)
0.895397 + 0.445269i \(0.146892\pi\)
\(174\) 21.1231i 1.60134i
\(175\) 0 0
\(176\) −4.59220 11.0866i −0.346150 0.835680i
\(177\) 6.58089 2.72589i 0.494650 0.204891i
\(178\) 2.03427 + 2.03427i 0.152475 + 0.152475i
\(179\) 0.620058 + 0.620058i 0.0463453 + 0.0463453i 0.729900 0.683554i \(-0.239567\pi\)
−0.683554 + 0.729900i \(0.739567\pi\)
\(180\) 15.0095 6.21716i 1.11875 0.463399i
\(181\) 2.29610 + 5.54328i 0.170668 + 0.412029i 0.985951 0.167034i \(-0.0534188\pi\)
−0.815283 + 0.579062i \(0.803419\pi\)
\(182\) 0 0
\(183\) 9.12311i 0.674399i
\(184\) 6.12293 14.7821i 0.451389 1.08975i
\(185\) −12.9020 + 12.9020i −0.948575 + 0.948575i
\(186\) −8.00000 −0.586588
\(187\) 0 0
\(188\) −50.7386 −3.70050
\(189\) 0 0
\(190\) −16.3554 + 39.4853i −1.18654 + 2.86457i
\(191\) 4.87689i 0.352880i 0.984311 + 0.176440i \(0.0564581\pi\)
−0.984311 + 0.176440i \(0.943542\pi\)
\(192\) 1.32895 + 0.550470i 0.0959088 + 0.0397267i
\(193\) 2.96725 + 7.16357i 0.213587 + 0.515645i 0.993969 0.109658i \(-0.0349755\pi\)
−0.780382 + 0.625303i \(0.784976\pi\)
\(194\) −6.80836 + 2.82012i −0.488812 + 0.202472i
\(195\) −1.10418 1.10418i −0.0790723 0.0790723i
\(196\) 22.5785 + 22.5785i 1.61275 + 1.61275i
\(197\) −8.25105 + 3.41770i −0.587863 + 0.243501i −0.656731 0.754125i \(-0.728061\pi\)
0.0688681 + 0.997626i \(0.478061\pi\)
\(198\) −1.53073 3.69552i −0.108785 0.262629i
\(199\) 14.7821 + 6.12293i 1.04787 + 0.434043i 0.839132 0.543928i \(-0.183063\pi\)
0.208741 + 0.977971i \(0.433063\pi\)
\(200\) 50.4233i 3.56547i
\(201\) −1.53073 + 3.69552i −0.107970 + 0.260662i
\(202\) −19.7012 + 19.7012i −1.38617 + 1.38617i
\(203\) 0 0
\(204\) 0 0
\(205\) −12.6847 −0.885935
\(206\) 30.2208 30.2208i 2.10558 2.10558i
\(207\) 0.933153 2.25283i 0.0648586 0.156583i
\(208\) 3.36932i 0.233620i
\(209\) 6.75849 + 2.79946i 0.467495 + 0.193643i
\(210\) 0 0
\(211\) −12.3516 + 5.11622i −0.850322 + 0.352215i −0.764915 0.644131i \(-0.777219\pi\)
−0.0854069 + 0.996346i \(0.527219\pi\)
\(212\) 39.5002 + 39.5002i 2.71289 + 2.71289i
\(213\) −4.41674 4.41674i −0.302630 0.302630i
\(214\) 11.0866 4.59220i 0.757861 0.313916i
\(215\) 6.38494 + 15.4146i 0.435449 + 1.05127i
\(216\) 6.06208 + 2.51100i 0.412473 + 0.170852i
\(217\) 0 0
\(218\) 6.74117 16.2746i 0.456570 1.10226i
\(219\) 8.65938 8.65938i 0.585147 0.585147i
\(220\) −25.3693 −1.71040
\(221\) 0 0
\(222\) −13.1231 −0.880765
\(223\) 10.5577 10.5577i 0.706997 0.706997i −0.258905 0.965903i \(-0.583362\pi\)
0.965903 + 0.258905i \(0.0833618\pi\)
\(224\) 0 0
\(225\) 7.68466i 0.512311i
\(226\) −1.03761 0.429794i −0.0690211 0.0285895i
\(227\) 5.37822 + 12.9842i 0.356965 + 0.861790i 0.995724 + 0.0923829i \(0.0294484\pi\)
−0.638758 + 0.769407i \(0.720552\pi\)
\(228\) −19.7427 + 8.17768i −1.30749 + 0.541580i
\(229\) 4.24264 + 4.24264i 0.280362 + 0.280362i 0.833253 0.552892i \(-0.186476\pi\)
−0.552892 + 0.833253i \(0.686476\pi\)
\(230\) −15.7304 15.7304i −1.03723 1.03723i
\(231\) 0 0
\(232\) 20.7062 + 49.9892i 1.35943 + 3.28195i
\(233\) −3.29045 1.36295i −0.215564 0.0892896i 0.272288 0.962216i \(-0.412220\pi\)
−0.487852 + 0.872926i \(0.662220\pi\)
\(234\) 1.12311i 0.0734197i
\(235\) −15.1602 + 36.6000i −0.988943 + 2.38752i
\(236\) 22.9756 22.9756i 1.49558 1.49558i
\(237\) −9.36932 −0.608603
\(238\) 0 0
\(239\) −6.24621 −0.404034 −0.202017 0.979382i \(-0.564750\pi\)
−0.202017 + 0.979382i \(0.564750\pi\)
\(240\) 19.3530 19.3530i 1.24923 1.24923i
\(241\) −1.28938 + 3.11284i −0.0830564 + 0.200516i −0.959952 0.280166i \(-0.909611\pi\)
0.876895 + 0.480681i \(0.159611\pi\)
\(242\) 21.9309i 1.40977i
\(243\) 0.923880 + 0.382683i 0.0592669 + 0.0245492i
\(244\) −15.9256 38.4477i −1.01953 2.46136i
\(245\) 23.0331 9.54063i 1.47153 0.609529i
\(246\) −6.45101 6.45101i −0.411301 0.411301i
\(247\) 1.45238 + 1.45238i 0.0924127 + 0.0924127i
\(248\) −18.9325 + 7.84211i −1.20222 + 0.497975i
\(249\) 0.335573 + 0.810145i 0.0212661 + 0.0513408i
\(250\) −22.6280 9.37284i −1.43112 0.592791i
\(251\) 8.49242i 0.536037i 0.963414 + 0.268018i \(0.0863688\pi\)
−0.963414 + 0.268018i \(0.913631\pi\)
\(252\) 0 0
\(253\) −2.69250 + 2.69250i −0.169276 + 0.169276i
\(254\) 50.7386 3.18363
\(255\) 0 0
\(256\) −27.0540 −1.69087
\(257\) 10.8677 10.8677i 0.677912 0.677912i −0.281616 0.959527i \(-0.590870\pi\)
0.959527 + 0.281616i \(0.0908703\pi\)
\(258\) −4.59220 + 11.0866i −0.285898 + 0.690219i
\(259\) 0 0
\(260\) −6.58089 2.72589i −0.408130 0.169053i
\(261\) 3.15569 + 7.61851i 0.195332 + 0.471574i
\(262\) 34.1695 14.1535i 2.11100 0.874405i
\(263\) −14.4903 14.4903i −0.893512 0.893512i 0.101340 0.994852i \(-0.467687\pi\)
−0.994852 + 0.101340i \(0.967687\pi\)
\(264\) −7.24517 7.24517i −0.445909 0.445909i
\(265\) 40.2955 16.6909i 2.47533 1.02532i
\(266\) 0 0
\(267\) 1.03761 + 0.429794i 0.0635010 + 0.0263030i
\(268\) 18.2462i 1.11456i
\(269\) 6.29072 15.1871i 0.383552 0.925977i −0.607721 0.794151i \(-0.707916\pi\)
0.991273 0.131826i \(-0.0420840\pi\)
\(270\) 6.45101 6.45101i 0.392596 0.392596i
\(271\) −19.8078 −1.20324 −0.601618 0.798784i \(-0.705477\pi\)
−0.601618 + 0.798784i \(0.705477\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0.445960 0.445960i 0.0269414 0.0269414i
\(275\) −4.59220 + 11.0866i −0.276920 + 0.668544i
\(276\) 11.1231i 0.669532i
\(277\) −5.54328 2.29610i −0.333063 0.137959i 0.209884 0.977726i \(-0.432691\pi\)
−0.542947 + 0.839767i \(0.682691\pi\)
\(278\) −0.859588 2.07523i −0.0515547 0.124464i
\(279\) −2.88537 + 1.19516i −0.172743 + 0.0715524i
\(280\) 0 0
\(281\) 7.69113 + 7.69113i 0.458814 + 0.458814i 0.898266 0.439452i \(-0.144827\pi\)
−0.439452 + 0.898266i \(0.644827\pi\)
\(282\) −26.3236 + 10.9036i −1.56755 + 0.649299i
\(283\) 8.17768 + 19.7427i 0.486113 + 1.17358i 0.956660 + 0.291206i \(0.0940564\pi\)
−0.470548 + 0.882375i \(0.655944\pi\)
\(284\) −26.3236 10.9036i −1.56202 0.647008i
\(285\) 16.6847i 0.988314i
\(286\) −0.671146 + 1.62029i −0.0396857 + 0.0958097i
\(287\) 0 0
\(288\) 6.56155 0.386643
\(289\) 0 0
\(290\) 75.2311 4.41772
\(291\) −2.03427 + 2.03427i −0.119251 + 0.119251i
\(292\) 21.3774 51.6095i 1.25102 3.02022i
\(293\) 1.12311i 0.0656125i −0.999462 0.0328063i \(-0.989556\pi\)
0.999462 0.0328063i \(-0.0104444\pi\)
\(294\) 16.5660 + 6.86185i 0.966147 + 0.400191i
\(295\) −9.70842 23.4382i −0.565246 1.36462i
\(296\) −31.0567 + 12.8641i −1.80513 + 0.747711i
\(297\) −1.10418 1.10418i −0.0640713 0.0640713i
\(298\) 22.1815 + 22.1815i 1.28494 + 1.28494i
\(299\) −0.987748 + 0.409138i −0.0571229 + 0.0236611i
\(300\) −13.4146 32.3857i −0.774491 1.86979i
\(301\) 0 0
\(302\) 20.4924i 1.17921i
\(303\) −4.16241 + 10.0489i −0.239124 + 0.577297i
\(304\) −25.4558 + 25.4558i −1.45999 + 1.45999i
\(305\) −32.4924 −1.86051
\(306\) 0 0
\(307\) 32.4924 1.85444 0.927220 0.374516i \(-0.122191\pi\)
0.927220 + 0.374516i \(0.122191\pi\)
\(308\) 0 0
\(309\) 6.38494 15.4146i 0.363227 0.876907i
\(310\) 28.4924i 1.61826i
\(311\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(312\) −1.10094 2.65790i −0.0623284 0.150474i
\(313\) −31.0567 + 12.8641i −1.75543 + 0.727122i −0.758257 + 0.651955i \(0.773949\pi\)
−0.997171 + 0.0751670i \(0.976051\pi\)
\(314\) −12.1079 12.1079i −0.683286 0.683286i
\(315\) 0 0
\(316\) −39.4853 + 16.3554i −2.22122 + 0.920061i
\(317\) −6.88830 16.6298i −0.386886 0.934024i −0.990596 0.136821i \(-0.956312\pi\)
0.603710 0.797204i \(-0.293688\pi\)
\(318\) 28.9815 + 12.0045i 1.62520 + 0.673180i
\(319\) 12.8769i 0.720968i
\(320\) 1.96053 4.73313i 0.109597 0.264590i
\(321\) 3.31255 3.31255i 0.184889 0.184889i
\(322\) 0 0
\(323\) 0 0
\(324\) 4.56155 0.253420
\(325\) −2.38247 + 2.38247i −0.132155 + 0.132155i
\(326\) −14.8246 + 35.7898i −0.821061 + 1.98222i
\(327\) 6.87689i 0.380293i
\(328\) −21.5904 8.94305i −1.19213 0.493797i
\(329\) 0 0
\(330\) −13.1618 + 5.45179i −0.724532 + 0.300111i
\(331\) −24.6999 24.6999i −1.35763 1.35763i −0.876835 0.480792i \(-0.840349\pi\)
−0.480792 0.876835i \(-0.659651\pi\)
\(332\) 2.82843 + 2.82843i 0.155230 + 0.155230i
\(333\) −4.73313 + 1.96053i −0.259374 + 0.107436i
\(334\) −19.4168 46.8764i −1.06244 2.56496i
\(335\) 13.1618 + 5.45179i 0.719105 + 0.297863i
\(336\) 0 0
\(337\) −6.40560 + 15.4645i −0.348935 + 0.842404i 0.647811 + 0.761801i \(0.275685\pi\)
−0.996746 + 0.0806030i \(0.974315\pi\)
\(338\) 23.1986 23.1986i 1.26184 1.26184i
\(339\) −0.438447 −0.0238132
\(340\) 0 0
\(341\) 4.87689 0.264099
\(342\) −8.48528 + 8.48528i −0.458831 + 0.458831i
\(343\) 0 0
\(344\) 30.7386i 1.65732i
\(345\) −8.02358 3.32347i −0.431975 0.178930i
\(346\) 1.77209 + 4.27819i 0.0952679 + 0.229997i
\(347\) 7.84598 3.24991i 0.421194 0.174464i −0.162012 0.986789i \(-0.551798\pi\)
0.583206 + 0.812325i \(0.301798\pi\)
\(348\) 26.5982 + 26.5982i 1.42581 + 1.42581i
\(349\) −8.17525 8.17525i −0.437611 0.437611i 0.453596 0.891207i \(-0.350141\pi\)
−0.891207 + 0.453596i \(0.850141\pi\)
\(350\) 0 0
\(351\) −0.167786 0.405072i −0.00895578 0.0216212i
\(352\) −9.46626 3.92106i −0.504554 0.208993i
\(353\) 10.4924i 0.558455i −0.960225 0.279228i \(-0.909922\pi\)
0.960225 0.279228i \(-0.0900784\pi\)
\(354\) 6.98252 16.8573i 0.371117 0.895955i
\(355\) −15.7304 + 15.7304i −0.834885 + 0.834885i
\(356\) 5.12311 0.271524
\(357\) 0 0
\(358\) 2.24621 0.118716
\(359\) −10.0736 + 10.0736i −0.531664 + 0.531664i −0.921067 0.389403i \(-0.872681\pi\)
0.389403 + 0.921067i \(0.372681\pi\)
\(360\) 8.94305 21.5904i 0.471340 1.13792i
\(361\) 2.94602i 0.155054i
\(362\) 14.1994 + 5.88158i 0.746304 + 0.309129i
\(363\) −3.27636 7.90984i −0.171965 0.415159i
\(364\) 0 0
\(365\) −30.8408 30.8408i −1.61428 1.61428i
\(366\) −16.5246 16.5246i −0.863755 0.863755i
\(367\) −1.62029 + 0.671146i −0.0845784 + 0.0350335i −0.424572 0.905394i \(-0.639575\pi\)
0.339993 + 0.940428i \(0.389575\pi\)
\(368\) −7.17096 17.3122i −0.373812 0.902463i
\(369\) −3.29045 1.36295i −0.171294 0.0709522i
\(370\) 46.7386i 2.42983i
\(371\) 0 0
\(372\) −10.0736 + 10.0736i −0.522291 + 0.522291i
\(373\) 0.246211 0.0127483 0.00637417 0.999980i \(-0.497971\pi\)
0.00637417 + 0.999980i \(0.497971\pi\)
\(374\) 0 0
\(375\) −9.56155 −0.493756
\(376\) −51.6081 + 51.6081i −2.66148 + 2.66148i
\(377\) 1.38360 3.34031i 0.0712592 0.172035i
\(378\) 0 0
\(379\) 11.0866 + 4.59220i 0.569478 + 0.235886i 0.648794 0.760964i \(-0.275274\pi\)
−0.0793161 + 0.996850i \(0.525274\pi\)
\(380\) 29.1253 + 70.3146i 1.49409 + 3.60706i
\(381\) 18.3000 7.58010i 0.937537 0.388340i
\(382\) 8.83348 + 8.83348i 0.451960 + 0.451960i
\(383\) −4.41674 4.41674i −0.225685 0.225685i 0.585202 0.810887i \(-0.301015\pi\)
−0.810887 + 0.585202i \(0.801015\pi\)
\(384\) −8.71999 + 3.61194i −0.444990 + 0.184321i
\(385\) 0 0
\(386\) 18.3499 + 7.60076i 0.933983 + 0.386868i
\(387\) 4.68466i 0.238135i
\(388\) −5.02200 + 12.1242i −0.254953 + 0.615511i
\(389\) 25.3581 25.3581i 1.28571 1.28571i 0.348336 0.937370i \(-0.386747\pi\)
0.937370 0.348336i \(-0.113253\pi\)
\(390\) −4.00000 −0.202548
\(391\) 0 0
\(392\) 45.9309 2.31986
\(393\) 10.2095 10.2095i 0.515002 0.515002i
\(394\) −8.75461 + 21.1355i −0.441051 + 1.06479i
\(395\) 33.3693i 1.67899i
\(396\) −6.58089 2.72589i −0.330702 0.136981i
\(397\) 7.41232 + 17.8949i 0.372014 + 0.898120i 0.993409 + 0.114623i \(0.0365660\pi\)
−0.621396 + 0.783497i \(0.713434\pi\)
\(398\) 37.8651 15.6842i 1.89800 0.786179i
\(399\) 0 0
\(400\) −41.7575 41.7575i −2.08787 2.08787i
\(401\) 36.1949 14.9924i 1.80749 0.748686i 0.824283 0.566178i \(-0.191579\pi\)
0.983204 0.182507i \(-0.0584213\pi\)
\(402\) 3.92106 + 9.46626i 0.195564 + 0.472134i
\(403\) 1.26508 + 0.524015i 0.0630183 + 0.0261030i
\(404\) 49.6155i 2.46846i
\(405\) 1.36295 3.29045i 0.0677254 0.163504i
\(406\) 0 0
\(407\) 8.00000 0.396545
\(408\) 0 0
\(409\) −14.6847 −0.726110 −0.363055 0.931768i \(-0.618266\pi\)
−0.363055 + 0.931768i \(0.618266\pi\)
\(410\) −22.9756 + 22.9756i −1.13468 + 1.13468i
\(411\) 0.0942210 0.227470i 0.00464758 0.0112202i
\(412\) 76.1080i 3.74957i
\(413\) 0 0
\(414\) −2.39032 5.77075i −0.117478 0.283617i
\(415\) 2.88537 1.19516i 0.141637 0.0586681i
\(416\) −2.03427 2.03427i −0.0997384 0.0997384i
\(417\) −0.620058 0.620058i −0.0303644 0.0303644i
\(418\) 17.3122 7.17096i 0.846769 0.350743i
\(419\) −0.188442 0.454939i −0.00920599 0.0222252i 0.919210 0.393768i \(-0.128829\pi\)
−0.928416 + 0.371543i \(0.878829\pi\)
\(420\) 0 0
\(421\) 24.4384i 1.19106i 0.803334 + 0.595529i \(0.203057\pi\)
−0.803334 + 0.595529i \(0.796943\pi\)
\(422\) −13.1055 + 31.6394i −0.637964 + 1.54018i
\(423\) −7.86522 + 7.86522i −0.382420 + 0.382420i
\(424\) 80.3542 3.90234
\(425\) 0 0
\(426\) −16.0000 −0.775203
\(427\) 0 0
\(428\) 8.17768 19.7427i 0.395283 0.954298i
\(429\) 0.684658i 0.0330556i
\(430\) 39.4853 + 16.3554i 1.90415 + 0.788726i
\(431\) 9.18440 + 22.1731i 0.442397 + 1.06804i 0.975105 + 0.221742i \(0.0711743\pi\)
−0.532708 + 0.846299i \(0.678826\pi\)
\(432\) 7.09970 2.94079i 0.341584 0.141489i
\(433\) 18.8689 + 18.8689i 0.906782 + 0.906782i 0.996011 0.0892295i \(-0.0284405\pi\)
−0.0892295 + 0.996011i \(0.528440\pi\)
\(434\) 0 0
\(435\) 27.1337 11.2392i 1.30096 0.538876i
\(436\) −12.0045 28.9815i −0.574912 1.38796i
\(437\) 10.5537 + 4.37150i 0.504854 + 0.209117i
\(438\) 31.3693i 1.49888i
\(439\) −8.51326 + 20.5528i −0.406316 + 0.980933i 0.579783 + 0.814771i \(0.303137\pi\)
−0.986099 + 0.166162i \(0.946863\pi\)
\(440\) −25.8040 + 25.8040i −1.23016 + 1.23016i
\(441\) 7.00000 0.333333
\(442\) 0 0
\(443\) −31.1231 −1.47870 −0.739352 0.673319i \(-0.764868\pi\)
−0.739352 + 0.673319i \(0.764868\pi\)
\(444\) −16.5246 + 16.5246i −0.784223 + 0.784223i
\(445\) 1.53073 3.69552i 0.0725637 0.175184i
\(446\) 38.2462i 1.81101i
\(447\) 11.3140 + 4.68642i 0.535135 + 0.221660i
\(448\) 0 0
\(449\) −33.9421 + 14.0593i −1.60183 + 0.663498i −0.991672 0.128786i \(-0.958892\pi\)
−0.610153 + 0.792284i \(0.708892\pi\)
\(450\) −13.9192 13.9192i −0.656155 0.656155i
\(451\) 3.93261 + 3.93261i 0.185179 + 0.185179i
\(452\) −1.84776 + 0.765367i −0.0869113 + 0.0359998i
\(453\) −3.06147 7.39104i −0.143840 0.347261i
\(454\) 33.2597 + 13.7766i 1.56095 + 0.646568i
\(455\) 0 0
\(456\) −11.7632 + 28.3988i −0.550861 + 1.32990i
\(457\) 9.76356 9.76356i 0.456720 0.456720i −0.440857 0.897577i \(-0.645325\pi\)
0.897577 + 0.440857i \(0.145325\pi\)
\(458\) 15.3693 0.718161
\(459\) 0 0
\(460\) −39.6155 −1.84708
\(461\) 5.83095 5.83095i 0.271575 0.271575i −0.558159 0.829734i \(-0.688492\pi\)
0.829734 + 0.558159i \(0.188492\pi\)
\(462\) 0 0
\(463\) 40.9848i 1.90473i 0.304965 + 0.952364i \(0.401355\pi\)
−0.304965 + 0.952364i \(0.598645\pi\)
\(464\) 58.5456 + 24.2504i 2.71791 + 1.12580i
\(465\) 4.25663 + 10.2764i 0.197396 + 0.476557i
\(466\) −8.42865 + 3.49126i −0.390450 + 0.161730i
\(467\) 15.1104 + 15.1104i 0.699225 + 0.699225i 0.964243 0.265018i \(-0.0853779\pi\)
−0.265018 + 0.964243i \(0.585378\pi\)
\(468\) −1.41421 1.41421i −0.0653720 0.0653720i
\(469\) 0 0
\(470\) 38.8337 + 93.7528i 1.79126 + 4.32449i
\(471\) −6.17582 2.55811i −0.284567 0.117871i
\(472\) 46.7386i 2.15132i
\(473\) 2.79946 6.75849i 0.128719 0.310756i
\(474\) −16.9706 + 16.9706i −0.779484 + 0.779484i
\(475\) 36.0000 1.65179
\(476\) 0 0
\(477\) 12.2462 0.560715
\(478\) −11.3137 + 11.3137i −0.517477 + 0.517477i
\(479\) −9.29928 + 22.4504i −0.424895 + 1.02579i 0.555988 + 0.831190i \(0.312340\pi\)
−0.980883 + 0.194597i \(0.937660\pi\)
\(480\) 23.3693i 1.06666i
\(481\) 2.07523 + 0.859588i 0.0946223 + 0.0391938i
\(482\) 3.30282 + 7.97371i 0.150439 + 0.363193i
\(483\) 0 0
\(484\) −27.6153 27.6153i −1.25524 1.25524i
\(485\) 7.24517 + 7.24517i 0.328986 + 0.328986i
\(486\) 2.36657 0.980264i 0.107350 0.0444657i
\(487\) 6.64695 + 16.0472i 0.301202 + 0.727166i 0.999931 + 0.0117792i \(0.00374952\pi\)
−0.698729 + 0.715387i \(0.746250\pi\)
\(488\) −55.3050 22.9081i −2.50354 1.03700i
\(489\) 15.1231i 0.683890i
\(490\) 24.4388 59.0006i 1.10403 2.66537i
\(491\) −15.1104 + 15.1104i −0.681922 + 0.681922i −0.960433 0.278511i \(-0.910159\pi\)
0.278511 + 0.960433i \(0.410159\pi\)
\(492\) −16.2462 −0.732436
\(493\) 0 0
\(494\) 5.26137 0.236720
\(495\) −3.93261 + 3.93261i −0.176758 + 0.176758i
\(496\) −9.18440 + 22.1731i −0.412392 + 0.995602i
\(497\) 0 0
\(498\) 2.07523 + 0.859588i 0.0929932 + 0.0385191i
\(499\) −5.11622 12.3516i −0.229033 0.552935i 0.767027 0.641615i \(-0.221735\pi\)
−0.996060 + 0.0886797i \(0.971735\pi\)
\(500\) −40.2955 + 16.6909i −1.80207 + 0.746442i
\(501\) −14.0062 14.0062i −0.625751 0.625751i
\(502\) 15.3823 + 15.3823i 0.686543 + 0.686543i
\(503\) −27.3113 + 11.3127i −1.21775 + 0.504409i −0.896694 0.442651i \(-0.854038\pi\)
−0.321057 + 0.947060i \(0.604038\pi\)
\(504\) 0 0
\(505\) 35.7898 + 14.8246i 1.59263 + 0.659688i
\(506\) 9.75379i 0.433609i
\(507\) 4.90132 11.8328i 0.217675 0.525514i
\(508\) 63.8900 63.8900i 2.83466 2.83466i
\(509\) −25.1231 −1.11356 −0.556781 0.830659i \(-0.687964\pi\)
−0.556781 + 0.830659i \(0.687964\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −35.6547 + 35.6547i −1.57573 + 1.57573i
\(513\) −1.79274 + 4.32806i −0.0791515 + 0.191089i
\(514\) 39.3693i 1.73651i
\(515\) −54.9000 22.7403i −2.41918 1.00206i
\(516\) 8.17768 + 19.7427i 0.360002 + 0.869123i
\(517\) 16.0472 6.64695i 0.705753 0.292333i
\(518\) 0 0
\(519\) 1.27828 + 1.27828i 0.0561104 + 0.0561104i
\(520\) −9.46626 + 3.92106i −0.415123 + 0.171950i
\(521\) −13.6088 32.8546i −0.596213 1.43939i −0.877413 0.479736i \(-0.840732\pi\)
0.281200 0.959649i \(-0.409268\pi\)
\(522\) 19.5152 + 8.08346i 0.854157 + 0.353804i
\(523\) 20.0000i 0.874539i −0.899331 0.437269i \(-0.855946\pi\)
0.899331 0.437269i \(-0.144054\pi\)
\(524\) 25.2042 60.8483i 1.10105 2.65817i
\(525\) 0 0
\(526\) −52.4924 −2.28878
\(527\) 0 0
\(528\) −12.0000 −0.522233
\(529\) 12.0590 12.0590i 0.524304 0.524304i
\(530\) 42.7547 103.219i 1.85715 4.48355i
\(531\) 7.12311i 0.309116i
\(532\) 0 0
\(533\) 0.597580 + 1.44269i 0.0258841 + 0.0624897i
\(534\) 2.65790 1.10094i 0.115019 0.0476423i
\(535\) −11.7978 11.7978i −0.510065 0.510065i
\(536\) 18.5589 + 18.5589i 0.801621 + 0.801621i
\(537\) 0.810145 0.335573i 0.0349603 0.0144810i
\(538\) −16.1140 38.9027i −0.694725 1.67721i
\(539\) −10.0988 4.18306i −0.434986 0.180177i
\(540\) 16.2462i 0.699126i
\(541\) 13.0525 31.5116i 0.561173 1.35479i −0.347656 0.937622i \(-0.613022\pi\)
0.908829 0.417169i \(-0.136978\pi\)
\(542\) −35.8776 + 35.8776i −1.54108 + 1.54108i
\(543\) 6.00000 0.257485
\(544\) 0 0
\(545\) −24.4924 −1.04914
\(546\) 0 0
\(547\) −10.7151 + 25.8686i −0.458146 + 1.10606i 0.511001 + 0.859580i \(0.329275\pi\)
−0.969147 + 0.246483i \(0.920725\pi\)
\(548\) 1.12311i 0.0479767i
\(549\) −8.42865 3.49126i −0.359726 0.149003i
\(550\) 11.7632 + 28.3988i 0.501583 + 1.21093i
\(551\) −35.6901 + 14.7833i −1.52045 + 0.629791i
\(552\) −11.3137 11.3137i −0.481543 0.481543i
\(553\) 0 0
\(554\) −14.1994 + 5.88158i −0.603275 + 0.249885i
\(555\) 6.98252 + 16.8573i 0.296392 + 0.715553i
\(556\) −3.69552 1.53073i −0.156725 0.0649176i
\(557\) 26.4924i 1.12252i 0.827640 + 0.561260i \(0.189683\pi\)
−0.827640 + 0.561260i \(0.810317\pi\)
\(558\) −3.06147 + 7.39104i −0.129602 + 0.312888i
\(559\) 1.45238 1.45238i 0.0614291 0.0614291i
\(560\) 0 0
\(561\) 0 0
\(562\) 27.8617 1.17528
\(563\) −22.0074 + 22.0074i −0.927500 + 0.927500i −0.997544 0.0700443i \(-0.977686\pi\)
0.0700443 + 0.997544i \(0.477686\pi\)
\(564\) −19.4168 + 46.8764i −0.817596 + 1.97385i
\(565\) 1.56155i 0.0656950i
\(566\) 50.5719 + 20.9476i 2.12570 + 0.880492i
\(567\) 0 0
\(568\) −37.8651 + 15.6842i −1.58878 + 0.658095i
\(569\) 14.9363 + 14.9363i 0.626162 + 0.626162i 0.947100 0.320938i \(-0.103998\pi\)
−0.320938 + 0.947100i \(0.603998\pi\)
\(570\) 30.2208 + 30.2208i 1.26581 + 1.26581i
\(571\) −28.3988 + 11.7632i −1.18845 + 0.492273i −0.887251 0.461287i \(-0.847388\pi\)
−0.301202 + 0.953560i \(0.597388\pi\)
\(572\) 1.19516 + 2.88537i 0.0499722 + 0.120644i
\(573\) 4.50566 + 1.86631i 0.188227 + 0.0779661i
\(574\) 0 0
\(575\) −7.17096 + 17.3122i −0.299050 + 0.721970i
\(576\) 1.01714 1.01714i 0.0423807 0.0423807i
\(577\) 3.94602 0.164275 0.0821376 0.996621i \(-0.473825\pi\)
0.0821376 + 0.996621i \(0.473825\pi\)
\(578\) 0 0
\(579\) 7.75379 0.322236
\(580\) 94.7309 94.7309i 3.93349 3.93349i
\(581\) 0 0
\(582\) 7.36932i 0.305468i
\(583\) −17.6674 7.31810i −0.731711 0.303085i
\(584\) −30.7502 74.2376i −1.27245 3.07197i
\(585\) −1.44269 + 0.597580i −0.0596478 + 0.0247069i
\(586\) −2.03427 2.03427i −0.0840350 0.0840350i
\(587\) 20.4954 + 20.4954i 0.845935 + 0.845935i 0.989623 0.143688i \(-0.0458962\pi\)
−0.143688 + 0.989623i \(0.545896\pi\)
\(588\) 29.5003 12.2194i 1.21657 0.503920i
\(589\) −5.59892 13.5170i −0.230699 0.556958i
\(590\) −60.0382 24.8686i −2.47173 1.02383i
\(591\) 8.93087i 0.367367i
\(592\) −15.0660 + 36.3725i −0.619208 + 1.49490i
\(593\) 19.6249 19.6249i 0.805898 0.805898i −0.178112 0.984010i \(-0.556999\pi\)
0.984010 + 0.178112i \(0.0569991\pi\)
\(594\) −4.00000 −0.164122
\(595\) 0 0
\(596\) 55.8617 2.28819
\(597\) 11.3137 11.3137i 0.463039 0.463039i
\(598\) −1.04803 + 2.53017i −0.0428571 + 0.103466i
\(599\) 0.384472i 0.0157091i 0.999969 + 0.00785455i \(0.00250021\pi\)
−0.999969 + 0.00785455i \(0.997500\pi\)
\(600\) −46.5850 19.2962i −1.90183 0.787762i
\(601\) 11.8574 + 28.6263i 0.483673 + 1.16769i 0.957852 + 0.287261i \(0.0927448\pi\)
−0.474179 + 0.880428i \(0.657255\pi\)
\(602\) 0 0
\(603\) 2.82843 + 2.82843i 0.115182 + 0.115182i
\(604\) −25.8040 25.8040i −1.04995 1.04995i
\(605\) −28.1713 + 11.6689i −1.14533 + 0.474410i
\(606\) 10.6622 + 25.7409i 0.433123 + 1.04565i
\(607\) −8.65612 3.58548i −0.351341 0.145530i 0.200031 0.979790i \(-0.435896\pi\)
−0.551372 + 0.834259i \(0.685896\pi\)
\(608\) 30.7386i 1.24662i
\(609\) 0 0
\(610\) −58.8532 + 58.8532i −2.38290 + 2.38290i
\(611\) 4.87689 0.197298
\(612\) 0 0
\(613\) 14.6847 0.593108 0.296554 0.955016i \(-0.404163\pi\)
0.296554 + 0.955016i \(0.404163\pi\)
\(614\) 58.8532 58.8532i 2.37512 2.37512i
\(615\) −4.85421 + 11.7191i −0.195741 + 0.472560i
\(616\) 0 0
\(617\) 40.8782 + 16.9323i 1.64569 + 0.681668i 0.996854 0.0792574i \(-0.0252549\pi\)
0.648839 + 0.760926i \(0.275255\pi\)
\(618\) −16.3554 39.4853i −0.657909 1.58833i
\(619\) −4.96060 + 2.05475i −0.199383 + 0.0825873i −0.480141 0.877191i \(-0.659414\pi\)
0.280757 + 0.959779i \(0.409414\pi\)
\(620\) 35.8776 + 35.8776i 1.44088 + 1.44088i
\(621\) −1.72424 1.72424i −0.0691915 0.0691915i
\(622\) 0 0
\(623\) 0 0
\(624\) −3.11284 1.28938i −0.124613 0.0516166i
\(625\) 4.36932i 0.174773i
\(626\) −32.9521 + 79.5534i −1.31703 + 3.17959i
\(627\) 5.17273 5.17273i 0.206579 0.206579i
\(628\) −30.4924 −1.21678
\(629\) 0 0
\(630\) 0 0
\(631\) 0.484127 0.484127i 0.0192728 0.0192728i −0.697405 0.716678i \(-0.745662\pi\)
0.716678 + 0.697405i \(0.245662\pi\)
\(632\) −23.5263 + 56.7976i −0.935827 + 2.25929i
\(633\) 13.3693i 0.531383i
\(634\) −42.5982 17.6447i −1.69179 0.700762i
\(635\) −26.9969 65.1764i −1.07134 2.58645i
\(636\) 51.6095 21.3774i 2.04645 0.847668i
\(637\) −2.17020 2.17020i −0.0859866 0.0859866i
\(638\) −23.3238 23.3238i −0.923398 0.923398i
\(639\) −5.77075 + 2.39032i −0.228287 + 0.0945597i
\(640\) 12.8641 + 31.0567i 0.508498 + 1.22762i
\(641\) −26.7286 11.0714i −1.05572 0.437293i −0.213788 0.976880i \(-0.568580\pi\)
−0.841930 + 0.539587i \(0.818580\pi\)
\(642\) 12.0000i 0.473602i
\(643\) −5.26335 + 12.7068i −0.207566 + 0.501109i −0.993039 0.117787i \(-0.962420\pi\)
0.785473 + 0.618896i \(0.212420\pi\)
\(644\) 0 0
\(645\) 16.6847 0.656958
\(646\) 0 0
\(647\) −9.36932 −0.368346 −0.184173 0.982894i \(-0.558961\pi\)
−0.184173 + 0.982894i \(0.558961\pi\)
\(648\) 4.63972 4.63972i 0.182265 0.182265i
\(649\) −4.25663 + 10.2764i −0.167087 + 0.403384i
\(650\) 8.63068i 0.338523i
\(651\) 0 0
\(652\) 26.3994 + 63.7337i 1.03388 + 2.49600i
\(653\) 30.4242 12.6021i 1.19059 0.493158i 0.302642 0.953104i \(-0.402131\pi\)
0.887947 + 0.459946i \(0.152131\pi\)
\(654\) −12.4561 12.4561i −0.487070 0.487070i
\(655\) −36.3618 36.3618i −1.42077 1.42077i
\(656\) −25.2860 + 10.4738i −0.987251 + 0.408933i
\(657\) −4.68642 11.3140i −0.182835 0.441402i
\(658\) 0 0
\(659\) 9.86174i 0.384159i −0.981379 0.192079i \(-0.938477\pi\)
0.981379 0.192079i \(-0.0615231\pi\)
\(660\) −9.70842 + 23.4382i −0.377900 + 0.912330i
\(661\) 9.41537 9.41537i 0.366215 0.366215i −0.499880 0.866095i \(-0.666622\pi\)
0.866095 + 0.499880i \(0.166622\pi\)
\(662\) −89.4773 −3.47763
\(663\) 0 0
\(664\) 5.75379 0.223290
\(665\) 0 0
\(666\) −5.02200 + 12.1242i −0.194598 + 0.469802i
\(667\) 20.1080i 0.778583i
\(668\) −83.4764 34.5770i −3.22980 1.33783i
\(669\) −5.71380 13.7943i −0.220908 0.533319i
\(670\) 33.7146 13.9650i 1.30251 0.539517i
\(671\) 10.0736 + 10.0736i 0.388887 + 0.388887i
\(672\) 0 0
\(673\) −0.682409 + 0.282663i −0.0263049 + 0.0108959i −0.395797 0.918338i \(-0.629532\pi\)
0.369492 + 0.929234i \(0.379532\pi\)
\(674\) 16.4083 + 39.6131i 0.632023 + 1.52584i
\(675\) −7.09970 2.94079i −0.273268 0.113191i
\(676\) 58.4233i 2.24705i
\(677\) −0.503359 + 1.21522i −0.0193457 + 0.0467046i −0.933257 0.359209i \(-0.883047\pi\)
0.913912 + 0.405913i \(0.133047\pi\)
\(678\) −0.794156 + 0.794156i −0.0304994 + 0.0304994i
\(679\) 0 0
\(680\) 0 0
\(681\) 14.0540 0.538550
\(682\) 8.83348 8.83348i 0.338251 0.338251i
\(683\) 3.65905 8.83372i 0.140010 0.338013i −0.838285 0.545232i \(-0.816441\pi\)
0.978294 + 0.207219i \(0.0664414\pi\)
\(684\) 21.3693i 0.817076i
\(685\) −0.810145 0.335573i −0.0309540 0.0128216i
\(686\) 0 0
\(687\) 5.54328 2.29610i 0.211489 0.0876017i
\(688\) 25.4558 + 25.4558i 0.970495 + 0.970495i
\(689\) −3.79668 3.79668i −0.144642 0.144642i
\(690\) −20.5528 + 8.51326i −0.782432 + 0.324094i
\(691\) −11.0920 26.7785i −0.421960 1.01870i −0.981769 0.190080i \(-0.939125\pi\)
0.559808 0.828622i \(-0.310875\pi\)
\(692\) 7.61851 + 3.15569i 0.289612 + 0.119961i
\(693\) 0 0
\(694\) 8.32481 20.0979i 0.316006 0.762905i
\(695\) −2.20837 + 2.20837i −0.0837682 + 0.0837682i
\(696\) 54.1080 2.05096
\(697\) 0 0
\(698\) −29.6155 −1.12096
\(699\) −2.51840 + 2.51840i −0.0952546 + 0.0952546i
\(700\) 0 0
\(701\) 15.3693i 0.580491i −0.956952 0.290246i \(-0.906263\pi\)
0.956952 0.290246i \(-0.0937370\pi\)
\(702\) −1.03761 0.429794i −0.0391622 0.0162215i
\(703\) −9.18440 22.1731i −0.346396 0.836275i
\(704\) −2.07523 + 0.859588i −0.0782131 + 0.0323969i
\(705\) 28.0124 + 28.0124i 1.05501 + 1.05501i
\(706\) −19.0048 19.0048i −0.715256 0.715256i
\(707\) 0 0
\(708\) −12.4343 30.0191i −0.467310 1.12819i
\(709\) −41.3331 17.1207i −1.55230 0.642983i −0.568568 0.822637i \(-0.692502\pi\)
−0.983730 + 0.179654i \(0.942502\pi\)
\(710\) 56.9848i 2.13860i
\(711\) −3.58548 + 8.65612i −0.134466 + 0.324630i
\(712\) 5.21089 5.21089i 0.195287 0.195287i
\(713\) 7.61553 0.285204
\(714\) 0 0
\(715\) 2.43845 0.0911928
\(716\) 2.82843 2.82843i 0.105703 0.105703i
\(717\) −2.39032 + 5.77075i −0.0892682 + 0.215512i
\(718\) 36.4924i 1.36189i
\(719\) 10.9090 + 4.51864i 0.406835 + 0.168517i 0.576710 0.816949i \(-0.304336\pi\)
−0.169875 + 0.985466i \(0.554336\pi\)
\(720\) −10.4738 25.2860i −0.390335 0.942352i
\(721\) 0 0
\(722\) −5.33611 5.33611i −0.198589 0.198589i
\(723\) 2.38247 + 2.38247i 0.0886049 + 0.0886049i
\(724\) 25.2860 10.4738i 0.939745 0.389255i
\(725\) −24.2504 58.5456i −0.900637 2.17433i
\(726\) −20.2615 8.39258i −0.751974 0.311478i
\(727\) 8.00000i 0.296704i −0.988935 0.148352i \(-0.952603\pi\)
0.988935 0.148352i \(-0.0473968\pi\)
\(728\) 0 0
\(729\) 0.707107 0.707107i 0.0261891 0.0261891i
\(730\) −111.723 −4.13507
\(731\) 0 0
\(732\) −41.6155 −1.53815
\(733\) 8.31118 8.31118i 0.306981 0.306981i −0.536757 0.843737i \(-0.680351\pi\)
0.843737 + 0.536757i \(0.180351\pi\)
\(734\) −1.71918 + 4.15046i −0.0634559 + 0.153196i
\(735\) 24.9309i 0.919589i
\(736\) −14.7821 6.12293i −0.544874 0.225694i
\(737\) −2.39032 5.77075i −0.0880486 0.212568i
\(738\) −8.42865 + 3.49126i −0.310263 + 0.128515i
\(739\) −14.6263 14.6263i −0.538036 0.538036i 0.384916 0.922952i \(-0.374230\pi\)
−0.922952 + 0.384916i \(0.874230\pi\)
\(740\) 58.8532 + 58.8532i 2.16349 + 2.16349i
\(741\) 1.89763 0.786022i 0.0697110 0.0288753i
\(742\) 0 0
\(743\) 26.3236 + 10.9036i 0.965718 + 0.400013i 0.809116 0.587648i \(-0.199946\pi\)
0.156602 + 0.987662i \(0.449946\pi\)
\(744\) 20.4924i 0.751289i
\(745\) 16.6909 40.2955i 0.611509 1.47631i
\(746\) 0.445960 0.445960i 0.0163278 0.0163278i
\(747\) 0.876894 0.0320839
\(748\) 0 0
\(749\) 0 0
\(750\) −17.3188 + 17.3188i −0.632392 + 0.632392i
\(751\) 9.70842 23.4382i 0.354265 0.855272i −0.641819 0.766857i \(-0.721820\pi\)
0.996084 0.0884152i \(-0.0281802\pi\)
\(752\) 85.4773i 3.11704i
\(753\) 7.84598 + 3.24991i 0.285923 + 0.118433i
\(754\) −3.54417 8.55639i −0.129071 0.311605i
\(755\) −26.3236 + 10.9036i −0.958013 + 0.396822i
\(756\) 0 0
\(757\) −11.3519 11.3519i −0.412591 0.412591i 0.470049 0.882640i \(-0.344236\pi\)
−0.882640 + 0.470049i \(0.844236\pi\)
\(758\) 28.3988 11.7632i 1.03149 0.427257i
\(759\) 1.45717 + 3.51792i 0.0528919 + 0.127692i
\(760\) 101.144 + 41.8951i 3.66887 + 1.51970i
\(761\) 15.7538i 0.571074i −0.958368 0.285537i \(-0.907828\pi\)
0.958368 0.285537i \(-0.0921720\pi\)
\(762\) 19.4168 46.8764i 0.703398 1.69815i
\(763\) 0 0
\(764\) 22.2462 0.804840
\(765\) 0 0
\(766\) −16.0000 −0.578103
\(767\) −2.20837 + 2.20837i −0.0797396 + 0.0797396i
\(768\) −10.3531 + 24.9946i −0.373586 + 0.901915i
\(769\) 40.5464i 1.46214i −0.682302 0.731070i \(-0.739021\pi\)
0.682302 0.731070i \(-0.260979\pi\)
\(770\) 0 0
\(771\) −5.88158 14.1994i −0.211820 0.511379i
\(772\) 32.6770 13.5353i 1.17607 0.487144i
\(773\) −6.10281 6.10281i −0.219503 0.219503i 0.588786 0.808289i \(-0.299606\pi\)
−0.808289 + 0.588786i \(0.799606\pi\)
\(774\) 8.48528 + 8.48528i 0.304997 + 0.304997i
\(775\) 22.1731 9.18440i 0.796482 0.329913i
\(776\) 7.22387 + 17.4400i 0.259322 + 0.626059i
\(777\) 0 0
\(778\) 91.8617i 3.29340i
\(779\) 6.38494 15.4146i 0.228764 0.552286i
\(780\) −5.03680 + 5.03680i −0.180346 + 0.180346i
\(781\) 9.75379 0.349018
\(782\) 0 0
\(783\) 8.24621 0.294696
\(784\) 38.0371 38.0371i 1.35847 1.35847i
\(785\) −9.11084 + 21.9955i −0.325180 + 0.785053i
\(786\) 36.9848i 1.31921i
\(787\) 9.46626 + 3.92106i 0.337436 + 0.139771i 0.544966 0.838458i \(-0.316543\pi\)
−0.207530 + 0.978229i \(0.566543\pi\)
\(788\) 15.5900 + 37.6376i 0.555371 + 1.34078i
\(789\) −18.9325 + 7.84211i −0.674016 + 0.279187i
\(790\) 60.4416 + 60.4416i 2.15041 + 2.15041i
\(791\) 0 0
\(792\) −9.46626 + 3.92106i −0.336369 + 0.139329i
\(793\) 1.53073 + 3.69552i 0.0543579 + 0.131232i
\(794\) 45.8388 + 18.9870i 1.62676 + 0.673825i
\(795\) 43.6155i 1.54688i
\(796\) 27.9301 67.4292i 0.989956 2.38996i
\(797\) −6.79921 + 6.79921i −0.240840 + 0.240840i −0.817198 0.576357i \(-0.804474\pi\)
0.576357 + 0.817198i \(0.304474\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −50.4233 −1.78273
\(801\) 0.794156 0.794156i 0.0280601 0.0280601i
\(802\) 38.4039 92.7152i 1.35609 3.27389i
\(803\) 19.1231i 0.674840i
\(804\) 16.8573 + 6.98252i 0.594511 + 0.246255i
\(805\) 0 0
\(806\) 3.24058 1.34229i 0.114145 0.0472802i
\(807\) −11.6237 11.6237i −0.409175 0.409175i
\(808\) 50.4657 + 50.4657i 1.77538 + 1.77538i
\(809\) 14.7322 6.10228i 0.517957 0.214545i −0.108362 0.994111i \(-0.534561\pi\)
0.626319 + 0.779567i \(0.284561\pi\)
\(810\) −3.49126 8.42865i −0.122670 0.296153i
\(811\) −41.9158 17.3621i −1.47186 0.609665i −0.504579 0.863365i \(-0.668352\pi\)
−0.967283 + 0.253700i \(0.918352\pi\)
\(812\) 0 0
\(813\) −7.58010 + 18.3000i −0.265846 + 0.641809i
\(814\) 14.4903 14.4903i 0.507886 0.507886i
\(815\) 53.8617 1.88669
\(816\) 0 0
\(817\) −21.9460 −0.767794
\(818\) −26.5982 + 26.5982i −0.929984 + 0.929984i
\(819\) 0 0
\(820\) 57.8617i 2.02062i
\(821\) 11.4916 + 4.75999i 0.401061 + 0.166125i 0.574091 0.818792i \(-0.305356\pi\)
−0.173030 + 0.984917i \(0.555356\pi\)
\(822\) −0.241352 0.582675i −0.00841812 0.0203231i
\(823\) −3.24058 + 1.34229i −0.112959 + 0.0467894i −0.438447 0.898757i \(-0.644471\pi\)
0.325488 + 0.945546i \(0.394471\pi\)
\(824\) −77.4121 77.4121i −2.69678 2.69678i
\(825\) 8.48528 + 8.48528i 0.295420 + 0.295420i
\(826\) 0 0
\(827\) 18.1481 + 43.8134i 0.631072 + 1.52354i 0.838277 + 0.545244i \(0.183563\pi\)
−0.207206 + 0.978297i \(0.566437\pi\)
\(828\) −10.2764 4.25663i −0.357130 0.147928i
\(829\) 17.5076i 0.608063i 0.952662 + 0.304032i \(0.0983329\pi\)
−0.952662 + 0.304032i \(0.901667\pi\)
\(830\) 3.06147 7.39104i 0.106265 0.256547i
\(831\) −4.24264 + 4.24264i −0.147176 + 0.147176i
\(832\) −0.630683 −0.0218650
\(833\) 0 0
\(834\) −2.24621 −0.0777799
\(835\) −49.8838 + 49.8838i −1.72630 + 1.72630i
\(836\) 12.7699 30.8292i 0.441656 1.06625i
\(837\) 3.12311i 0.107950i
\(838\) −1.16535 0.482704i −0.0402564 0.0166747i
\(839\) 9.97042 + 24.0707i 0.344217 + 0.831014i 0.997280 + 0.0737100i \(0.0234839\pi\)
−0.653062 + 0.757304i \(0.726516\pi\)
\(840\) 0 0
\(841\) 27.5772 + 27.5772i 0.950937 + 0.950937i
\(842\) 44.2651 + 44.2651i 1.52548 + 1.52548i
\(843\) 10.0489 4.16241i 0.346104 0.143361i
\(844\) 23.3379 + 56.3427i 0.803323 + 1.93939i
\(845\) −42.1433 17.4563i −1.44977 0.600515i
\(846\) 28.4924i 0.979590i
\(847\) 0 0
\(848\) 66.5444 66.5444i 2.28514 2.28514i
\(849\) 21.3693 0.733393
\(850\) 0 0
\(851\) 12.4924 0.428235
\(852\) −20.1472 + 20.1472i −0.690231 + 0.690231i
\(853\) 10.9978 26.5510i 0.376557 0.909090i −0.616048 0.787708i \(-0.711267\pi\)
0.992606 0.121382i \(-0.0387326\pi\)
\(854\) 0 0
\(855\) 15.4146 + 6.38494i 0.527169 + 0.218360i
\(856\) −11.7632 28.3988i −0.402057 0.970651i
\(857\) 5.54328 2.29610i 0.189355 0.0784333i −0.285991 0.958232i \(-0.592323\pi\)
0.475346 + 0.879799i \(0.342323\pi\)
\(858\) 1.24012 + 1.24012i 0.0423369 + 0.0423369i
\(859\) −8.48528 8.48528i −0.289514 0.289514i 0.547374 0.836888i \(-0.315628\pi\)
−0.836888 + 0.547374i \(0.815628\pi\)
\(860\) 70.3146 29.1253i 2.39771 0.993163i
\(861\) 0 0
\(862\) 56.7976 + 23.5263i 1.93453 + 0.801310i
\(863\) 9.75379i 0.332023i −0.986124 0.166011i \(-0.946911\pi\)
0.986124 0.166011i \(-0.0530889\pi\)
\(864\) 2.51100 6.06208i 0.0854259 0.206236i
\(865\) 4.55267 4.55267i 0.154795 0.154795i
\(866\) 68.3542 2.32277
\(867\) 0 0
\(868\) 0 0
\(869\) 10.3455 10.3455i 0.350946 0.350946i
\(870\) 28.7897 69.5044i 0.976062 2.35642i
\(871\) 1.75379i 0.0594249i
\(872\) −41.6883 17.2679i −1.41174 0.584764i
\(873\) 1.10094 + 2.65790i 0.0372612 + 0.0899564i
\(874\) 27.0340 11.1978i 0.914438 0.378773i
\(875\) 0 0
\(876\) −39.5002 39.5002i −1.33459 1.33459i
\(877\) −31.4119 + 13.0112i −1.06070 + 0.439358i −0.843701 0.536813i \(-0.819628\pi\)
−0.217003 + 0.976171i \(0.569628\pi\)
\(878\) 21.8072 + 52.6471i 0.735956 + 1.77675i
\(879\) −1.03761 0.429794i −0.0349979 0.0144966i
\(880\) 42.7386i 1.44072i
\(881\) 15.4016 37.1827i 0.518892 1.25272i −0.419693 0.907666i \(-0.637862\pi\)
0.938585 0.345049i \(-0.112138\pi\)
\(882\) 12.6790 12.6790i 0.426925 0.426925i
\(883\) 23.4233 0.788257 0.394128 0.919055i \(-0.371047\pi\)
0.394128 + 0.919055i \(0.371047\pi\)
\(884\) 0 0
\(885\) −25.3693 −0.852780
\(886\) −56.3730 + 56.3730i −1.89389 + 1.89389i
\(887\) −7.05609 + 17.0349i −0.236920 + 0.571976i −0.996961 0.0778990i \(-0.975179\pi\)
0.760041 + 0.649875i \(0.225179\pi\)
\(888\) 33.6155i 1.12806i
\(889\) 0 0
\(890\) −3.92106 9.46626i −0.131434 0.317310i
\(891\) −1.44269 + 0.597580i −0.0483318 + 0.0200197i
\(892\) −48.1596 48.1596i −1.61250 1.61250i
\(893\) −36.8459 36.8459i −1.23300 1.23300i
\(894\) 28.9815 12.0045i 0.969285 0.401491i
\(895\) −1.19516 2.88537i −0.0399498 0.0964474i
\(896\) 0 0
\(897\) 1.06913i 0.0356972i
\(898\) −36.0136 + 86.9444i −1.20179 + 2.90137i
\(899\) −18.2107 + 18.2107i −0.607360 + 0.607360i
\(900\) −35.0540 −1.16847
\(901\) 0 0
\(902\) 14.2462 0.474347
\(903\) 0 0
\(904\) −1.10094 + 2.65790i −0.0366167 + 0.0884006i
\(905\) 21.3693i 0.710340i
\(906\) −18.9325 7.84211i −0.628991 0.260537i
\(907\) 3.77392 + 9.11106i 0.125311 + 0.302528i 0.974068 0.226256i \(-0.0726484\pi\)
−0.848757 + 0.528783i \(0.822648\pi\)
\(908\) 59.2280 24.5331i 1.96555 0.814158i
\(909\) 7.69113 + 7.69113i 0.255099 + 0.255099i
\(910\) 0 0
\(911\) 22.4504 9.29928i 0.743816 0.308099i 0.0216007 0.999767i \(-0.493124\pi\)
0.722216 + 0.691668i \(0.243124\pi\)
\(912\) 13.7766 + 33.2597i 0.456189 + 1.10134i
\(913\) −1.26508 0.524015i −0.0418682 0.0173424i
\(914\) 35.3693i 1.16991i
\(915\) −12.4343 + 30.0191i −0.411066 + 0.992400i
\(916\) 19.3530 19.3530i 0.639442 0.639442i
\(917\) 0 0
\(918\) 0 0
\(919\) −16.6847 −0.550376 −0.275188 0.961390i \(-0.588740\pi\)
−0.275188 + 0.961390i \(0.588740\pi\)
\(920\) −40.2944 + 40.2944i −1.32847 + 1.32847i
\(921\) 12.4343 30.0191i 0.409725 0.989162i
\(922\) 21.1231i 0.695652i
\(923\) 2.53017 + 1.04803i 0.0832815 + 0.0344963i
\(924\) 0 0
\(925\) 36.3725 15.0660i 1.19592 0.495367i
\(926\) 74.2355 + 74.2355i 2.43953 + 2.43953i
\(927\) −11.7978 11.7978i −0.387492 0.387492i
\(928\) 49.9892 20.7062i 1.64098 0.679715i
\(929\) 1.17451 + 2.83551i 0.0385343 + 0.0930300i 0.941975 0.335683i \(-0.108967\pi\)
−0.903441 + 0.428713i \(0.858967\pi\)
\(930\) 26.3236 + 10.9036i 0.863184 + 0.357542i
\(931\) 32.7926i 1.07473i
\(932\) −6.21716 + 15.0095i −0.203650 + 0.491654i
\(933\) 0 0
\(934\) 54.7386 1.79110
\(935\) 0 0
\(936\) −2.87689 −0.0940342
\(937\) 15.5563 15.5563i 0.508204 0.508204i −0.405771 0.913975i \(-0.632997\pi\)
0.913975 + 0.405771i \(0.132997\pi\)
\(938\) 0 0
\(939\) 33.6155i 1.09700i
\(940\) 166.953 + 69.1541i 5.44540 + 2.25556i
\(941\) −11.4805 27.7164i −0.374254 0.903528i −0.993019 0.117953i \(-0.962367\pi\)
0.618766 0.785576i \(-0.287633\pi\)
\(942\) −15.8197 + 6.55273i −0.515433 + 0.213499i
\(943\) 6.14098 + 6.14098i 0.199978 + 0.199978i
\(944\) −38.7061 38.7061i −1.25977 1.25977i
\(945\) 0 0
\(946\) −7.17096 17.3122i −0.233148 0.562869i
\(947\) 11.0866 + 4.59220i 0.360265 + 0.149226i 0.555471 0.831536i \(-0.312538\pi\)
−0.195207 + 0.980762i \(0.562538\pi\)
\(948\) 42.7386i 1.38809i
\(949\) −2.05475 + 4.96060i −0.0667000 + 0.161028i
\(950\) 65.2065 65.2065i 2.11558 2.11558i
\(951\) −18.0000 −0.583690
\(952\) 0 0
\(953\) 36.3542 1.17763 0.588813 0.808269i \(-0.299595\pi\)
0.588813 + 0.808269i \(0.299595\pi\)
\(954\) 22.1815 22.1815i 0.718151 0.718151i
\(955\) 6.64695 16.0472i 0.215090 0.519274i
\(956\) 28.4924i 0.921511i
\(957\) −11.8967 4.92777i −0.384566 0.159292i
\(958\) 23.8206 + 57.5080i 0.769608 + 1.85800i
\(959\) 0 0
\(960\) −3.62258 3.62258i −0.116918 0.116918i
\(961\) 15.0233 + 15.0233i 0.484624 + 0.484624i
\(962\) 5.31581 2.20188i 0.171389 0.0709914i
\(963\) −1.79274 4.32806i −0.0577703 0.139470i
\(964\) 14.1994 + 5.88158i 0.457332 + 0.189433i
\(965\) 27.6155i 0.888975i
\(966\) 0 0
\(967\) 30.0085 30.0085i 0.965009 0.965009i −0.0343994 0.999408i \(-0.510952\pi\)
0.999408 + 0.0343994i \(0.0109518\pi\)
\(968\) −56.1771 −1.80560
\(969\) 0 0
\(970\) 26.2462 0.842715
\(971\) 30.8408 30.8408i 0.989730 0.989730i −0.0102183 0.999948i \(-0.503253\pi\)
0.999948 + 0.0102183i \(0.00325263\pi\)
\(972\) 1.74563 4.21433i 0.0559911 0.135175i
\(973\) 0 0
\(974\) 41.1056 + 17.0265i 1.31711 + 0.545565i
\(975\) 1.28938 + 3.11284i 0.0412933 + 0.0996908i
\(976\) −64.7713 + 26.8292i −2.07328 + 0.858780i
\(977\) 5.83095 + 5.83095i 0.186549 + 0.186549i 0.794202 0.607654i \(-0.207889\pi\)
−0.607654 + 0.794202i \(0.707889\pi\)
\(978\) 27.3924 + 27.3924i 0.875911 + 0.875911i
\(979\) −1.62029 + 0.671146i −0.0517847 + 0.0214499i
\(980\) −43.5201 105.067i −1.39020 3.35624i
\(981\) −6.35342 2.63167i −0.202849 0.0840229i
\(982\) 54.7386i 1.74678i
\(983\) 11.8367 28.5764i 0.377533 0.911446i −0.614894 0.788610i \(-0.710801\pi\)
0.992427 0.122836i \(-0.0391988\pi\)
\(984\) −16.5246 + 16.5246i −0.526785 + 0.526785i
\(985\) 31.8078 1.01348
\(986\) 0 0
\(987\) 0 0
\(988\) 6.62511 6.62511i 0.210773 0.210773i
\(989\) 4.37150 10.5537i 0.139006 0.335590i
\(990\) 14.2462i 0.452774i
\(991\) −39.4853 16.3554i −1.25429 0.519545i −0.346140 0.938183i \(-0.612508\pi\)
−0.908153 + 0.418638i \(0.862508\pi\)
\(992\) 7.84211 + 18.9325i 0.248987 + 0.601108i
\(993\) −32.2719 + 13.3675i −1.02412 + 0.424204i
\(994\) 0 0
\(995\) −40.2944 40.2944i −1.27742 1.27742i
\(996\) 3.69552 1.53073i 0.117097 0.0485032i
\(997\) −3.82683 9.23880i −0.121197 0.292596i 0.851624 0.524153i \(-0.175618\pi\)
−0.972821 + 0.231557i \(0.925618\pi\)
\(998\) −31.6394 13.1055i −1.00153 0.414846i
\(999\) 5.12311i 0.162088i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.h.j.688.4 16
17.2 even 8 inner 867.2.h.j.712.3 16
17.3 odd 16 867.2.e.f.616.2 8
17.4 even 4 inner 867.2.h.j.757.1 16
17.5 odd 16 867.2.e.f.829.4 8
17.6 odd 16 867.2.d.c.577.3 4
17.7 odd 16 51.2.a.b.1.1 2
17.8 even 8 inner 867.2.h.j.733.1 16
17.9 even 8 inner 867.2.h.j.733.2 16
17.10 odd 16 867.2.a.f.1.1 2
17.11 odd 16 867.2.d.c.577.4 4
17.12 odd 16 867.2.e.f.829.3 8
17.13 even 4 inner 867.2.h.j.757.2 16
17.14 odd 16 867.2.e.f.616.1 8
17.15 even 8 inner 867.2.h.j.712.4 16
17.16 even 2 inner 867.2.h.j.688.3 16
51.41 even 16 153.2.a.e.1.2 2
51.44 even 16 2601.2.a.t.1.2 2
68.7 even 16 816.2.a.m.1.2 2
85.7 even 16 1275.2.b.d.1174.1 4
85.24 odd 16 1275.2.a.n.1.2 2
85.58 even 16 1275.2.b.d.1174.4 4
119.41 even 16 2499.2.a.o.1.1 2
136.75 even 16 3264.2.a.bg.1.1 2
136.109 odd 16 3264.2.a.bl.1.1 2
187.109 even 16 6171.2.a.p.1.2 2
204.143 odd 16 2448.2.a.v.1.1 2
221.194 odd 16 8619.2.a.q.1.2 2
255.194 even 16 3825.2.a.s.1.1 2
357.41 odd 16 7497.2.a.v.1.2 2
408.245 even 16 9792.2.a.cy.1.2 2
408.347 odd 16 9792.2.a.cz.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.a.b.1.1 2 17.7 odd 16
153.2.a.e.1.2 2 51.41 even 16
816.2.a.m.1.2 2 68.7 even 16
867.2.a.f.1.1 2 17.10 odd 16
867.2.d.c.577.3 4 17.6 odd 16
867.2.d.c.577.4 4 17.11 odd 16
867.2.e.f.616.1 8 17.14 odd 16
867.2.e.f.616.2 8 17.3 odd 16
867.2.e.f.829.3 8 17.12 odd 16
867.2.e.f.829.4 8 17.5 odd 16
867.2.h.j.688.3 16 17.16 even 2 inner
867.2.h.j.688.4 16 1.1 even 1 trivial
867.2.h.j.712.3 16 17.2 even 8 inner
867.2.h.j.712.4 16 17.15 even 8 inner
867.2.h.j.733.1 16 17.8 even 8 inner
867.2.h.j.733.2 16 17.9 even 8 inner
867.2.h.j.757.1 16 17.4 even 4 inner
867.2.h.j.757.2 16 17.13 even 4 inner
1275.2.a.n.1.2 2 85.24 odd 16
1275.2.b.d.1174.1 4 85.7 even 16
1275.2.b.d.1174.4 4 85.58 even 16
2448.2.a.v.1.1 2 204.143 odd 16
2499.2.a.o.1.1 2 119.41 even 16
2601.2.a.t.1.2 2 51.44 even 16
3264.2.a.bg.1.1 2 136.75 even 16
3264.2.a.bl.1.1 2 136.109 odd 16
3825.2.a.s.1.1 2 255.194 even 16
6171.2.a.p.1.2 2 187.109 even 16
7497.2.a.v.1.2 2 357.41 odd 16
8619.2.a.q.1.2 2 221.194 odd 16
9792.2.a.cy.1.2 2 408.245 even 16
9792.2.a.cz.1.2 2 408.347 odd 16