Properties

Label 2499.2.a.o.1.1
Level $2499$
Weight $2$
Character 2499.1
Self dual yes
Analytic conductor $19.955$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2499,2,Mod(1,2499)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2499, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2499.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2499 = 3 \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2499.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.9546154651\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 2499.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.56155 q^{2} +1.00000 q^{3} +4.56155 q^{4} -3.56155 q^{5} -2.56155 q^{6} -6.56155 q^{8} +1.00000 q^{9} +9.12311 q^{10} +1.56155 q^{11} +4.56155 q^{12} -0.438447 q^{13} -3.56155 q^{15} +7.68466 q^{16} -1.00000 q^{17} -2.56155 q^{18} +4.68466 q^{19} -16.2462 q^{20} -4.00000 q^{22} -2.43845 q^{23} -6.56155 q^{24} +7.68466 q^{25} +1.12311 q^{26} +1.00000 q^{27} -8.24621 q^{29} +9.12311 q^{30} -3.12311 q^{31} -6.56155 q^{32} +1.56155 q^{33} +2.56155 q^{34} +4.56155 q^{36} -5.12311 q^{37} -12.0000 q^{38} -0.438447 q^{39} +23.3693 q^{40} +3.56155 q^{41} +4.68466 q^{43} +7.12311 q^{44} -3.56155 q^{45} +6.24621 q^{46} +11.1231 q^{47} +7.68466 q^{48} -19.6847 q^{50} -1.00000 q^{51} -2.00000 q^{52} +12.2462 q^{53} -2.56155 q^{54} -5.56155 q^{55} +4.68466 q^{57} +21.1231 q^{58} -7.12311 q^{59} -16.2462 q^{60} -9.12311 q^{61} +8.00000 q^{62} +1.43845 q^{64} +1.56155 q^{65} -4.00000 q^{66} +4.00000 q^{67} -4.56155 q^{68} -2.43845 q^{69} -6.24621 q^{71} -6.56155 q^{72} +12.2462 q^{73} +13.1231 q^{74} +7.68466 q^{75} +21.3693 q^{76} +1.12311 q^{78} -9.36932 q^{79} -27.3693 q^{80} +1.00000 q^{81} -9.12311 q^{82} +0.876894 q^{83} +3.56155 q^{85} -12.0000 q^{86} -8.24621 q^{87} -10.2462 q^{88} +1.12311 q^{89} +9.12311 q^{90} -11.1231 q^{92} -3.12311 q^{93} -28.4924 q^{94} -16.6847 q^{95} -6.56155 q^{96} +2.87689 q^{97} +1.56155 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 2 q^{3} + 5 q^{4} - 3 q^{5} - q^{6} - 9 q^{8} + 2 q^{9} + 10 q^{10} - q^{11} + 5 q^{12} - 5 q^{13} - 3 q^{15} + 3 q^{16} - 2 q^{17} - q^{18} - 3 q^{19} - 16 q^{20} - 8 q^{22} - 9 q^{23}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.56155 −1.81129 −0.905646 0.424035i \(-0.860613\pi\)
−0.905646 + 0.424035i \(0.860613\pi\)
\(3\) 1.00000 0.577350
\(4\) 4.56155 2.28078
\(5\) −3.56155 −1.59277 −0.796387 0.604787i \(-0.793258\pi\)
−0.796387 + 0.604787i \(0.793258\pi\)
\(6\) −2.56155 −1.04575
\(7\) 0 0
\(8\) −6.56155 −2.31986
\(9\) 1.00000 0.333333
\(10\) 9.12311 2.88498
\(11\) 1.56155 0.470826 0.235413 0.971895i \(-0.424356\pi\)
0.235413 + 0.971895i \(0.424356\pi\)
\(12\) 4.56155 1.31681
\(13\) −0.438447 −0.121603 −0.0608017 0.998150i \(-0.519366\pi\)
−0.0608017 + 0.998150i \(0.519366\pi\)
\(14\) 0 0
\(15\) −3.56155 −0.919589
\(16\) 7.68466 1.92116
\(17\) −1.00000 −0.242536
\(18\) −2.56155 −0.603764
\(19\) 4.68466 1.07473 0.537367 0.843348i \(-0.319419\pi\)
0.537367 + 0.843348i \(0.319419\pi\)
\(20\) −16.2462 −3.63276
\(21\) 0 0
\(22\) −4.00000 −0.852803
\(23\) −2.43845 −0.508451 −0.254226 0.967145i \(-0.581821\pi\)
−0.254226 + 0.967145i \(0.581821\pi\)
\(24\) −6.56155 −1.33937
\(25\) 7.68466 1.53693
\(26\) 1.12311 0.220259
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −8.24621 −1.53128 −0.765641 0.643268i \(-0.777578\pi\)
−0.765641 + 0.643268i \(0.777578\pi\)
\(30\) 9.12311 1.66564
\(31\) −3.12311 −0.560926 −0.280463 0.959865i \(-0.590488\pi\)
−0.280463 + 0.959865i \(0.590488\pi\)
\(32\) −6.56155 −1.15993
\(33\) 1.56155 0.271831
\(34\) 2.56155 0.439303
\(35\) 0 0
\(36\) 4.56155 0.760259
\(37\) −5.12311 −0.842233 −0.421117 0.907006i \(-0.638362\pi\)
−0.421117 + 0.907006i \(0.638362\pi\)
\(38\) −12.0000 −1.94666
\(39\) −0.438447 −0.0702077
\(40\) 23.3693 3.69501
\(41\) 3.56155 0.556221 0.278111 0.960549i \(-0.410292\pi\)
0.278111 + 0.960549i \(0.410292\pi\)
\(42\) 0 0
\(43\) 4.68466 0.714404 0.357202 0.934027i \(-0.383731\pi\)
0.357202 + 0.934027i \(0.383731\pi\)
\(44\) 7.12311 1.07385
\(45\) −3.56155 −0.530925
\(46\) 6.24621 0.920954
\(47\) 11.1231 1.62247 0.811236 0.584719i \(-0.198795\pi\)
0.811236 + 0.584719i \(0.198795\pi\)
\(48\) 7.68466 1.10918
\(49\) 0 0
\(50\) −19.6847 −2.78383
\(51\) −1.00000 −0.140028
\(52\) −2.00000 −0.277350
\(53\) 12.2462 1.68215 0.841073 0.540921i \(-0.181924\pi\)
0.841073 + 0.540921i \(0.181924\pi\)
\(54\) −2.56155 −0.348583
\(55\) −5.56155 −0.749920
\(56\) 0 0
\(57\) 4.68466 0.620498
\(58\) 21.1231 2.77360
\(59\) −7.12311 −0.927349 −0.463675 0.886006i \(-0.653469\pi\)
−0.463675 + 0.886006i \(0.653469\pi\)
\(60\) −16.2462 −2.09738
\(61\) −9.12311 −1.16809 −0.584047 0.811720i \(-0.698532\pi\)
−0.584047 + 0.811720i \(0.698532\pi\)
\(62\) 8.00000 1.01600
\(63\) 0 0
\(64\) 1.43845 0.179806
\(65\) 1.56155 0.193687
\(66\) −4.00000 −0.492366
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) −4.56155 −0.553170
\(69\) −2.43845 −0.293555
\(70\) 0 0
\(71\) −6.24621 −0.741289 −0.370644 0.928775i \(-0.620863\pi\)
−0.370644 + 0.928775i \(0.620863\pi\)
\(72\) −6.56155 −0.773286
\(73\) 12.2462 1.43331 0.716655 0.697428i \(-0.245672\pi\)
0.716655 + 0.697428i \(0.245672\pi\)
\(74\) 13.1231 1.52553
\(75\) 7.68466 0.887348
\(76\) 21.3693 2.45123
\(77\) 0 0
\(78\) 1.12311 0.127167
\(79\) −9.36932 −1.05413 −0.527065 0.849825i \(-0.676708\pi\)
−0.527065 + 0.849825i \(0.676708\pi\)
\(80\) −27.3693 −3.05998
\(81\) 1.00000 0.111111
\(82\) −9.12311 −1.00748
\(83\) 0.876894 0.0962517 0.0481258 0.998841i \(-0.484675\pi\)
0.0481258 + 0.998841i \(0.484675\pi\)
\(84\) 0 0
\(85\) 3.56155 0.386305
\(86\) −12.0000 −1.29399
\(87\) −8.24621 −0.884087
\(88\) −10.2462 −1.09225
\(89\) 1.12311 0.119049 0.0595245 0.998227i \(-0.481042\pi\)
0.0595245 + 0.998227i \(0.481042\pi\)
\(90\) 9.12311 0.961660
\(91\) 0 0
\(92\) −11.1231 −1.15966
\(93\) −3.12311 −0.323851
\(94\) −28.4924 −2.93877
\(95\) −16.6847 −1.71181
\(96\) −6.56155 −0.669686
\(97\) 2.87689 0.292104 0.146052 0.989277i \(-0.453343\pi\)
0.146052 + 0.989277i \(0.453343\pi\)
\(98\) 0 0
\(99\) 1.56155 0.156942
\(100\) 35.0540 3.50540
\(101\) −10.8769 −1.08229 −0.541146 0.840929i \(-0.682009\pi\)
−0.541146 + 0.840929i \(0.682009\pi\)
\(102\) 2.56155 0.253632
\(103\) −16.6847 −1.64399 −0.821994 0.569496i \(-0.807138\pi\)
−0.821994 + 0.569496i \(0.807138\pi\)
\(104\) 2.87689 0.282103
\(105\) 0 0
\(106\) −31.3693 −3.04686
\(107\) −4.68466 −0.452883 −0.226442 0.974025i \(-0.572709\pi\)
−0.226442 + 0.974025i \(0.572709\pi\)
\(108\) 4.56155 0.438936
\(109\) −6.87689 −0.658687 −0.329344 0.944210i \(-0.606827\pi\)
−0.329344 + 0.944210i \(0.606827\pi\)
\(110\) 14.2462 1.35832
\(111\) −5.12311 −0.486264
\(112\) 0 0
\(113\) −0.438447 −0.0412456 −0.0206228 0.999787i \(-0.506565\pi\)
−0.0206228 + 0.999787i \(0.506565\pi\)
\(114\) −12.0000 −1.12390
\(115\) 8.68466 0.809849
\(116\) −37.6155 −3.49251
\(117\) −0.438447 −0.0405345
\(118\) 18.2462 1.67970
\(119\) 0 0
\(120\) 23.3693 2.13332
\(121\) −8.56155 −0.778323
\(122\) 23.3693 2.11576
\(123\) 3.56155 0.321134
\(124\) −14.2462 −1.27935
\(125\) −9.56155 −0.855211
\(126\) 0 0
\(127\) 19.8078 1.75765 0.878827 0.477140i \(-0.158326\pi\)
0.878827 + 0.477140i \(0.158326\pi\)
\(128\) 9.43845 0.834249
\(129\) 4.68466 0.412461
\(130\) −4.00000 −0.350823
\(131\) −14.4384 −1.26149 −0.630746 0.775989i \(-0.717251\pi\)
−0.630746 + 0.775989i \(0.717251\pi\)
\(132\) 7.12311 0.619987
\(133\) 0 0
\(134\) −10.2462 −0.885138
\(135\) −3.56155 −0.306530
\(136\) 6.56155 0.562649
\(137\) 0.246211 0.0210352 0.0105176 0.999945i \(-0.496652\pi\)
0.0105176 + 0.999945i \(0.496652\pi\)
\(138\) 6.24621 0.531713
\(139\) 0.876894 0.0743772 0.0371886 0.999308i \(-0.488160\pi\)
0.0371886 + 0.999308i \(0.488160\pi\)
\(140\) 0 0
\(141\) 11.1231 0.936734
\(142\) 16.0000 1.34269
\(143\) −0.684658 −0.0572540
\(144\) 7.68466 0.640388
\(145\) 29.3693 2.43899
\(146\) −31.3693 −2.59614
\(147\) 0 0
\(148\) −23.3693 −1.92095
\(149\) 12.2462 1.00325 0.501624 0.865086i \(-0.332736\pi\)
0.501624 + 0.865086i \(0.332736\pi\)
\(150\) −19.6847 −1.60725
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) −30.7386 −2.49323
\(153\) −1.00000 −0.0808452
\(154\) 0 0
\(155\) 11.1231 0.893429
\(156\) −2.00000 −0.160128
\(157\) −6.68466 −0.533494 −0.266747 0.963767i \(-0.585949\pi\)
−0.266747 + 0.963767i \(0.585949\pi\)
\(158\) 24.0000 1.90934
\(159\) 12.2462 0.971188
\(160\) 23.3693 1.84751
\(161\) 0 0
\(162\) −2.56155 −0.201255
\(163\) −15.1231 −1.18453 −0.592267 0.805742i \(-0.701767\pi\)
−0.592267 + 0.805742i \(0.701767\pi\)
\(164\) 16.2462 1.26862
\(165\) −5.56155 −0.432966
\(166\) −2.24621 −0.174340
\(167\) −19.8078 −1.53277 −0.766385 0.642381i \(-0.777947\pi\)
−0.766385 + 0.642381i \(0.777947\pi\)
\(168\) 0 0
\(169\) −12.8078 −0.985213
\(170\) −9.12311 −0.699710
\(171\) 4.68466 0.358245
\(172\) 21.3693 1.62940
\(173\) −1.80776 −0.137442 −0.0687209 0.997636i \(-0.521892\pi\)
−0.0687209 + 0.997636i \(0.521892\pi\)
\(174\) 21.1231 1.60134
\(175\) 0 0
\(176\) 12.0000 0.904534
\(177\) −7.12311 −0.535405
\(178\) −2.87689 −0.215632
\(179\) −0.876894 −0.0655422 −0.0327711 0.999463i \(-0.510433\pi\)
−0.0327711 + 0.999463i \(0.510433\pi\)
\(180\) −16.2462 −1.21092
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 0 0
\(183\) −9.12311 −0.674399
\(184\) 16.0000 1.17954
\(185\) 18.2462 1.34149
\(186\) 8.00000 0.586588
\(187\) −1.56155 −0.114192
\(188\) 50.7386 3.70050
\(189\) 0 0
\(190\) 42.7386 3.10059
\(191\) −4.87689 −0.352880 −0.176440 0.984311i \(-0.556458\pi\)
−0.176440 + 0.984311i \(0.556458\pi\)
\(192\) 1.43845 0.103811
\(193\) −7.75379 −0.558130 −0.279065 0.960272i \(-0.590024\pi\)
−0.279065 + 0.960272i \(0.590024\pi\)
\(194\) −7.36932 −0.529086
\(195\) 1.56155 0.111825
\(196\) 0 0
\(197\) −8.93087 −0.636298 −0.318149 0.948041i \(-0.603061\pi\)
−0.318149 + 0.948041i \(0.603061\pi\)
\(198\) −4.00000 −0.284268
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) −50.4233 −3.56547
\(201\) 4.00000 0.282138
\(202\) 27.8617 1.96035
\(203\) 0 0
\(204\) −4.56155 −0.319373
\(205\) −12.6847 −0.885935
\(206\) 42.7386 2.97774
\(207\) −2.43845 −0.169484
\(208\) −3.36932 −0.233620
\(209\) 7.31534 0.506013
\(210\) 0 0
\(211\) 13.3693 0.920382 0.460191 0.887820i \(-0.347781\pi\)
0.460191 + 0.887820i \(0.347781\pi\)
\(212\) 55.8617 3.83660
\(213\) −6.24621 −0.427983
\(214\) 12.0000 0.820303
\(215\) −16.6847 −1.13788
\(216\) −6.56155 −0.446457
\(217\) 0 0
\(218\) 17.6155 1.19307
\(219\) 12.2462 0.827522
\(220\) −25.3693 −1.71040
\(221\) 0.438447 0.0294931
\(222\) 13.1231 0.880765
\(223\) 14.9309 0.999845 0.499922 0.866070i \(-0.333362\pi\)
0.499922 + 0.866070i \(0.333362\pi\)
\(224\) 0 0
\(225\) 7.68466 0.512311
\(226\) 1.12311 0.0747079
\(227\) 14.0540 0.932795 0.466398 0.884575i \(-0.345552\pi\)
0.466398 + 0.884575i \(0.345552\pi\)
\(228\) 21.3693 1.41522
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) −22.2462 −1.46687
\(231\) 0 0
\(232\) 54.1080 3.55236
\(233\) −3.56155 −0.233325 −0.116663 0.993172i \(-0.537220\pi\)
−0.116663 + 0.993172i \(0.537220\pi\)
\(234\) 1.12311 0.0734197
\(235\) −39.6155 −2.58423
\(236\) −32.4924 −2.11508
\(237\) −9.36932 −0.608603
\(238\) 0 0
\(239\) −6.24621 −0.404034 −0.202017 0.979382i \(-0.564750\pi\)
−0.202017 + 0.979382i \(0.564750\pi\)
\(240\) −27.3693 −1.76668
\(241\) −3.36932 −0.217037 −0.108518 0.994094i \(-0.534611\pi\)
−0.108518 + 0.994094i \(0.534611\pi\)
\(242\) 21.9309 1.40977
\(243\) 1.00000 0.0641500
\(244\) −41.6155 −2.66416
\(245\) 0 0
\(246\) −9.12311 −0.581668
\(247\) −2.05398 −0.130691
\(248\) 20.4924 1.30127
\(249\) 0.876894 0.0555709
\(250\) 24.4924 1.54904
\(251\) −8.49242 −0.536037 −0.268018 0.963414i \(-0.586369\pi\)
−0.268018 + 0.963414i \(0.586369\pi\)
\(252\) 0 0
\(253\) −3.80776 −0.239392
\(254\) −50.7386 −3.18363
\(255\) 3.56155 0.223033
\(256\) −27.0540 −1.69087
\(257\) 15.3693 0.958712 0.479356 0.877621i \(-0.340870\pi\)
0.479356 + 0.877621i \(0.340870\pi\)
\(258\) −12.0000 −0.747087
\(259\) 0 0
\(260\) 7.12311 0.441756
\(261\) −8.24621 −0.510428
\(262\) 36.9848 2.28493
\(263\) −20.4924 −1.26362 −0.631808 0.775125i \(-0.717687\pi\)
−0.631808 + 0.775125i \(0.717687\pi\)
\(264\) −10.2462 −0.630611
\(265\) −43.6155 −2.67928
\(266\) 0 0
\(267\) 1.12311 0.0687329
\(268\) 18.2462 1.11456
\(269\) −16.4384 −1.00227 −0.501135 0.865369i \(-0.667084\pi\)
−0.501135 + 0.865369i \(0.667084\pi\)
\(270\) 9.12311 0.555215
\(271\) −19.8078 −1.20324 −0.601618 0.798784i \(-0.705477\pi\)
−0.601618 + 0.798784i \(0.705477\pi\)
\(272\) −7.68466 −0.465951
\(273\) 0 0
\(274\) −0.630683 −0.0381010
\(275\) 12.0000 0.723627
\(276\) −11.1231 −0.669532
\(277\) 6.00000 0.360505 0.180253 0.983620i \(-0.442309\pi\)
0.180253 + 0.983620i \(0.442309\pi\)
\(278\) −2.24621 −0.134719
\(279\) −3.12311 −0.186975
\(280\) 0 0
\(281\) −10.8769 −0.648861 −0.324431 0.945910i \(-0.605173\pi\)
−0.324431 + 0.945910i \(0.605173\pi\)
\(282\) −28.4924 −1.69670
\(283\) −21.3693 −1.27027 −0.635137 0.772399i \(-0.719056\pi\)
−0.635137 + 0.772399i \(0.719056\pi\)
\(284\) −28.4924 −1.69071
\(285\) −16.6847 −0.988314
\(286\) 1.75379 0.103704
\(287\) 0 0
\(288\) −6.56155 −0.386643
\(289\) 1.00000 0.0588235
\(290\) −75.2311 −4.41772
\(291\) 2.87689 0.168647
\(292\) 55.8617 3.26906
\(293\) −1.12311 −0.0656125 −0.0328063 0.999462i \(-0.510444\pi\)
−0.0328063 + 0.999462i \(0.510444\pi\)
\(294\) 0 0
\(295\) 25.3693 1.47706
\(296\) 33.6155 1.95386
\(297\) 1.56155 0.0906105
\(298\) −31.3693 −1.81718
\(299\) 1.06913 0.0618294
\(300\) 35.0540 2.02384
\(301\) 0 0
\(302\) −20.4924 −1.17921
\(303\) −10.8769 −0.624861
\(304\) 36.0000 2.06474
\(305\) 32.4924 1.86051
\(306\) 2.56155 0.146434
\(307\) −32.4924 −1.85444 −0.927220 0.374516i \(-0.877809\pi\)
−0.927220 + 0.374516i \(0.877809\pi\)
\(308\) 0 0
\(309\) −16.6847 −0.949157
\(310\) −28.4924 −1.61826
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 2.87689 0.162872
\(313\) −33.6155 −1.90006 −0.950031 0.312156i \(-0.898949\pi\)
−0.950031 + 0.312156i \(0.898949\pi\)
\(314\) 17.1231 0.966313
\(315\) 0 0
\(316\) −42.7386 −2.40424
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) −31.3693 −1.75910
\(319\) −12.8769 −0.720968
\(320\) −5.12311 −0.286390
\(321\) −4.68466 −0.261472
\(322\) 0 0
\(323\) −4.68466 −0.260661
\(324\) 4.56155 0.253420
\(325\) −3.36932 −0.186896
\(326\) 38.7386 2.14553
\(327\) −6.87689 −0.380293
\(328\) −23.3693 −1.29035
\(329\) 0 0
\(330\) 14.2462 0.784228
\(331\) −34.9309 −1.91997 −0.959987 0.280044i \(-0.909651\pi\)
−0.959987 + 0.280044i \(0.909651\pi\)
\(332\) 4.00000 0.219529
\(333\) −5.12311 −0.280744
\(334\) 50.7386 2.77629
\(335\) −14.2462 −0.778354
\(336\) 0 0
\(337\) −16.7386 −0.911811 −0.455906 0.890028i \(-0.650685\pi\)
−0.455906 + 0.890028i \(0.650685\pi\)
\(338\) 32.8078 1.78451
\(339\) −0.438447 −0.0238132
\(340\) 16.2462 0.881075
\(341\) −4.87689 −0.264099
\(342\) −12.0000 −0.648886
\(343\) 0 0
\(344\) −30.7386 −1.65732
\(345\) 8.68466 0.467566
\(346\) 4.63068 0.248947
\(347\) −8.49242 −0.455897 −0.227949 0.973673i \(-0.573202\pi\)
−0.227949 + 0.973673i \(0.573202\pi\)
\(348\) −37.6155 −2.01640
\(349\) −11.5616 −0.618876 −0.309438 0.950920i \(-0.600141\pi\)
−0.309438 + 0.950920i \(0.600141\pi\)
\(350\) 0 0
\(351\) −0.438447 −0.0234026
\(352\) −10.2462 −0.546125
\(353\) 10.4924 0.558455 0.279228 0.960225i \(-0.409922\pi\)
0.279228 + 0.960225i \(0.409922\pi\)
\(354\) 18.2462 0.969775
\(355\) 22.2462 1.18071
\(356\) 5.12311 0.271524
\(357\) 0 0
\(358\) 2.24621 0.118716
\(359\) 14.2462 0.751886 0.375943 0.926643i \(-0.377319\pi\)
0.375943 + 0.926643i \(0.377319\pi\)
\(360\) 23.3693 1.23167
\(361\) 2.94602 0.155054
\(362\) 15.3693 0.807793
\(363\) −8.56155 −0.449365
\(364\) 0 0
\(365\) −43.6155 −2.28294
\(366\) 23.3693 1.22153
\(367\) 1.75379 0.0915470 0.0457735 0.998952i \(-0.485425\pi\)
0.0457735 + 0.998952i \(0.485425\pi\)
\(368\) −18.7386 −0.976819
\(369\) 3.56155 0.185407
\(370\) −46.7386 −2.42983
\(371\) 0 0
\(372\) −14.2462 −0.738632
\(373\) −0.246211 −0.0127483 −0.00637417 0.999980i \(-0.502029\pi\)
−0.00637417 + 0.999980i \(0.502029\pi\)
\(374\) 4.00000 0.206835
\(375\) −9.56155 −0.493756
\(376\) −72.9848 −3.76391
\(377\) 3.61553 0.186209
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) −76.1080 −3.90426
\(381\) 19.8078 1.01478
\(382\) 12.4924 0.639168
\(383\) −6.24621 −0.319166 −0.159583 0.987184i \(-0.551015\pi\)
−0.159583 + 0.987184i \(0.551015\pi\)
\(384\) 9.43845 0.481654
\(385\) 0 0
\(386\) 19.8617 1.01094
\(387\) 4.68466 0.238135
\(388\) 13.1231 0.666225
\(389\) 35.8617 1.81826 0.909131 0.416510i \(-0.136747\pi\)
0.909131 + 0.416510i \(0.136747\pi\)
\(390\) −4.00000 −0.202548
\(391\) 2.43845 0.123318
\(392\) 0 0
\(393\) −14.4384 −0.728323
\(394\) 22.8769 1.15252
\(395\) 33.3693 1.67899
\(396\) 7.12311 0.357950
\(397\) 19.3693 0.972118 0.486059 0.873926i \(-0.338434\pi\)
0.486059 + 0.873926i \(0.338434\pi\)
\(398\) 40.9848 2.05438
\(399\) 0 0
\(400\) 59.0540 2.95270
\(401\) 39.1771 1.95641 0.978205 0.207641i \(-0.0665787\pi\)
0.978205 + 0.207641i \(0.0665787\pi\)
\(402\) −10.2462 −0.511035
\(403\) 1.36932 0.0682105
\(404\) −49.6155 −2.46846
\(405\) −3.56155 −0.176975
\(406\) 0 0
\(407\) −8.00000 −0.396545
\(408\) 6.56155 0.324845
\(409\) 14.6847 0.726110 0.363055 0.931768i \(-0.381734\pi\)
0.363055 + 0.931768i \(0.381734\pi\)
\(410\) 32.4924 1.60469
\(411\) 0.246211 0.0121447
\(412\) −76.1080 −3.74957
\(413\) 0 0
\(414\) 6.24621 0.306985
\(415\) −3.12311 −0.153307
\(416\) 2.87689 0.141051
\(417\) 0.876894 0.0429417
\(418\) −18.7386 −0.916537
\(419\) 0.492423 0.0240564 0.0120282 0.999928i \(-0.496171\pi\)
0.0120282 + 0.999928i \(0.496171\pi\)
\(420\) 0 0
\(421\) 24.4384 1.19106 0.595529 0.803334i \(-0.296943\pi\)
0.595529 + 0.803334i \(0.296943\pi\)
\(422\) −34.2462 −1.66708
\(423\) 11.1231 0.540824
\(424\) −80.3542 −3.90234
\(425\) −7.68466 −0.372761
\(426\) 16.0000 0.775203
\(427\) 0 0
\(428\) −21.3693 −1.03292
\(429\) −0.684658 −0.0330556
\(430\) 42.7386 2.06104
\(431\) −24.0000 −1.15604 −0.578020 0.816023i \(-0.696174\pi\)
−0.578020 + 0.816023i \(0.696174\pi\)
\(432\) 7.68466 0.369728
\(433\) −26.6847 −1.28238 −0.641191 0.767381i \(-0.721560\pi\)
−0.641191 + 0.767381i \(0.721560\pi\)
\(434\) 0 0
\(435\) 29.3693 1.40815
\(436\) −31.3693 −1.50232
\(437\) −11.4233 −0.546450
\(438\) −31.3693 −1.49888
\(439\) 22.2462 1.06175 0.530877 0.847449i \(-0.321863\pi\)
0.530877 + 0.847449i \(0.321863\pi\)
\(440\) 36.4924 1.73971
\(441\) 0 0
\(442\) −1.12311 −0.0534207
\(443\) −31.1231 −1.47870 −0.739352 0.673319i \(-0.764868\pi\)
−0.739352 + 0.673319i \(0.764868\pi\)
\(444\) −23.3693 −1.10906
\(445\) −4.00000 −0.189618
\(446\) −38.2462 −1.81101
\(447\) 12.2462 0.579226
\(448\) 0 0
\(449\) 36.7386 1.73380 0.866902 0.498479i \(-0.166108\pi\)
0.866902 + 0.498479i \(0.166108\pi\)
\(450\) −19.6847 −0.927944
\(451\) 5.56155 0.261883
\(452\) −2.00000 −0.0940721
\(453\) 8.00000 0.375873
\(454\) −36.0000 −1.68956
\(455\) 0 0
\(456\) −30.7386 −1.43947
\(457\) 13.8078 0.645900 0.322950 0.946416i \(-0.395325\pi\)
0.322950 + 0.946416i \(0.395325\pi\)
\(458\) 15.3693 0.718161
\(459\) −1.00000 −0.0466760
\(460\) 39.6155 1.84708
\(461\) 8.24621 0.384064 0.192032 0.981389i \(-0.438492\pi\)
0.192032 + 0.981389i \(0.438492\pi\)
\(462\) 0 0
\(463\) −40.9848 −1.90473 −0.952364 0.304965i \(-0.901355\pi\)
−0.952364 + 0.304965i \(0.901355\pi\)
\(464\) −63.3693 −2.94185
\(465\) 11.1231 0.515822
\(466\) 9.12311 0.422620
\(467\) −21.3693 −0.988854 −0.494427 0.869219i \(-0.664622\pi\)
−0.494427 + 0.869219i \(0.664622\pi\)
\(468\) −2.00000 −0.0924500
\(469\) 0 0
\(470\) 101.477 4.68080
\(471\) −6.68466 −0.308013
\(472\) 46.7386 2.15132
\(473\) 7.31534 0.336360
\(474\) 24.0000 1.10236
\(475\) 36.0000 1.65179
\(476\) 0 0
\(477\) 12.2462 0.560715
\(478\) 16.0000 0.731823
\(479\) −24.3002 −1.11030 −0.555152 0.831749i \(-0.687340\pi\)
−0.555152 + 0.831749i \(0.687340\pi\)
\(480\) 23.3693 1.06666
\(481\) 2.24621 0.102418
\(482\) 8.63068 0.393117
\(483\) 0 0
\(484\) −39.0540 −1.77518
\(485\) −10.2462 −0.465256
\(486\) −2.56155 −0.116194
\(487\) 17.3693 0.787079 0.393539 0.919308i \(-0.371250\pi\)
0.393539 + 0.919308i \(0.371250\pi\)
\(488\) 59.8617 2.70981
\(489\) −15.1231 −0.683890
\(490\) 0 0
\(491\) −21.3693 −0.964384 −0.482192 0.876066i \(-0.660159\pi\)
−0.482192 + 0.876066i \(0.660159\pi\)
\(492\) 16.2462 0.732436
\(493\) 8.24621 0.371391
\(494\) 5.26137 0.236720
\(495\) −5.56155 −0.249973
\(496\) −24.0000 −1.07763
\(497\) 0 0
\(498\) −2.24621 −0.100655
\(499\) 13.3693 0.598493 0.299246 0.954176i \(-0.403265\pi\)
0.299246 + 0.954176i \(0.403265\pi\)
\(500\) −43.6155 −1.95055
\(501\) −19.8078 −0.884946
\(502\) 21.7538 0.970919
\(503\) 29.5616 1.31808 0.659042 0.752106i \(-0.270962\pi\)
0.659042 + 0.752106i \(0.270962\pi\)
\(504\) 0 0
\(505\) 38.7386 1.72385
\(506\) 9.75379 0.433609
\(507\) −12.8078 −0.568813
\(508\) 90.3542 4.00882
\(509\) −25.1231 −1.11356 −0.556781 0.830659i \(-0.687964\pi\)
−0.556781 + 0.830659i \(0.687964\pi\)
\(510\) −9.12311 −0.403978
\(511\) 0 0
\(512\) 50.4233 2.22842
\(513\) 4.68466 0.206833
\(514\) −39.3693 −1.73651
\(515\) 59.4233 2.61850
\(516\) 21.3693 0.940732
\(517\) 17.3693 0.763902
\(518\) 0 0
\(519\) −1.80776 −0.0793520
\(520\) −10.2462 −0.449326
\(521\) 35.5616 1.55798 0.778990 0.627036i \(-0.215732\pi\)
0.778990 + 0.627036i \(0.215732\pi\)
\(522\) 21.1231 0.924533
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) −65.8617 −2.87718
\(525\) 0 0
\(526\) 52.4924 2.28878
\(527\) 3.12311 0.136045
\(528\) 12.0000 0.522233
\(529\) −17.0540 −0.741477
\(530\) 111.723 4.85296
\(531\) −7.12311 −0.309116
\(532\) 0 0
\(533\) −1.56155 −0.0676384
\(534\) −2.87689 −0.124495
\(535\) 16.6847 0.721341
\(536\) −26.2462 −1.13366
\(537\) −0.876894 −0.0378408
\(538\) 42.1080 1.81540
\(539\) 0 0
\(540\) −16.2462 −0.699126
\(541\) 34.1080 1.46642 0.733208 0.680005i \(-0.238022\pi\)
0.733208 + 0.680005i \(0.238022\pi\)
\(542\) 50.7386 2.17941
\(543\) −6.00000 −0.257485
\(544\) 6.56155 0.281324
\(545\) 24.4924 1.04914
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 1.12311 0.0479767
\(549\) −9.12311 −0.389365
\(550\) −30.7386 −1.31070
\(551\) −38.6307 −1.64572
\(552\) 16.0000 0.681005
\(553\) 0 0
\(554\) −15.3693 −0.652980
\(555\) 18.2462 0.774509
\(556\) 4.00000 0.169638
\(557\) 26.4924 1.12252 0.561260 0.827640i \(-0.310317\pi\)
0.561260 + 0.827640i \(0.310317\pi\)
\(558\) 8.00000 0.338667
\(559\) −2.05398 −0.0868739
\(560\) 0 0
\(561\) −1.56155 −0.0659288
\(562\) 27.8617 1.17528
\(563\) −31.1231 −1.31168 −0.655841 0.754899i \(-0.727686\pi\)
−0.655841 + 0.754899i \(0.727686\pi\)
\(564\) 50.7386 2.13648
\(565\) 1.56155 0.0656950
\(566\) 54.7386 2.30084
\(567\) 0 0
\(568\) 40.9848 1.71969
\(569\) 21.1231 0.885527 0.442763 0.896639i \(-0.353998\pi\)
0.442763 + 0.896639i \(0.353998\pi\)
\(570\) 42.7386 1.79012
\(571\) −30.7386 −1.28637 −0.643186 0.765710i \(-0.722388\pi\)
−0.643186 + 0.765710i \(0.722388\pi\)
\(572\) −3.12311 −0.130584
\(573\) −4.87689 −0.203735
\(574\) 0 0
\(575\) −18.7386 −0.781455
\(576\) 1.43845 0.0599353
\(577\) 3.94602 0.164275 0.0821376 0.996621i \(-0.473825\pi\)
0.0821376 + 0.996621i \(0.473825\pi\)
\(578\) −2.56155 −0.106547
\(579\) −7.75379 −0.322236
\(580\) 133.970 5.56279
\(581\) 0 0
\(582\) −7.36932 −0.305468
\(583\) 19.1231 0.791998
\(584\) −80.3542 −3.32508
\(585\) 1.56155 0.0645623
\(586\) 2.87689 0.118843
\(587\) 28.9848 1.19633 0.598166 0.801372i \(-0.295896\pi\)
0.598166 + 0.801372i \(0.295896\pi\)
\(588\) 0 0
\(589\) −14.6307 −0.602847
\(590\) −64.9848 −2.67538
\(591\) −8.93087 −0.367367
\(592\) −39.3693 −1.61807
\(593\) −27.7538 −1.13971 −0.569856 0.821745i \(-0.693001\pi\)
−0.569856 + 0.821745i \(0.693001\pi\)
\(594\) −4.00000 −0.164122
\(595\) 0 0
\(596\) 55.8617 2.28819
\(597\) −16.0000 −0.654836
\(598\) −2.73863 −0.111991
\(599\) −0.384472 −0.0157091 −0.00785455 0.999969i \(-0.502500\pi\)
−0.00785455 + 0.999969i \(0.502500\pi\)
\(600\) −50.4233 −2.05852
\(601\) 30.9848 1.26390 0.631949 0.775010i \(-0.282255\pi\)
0.631949 + 0.775010i \(0.282255\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 36.4924 1.48486
\(605\) 30.4924 1.23969
\(606\) 27.8617 1.13181
\(607\) 9.36932 0.380289 0.190144 0.981756i \(-0.439104\pi\)
0.190144 + 0.981756i \(0.439104\pi\)
\(608\) −30.7386 −1.24662
\(609\) 0 0
\(610\) −83.2311 −3.36993
\(611\) −4.87689 −0.197298
\(612\) −4.56155 −0.184390
\(613\) 14.6847 0.593108 0.296554 0.955016i \(-0.404163\pi\)
0.296554 + 0.955016i \(0.404163\pi\)
\(614\) 83.2311 3.35893
\(615\) −12.6847 −0.511495
\(616\) 0 0
\(617\) −44.2462 −1.78129 −0.890643 0.454704i \(-0.849745\pi\)
−0.890643 + 0.454704i \(0.849745\pi\)
\(618\) 42.7386 1.71920
\(619\) −5.36932 −0.215811 −0.107906 0.994161i \(-0.534414\pi\)
−0.107906 + 0.994161i \(0.534414\pi\)
\(620\) 50.7386 2.03771
\(621\) −2.43845 −0.0978515
\(622\) 0 0
\(623\) 0 0
\(624\) −3.36932 −0.134881
\(625\) −4.36932 −0.174773
\(626\) 86.1080 3.44157
\(627\) 7.31534 0.292147
\(628\) −30.4924 −1.21678
\(629\) 5.12311 0.204272
\(630\) 0 0
\(631\) −0.684658 −0.0272558 −0.0136279 0.999907i \(-0.504338\pi\)
−0.0136279 + 0.999907i \(0.504338\pi\)
\(632\) 61.4773 2.44543
\(633\) 13.3693 0.531383
\(634\) 46.1080 1.83118
\(635\) −70.5464 −2.79955
\(636\) 55.8617 2.21506
\(637\) 0 0
\(638\) 32.9848 1.30588
\(639\) −6.24621 −0.247096
\(640\) −33.6155 −1.32877
\(641\) −28.9309 −1.14270 −0.571350 0.820706i \(-0.693580\pi\)
−0.571350 + 0.820706i \(0.693580\pi\)
\(642\) 12.0000 0.473602
\(643\) 13.7538 0.542396 0.271198 0.962524i \(-0.412580\pi\)
0.271198 + 0.962524i \(0.412580\pi\)
\(644\) 0 0
\(645\) −16.6847 −0.656958
\(646\) 12.0000 0.472134
\(647\) 9.36932 0.368346 0.184173 0.982894i \(-0.441039\pi\)
0.184173 + 0.982894i \(0.441039\pi\)
\(648\) −6.56155 −0.257762
\(649\) −11.1231 −0.436620
\(650\) 8.63068 0.338523
\(651\) 0 0
\(652\) −68.9848 −2.70166
\(653\) −32.9309 −1.28868 −0.644342 0.764737i \(-0.722869\pi\)
−0.644342 + 0.764737i \(0.722869\pi\)
\(654\) 17.6155 0.688822
\(655\) 51.4233 2.00927
\(656\) 27.3693 1.06859
\(657\) 12.2462 0.477770
\(658\) 0 0
\(659\) −9.86174 −0.384159 −0.192079 0.981379i \(-0.561523\pi\)
−0.192079 + 0.981379i \(0.561523\pi\)
\(660\) −25.3693 −0.987499
\(661\) −13.3153 −0.517907 −0.258953 0.965890i \(-0.583378\pi\)
−0.258953 + 0.965890i \(0.583378\pi\)
\(662\) 89.4773 3.47763
\(663\) 0.438447 0.0170279
\(664\) −5.75379 −0.223290
\(665\) 0 0
\(666\) 13.1231 0.508510
\(667\) 20.1080 0.778583
\(668\) −90.3542 −3.49591
\(669\) 14.9309 0.577261
\(670\) 36.4924 1.40983
\(671\) −14.2462 −0.549969
\(672\) 0 0
\(673\) −0.738634 −0.0284722 −0.0142361 0.999899i \(-0.504532\pi\)
−0.0142361 + 0.999899i \(0.504532\pi\)
\(674\) 42.8769 1.65156
\(675\) 7.68466 0.295783
\(676\) −58.4233 −2.24705
\(677\) 1.31534 0.0505527 0.0252763 0.999681i \(-0.491953\pi\)
0.0252763 + 0.999681i \(0.491953\pi\)
\(678\) 1.12311 0.0431326
\(679\) 0 0
\(680\) −23.3693 −0.896172
\(681\) 14.0540 0.538550
\(682\) 12.4924 0.478360
\(683\) −9.56155 −0.365863 −0.182931 0.983126i \(-0.558559\pi\)
−0.182931 + 0.983126i \(0.558559\pi\)
\(684\) 21.3693 0.817076
\(685\) −0.876894 −0.0335044
\(686\) 0 0
\(687\) −6.00000 −0.228914
\(688\) 36.0000 1.37249
\(689\) −5.36932 −0.204555
\(690\) −22.2462 −0.846899
\(691\) 28.9848 1.10264 0.551318 0.834295i \(-0.314125\pi\)
0.551318 + 0.834295i \(0.314125\pi\)
\(692\) −8.24621 −0.313474
\(693\) 0 0
\(694\) 21.7538 0.825763
\(695\) −3.12311 −0.118466
\(696\) 54.1080 2.05096
\(697\) −3.56155 −0.134903
\(698\) 29.6155 1.12096
\(699\) −3.56155 −0.134710
\(700\) 0 0
\(701\) 15.3693 0.580491 0.290246 0.956952i \(-0.406263\pi\)
0.290246 + 0.956952i \(0.406263\pi\)
\(702\) 1.12311 0.0423889
\(703\) −24.0000 −0.905177
\(704\) 2.24621 0.0846573
\(705\) −39.6155 −1.49201
\(706\) −26.8769 −1.01153
\(707\) 0 0
\(708\) −32.4924 −1.22114
\(709\) −44.7386 −1.68019 −0.840097 0.542436i \(-0.817502\pi\)
−0.840097 + 0.542436i \(0.817502\pi\)
\(710\) −56.9848 −2.13860
\(711\) −9.36932 −0.351377
\(712\) −7.36932 −0.276177
\(713\) 7.61553 0.285204
\(714\) 0 0
\(715\) 2.43845 0.0911928
\(716\) −4.00000 −0.149487
\(717\) −6.24621 −0.233269
\(718\) −36.4924 −1.36189
\(719\) 11.8078 0.440355 0.220178 0.975460i \(-0.429336\pi\)
0.220178 + 0.975460i \(0.429336\pi\)
\(720\) −27.3693 −1.01999
\(721\) 0 0
\(722\) −7.54640 −0.280848
\(723\) −3.36932 −0.125306
\(724\) −27.3693 −1.01717
\(725\) −63.3693 −2.35348
\(726\) 21.9309 0.813931
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 111.723 4.13507
\(731\) −4.68466 −0.173268
\(732\) −41.6155 −1.53815
\(733\) 11.7538 0.434136 0.217068 0.976156i \(-0.430351\pi\)
0.217068 + 0.976156i \(0.430351\pi\)
\(734\) −4.49242 −0.165818
\(735\) 0 0
\(736\) 16.0000 0.589768
\(737\) 6.24621 0.230082
\(738\) −9.12311 −0.335826
\(739\) −20.6847 −0.760897 −0.380449 0.924802i \(-0.624230\pi\)
−0.380449 + 0.924802i \(0.624230\pi\)
\(740\) 83.2311 3.05963
\(741\) −2.05398 −0.0754547
\(742\) 0 0
\(743\) 28.4924 1.04529 0.522643 0.852552i \(-0.324946\pi\)
0.522643 + 0.852552i \(0.324946\pi\)
\(744\) 20.4924 0.751289
\(745\) −43.6155 −1.59795
\(746\) 0.630683 0.0230909
\(747\) 0.876894 0.0320839
\(748\) −7.12311 −0.260447
\(749\) 0 0
\(750\) 24.4924 0.894337
\(751\) −25.3693 −0.925740 −0.462870 0.886426i \(-0.653180\pi\)
−0.462870 + 0.886426i \(0.653180\pi\)
\(752\) 85.4773 3.11704
\(753\) −8.49242 −0.309481
\(754\) −9.26137 −0.337279
\(755\) −28.4924 −1.03695
\(756\) 0 0
\(757\) 16.0540 0.583492 0.291746 0.956496i \(-0.405764\pi\)
0.291746 + 0.956496i \(0.405764\pi\)
\(758\) 30.7386 1.11648
\(759\) −3.80776 −0.138213
\(760\) 109.477 3.97116
\(761\) 15.7538 0.571074 0.285537 0.958368i \(-0.407828\pi\)
0.285537 + 0.958368i \(0.407828\pi\)
\(762\) −50.7386 −1.83807
\(763\) 0 0
\(764\) −22.2462 −0.804840
\(765\) 3.56155 0.128768
\(766\) 16.0000 0.578103
\(767\) 3.12311 0.112769
\(768\) −27.0540 −0.976226
\(769\) −40.5464 −1.46214 −0.731070 0.682302i \(-0.760979\pi\)
−0.731070 + 0.682302i \(0.760979\pi\)
\(770\) 0 0
\(771\) 15.3693 0.553512
\(772\) −35.3693 −1.27297
\(773\) 8.63068 0.310424 0.155212 0.987881i \(-0.450394\pi\)
0.155212 + 0.987881i \(0.450394\pi\)
\(774\) −12.0000 −0.431331
\(775\) −24.0000 −0.862105
\(776\) −18.8769 −0.677641
\(777\) 0 0
\(778\) −91.8617 −3.29340
\(779\) 16.6847 0.597790
\(780\) 7.12311 0.255048
\(781\) −9.75379 −0.349018
\(782\) −6.24621 −0.223364
\(783\) −8.24621 −0.294696
\(784\) 0 0
\(785\) 23.8078 0.849736
\(786\) 36.9848 1.31921
\(787\) 10.2462 0.365238 0.182619 0.983184i \(-0.441543\pi\)
0.182619 + 0.983184i \(0.441543\pi\)
\(788\) −40.7386 −1.45125
\(789\) −20.4924 −0.729550
\(790\) −85.4773 −3.04114
\(791\) 0 0
\(792\) −10.2462 −0.364083
\(793\) 4.00000 0.142044
\(794\) −49.6155 −1.76079
\(795\) −43.6155 −1.54688
\(796\) −72.9848 −2.58688
\(797\) 9.61553 0.340599 0.170300 0.985392i \(-0.445526\pi\)
0.170300 + 0.985392i \(0.445526\pi\)
\(798\) 0 0
\(799\) −11.1231 −0.393507
\(800\) −50.4233 −1.78273
\(801\) 1.12311 0.0396830
\(802\) −100.354 −3.54363
\(803\) 19.1231 0.674840
\(804\) 18.2462 0.643494
\(805\) 0 0
\(806\) −3.50758 −0.123549
\(807\) −16.4384 −0.578661
\(808\) 71.3693 2.51076
\(809\) 15.9460 0.560632 0.280316 0.959908i \(-0.409561\pi\)
0.280316 + 0.959908i \(0.409561\pi\)
\(810\) 9.12311 0.320553
\(811\) 45.3693 1.59313 0.796566 0.604551i \(-0.206648\pi\)
0.796566 + 0.604551i \(0.206648\pi\)
\(812\) 0 0
\(813\) −19.8078 −0.694689
\(814\) 20.4924 0.718259
\(815\) 53.8617 1.88669
\(816\) −7.68466 −0.269017
\(817\) 21.9460 0.767794
\(818\) −37.6155 −1.31520
\(819\) 0 0
\(820\) −57.8617 −2.02062
\(821\) −12.4384 −0.434105 −0.217052 0.976160i \(-0.569644\pi\)
−0.217052 + 0.976160i \(0.569644\pi\)
\(822\) −0.630683 −0.0219976
\(823\) 3.50758 0.122266 0.0611332 0.998130i \(-0.480529\pi\)
0.0611332 + 0.998130i \(0.480529\pi\)
\(824\) 109.477 3.81382
\(825\) 12.0000 0.417786
\(826\) 0 0
\(827\) 47.4233 1.64907 0.824535 0.565811i \(-0.191437\pi\)
0.824535 + 0.565811i \(0.191437\pi\)
\(828\) −11.1231 −0.386555
\(829\) −17.5076 −0.608063 −0.304032 0.952662i \(-0.598333\pi\)
−0.304032 + 0.952662i \(0.598333\pi\)
\(830\) 8.00000 0.277684
\(831\) 6.00000 0.208138
\(832\) −0.630683 −0.0218650
\(833\) 0 0
\(834\) −2.24621 −0.0777799
\(835\) 70.5464 2.44136
\(836\) 33.3693 1.15410
\(837\) −3.12311 −0.107950
\(838\) −1.26137 −0.0435732
\(839\) 26.0540 0.899483 0.449742 0.893159i \(-0.351516\pi\)
0.449742 + 0.893159i \(0.351516\pi\)
\(840\) 0 0
\(841\) 39.0000 1.34483
\(842\) −62.6004 −2.15735
\(843\) −10.8769 −0.374620
\(844\) 60.9848 2.09918
\(845\) 45.6155 1.56922
\(846\) −28.4924 −0.979590
\(847\) 0 0
\(848\) 94.1080 3.23168
\(849\) −21.3693 −0.733393
\(850\) 19.6847 0.675178
\(851\) 12.4924 0.428235
\(852\) −28.4924 −0.976134
\(853\) 28.7386 0.983992 0.491996 0.870597i \(-0.336267\pi\)
0.491996 + 0.870597i \(0.336267\pi\)
\(854\) 0 0
\(855\) −16.6847 −0.570603
\(856\) 30.7386 1.05062
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 1.75379 0.0598734
\(859\) −12.0000 −0.409435 −0.204717 0.978821i \(-0.565628\pi\)
−0.204717 + 0.978821i \(0.565628\pi\)
\(860\) −76.1080 −2.59526
\(861\) 0 0
\(862\) 61.4773 2.09392
\(863\) −9.75379 −0.332023 −0.166011 0.986124i \(-0.553089\pi\)
−0.166011 + 0.986124i \(0.553089\pi\)
\(864\) −6.56155 −0.223229
\(865\) 6.43845 0.218914
\(866\) 68.3542 2.32277
\(867\) 1.00000 0.0339618
\(868\) 0 0
\(869\) −14.6307 −0.496312
\(870\) −75.2311 −2.55057
\(871\) −1.75379 −0.0594249
\(872\) 45.1231 1.52806
\(873\) 2.87689 0.0973681
\(874\) 29.2614 0.989780
\(875\) 0 0
\(876\) 55.8617 1.88739
\(877\) −34.0000 −1.14810 −0.574049 0.818821i \(-0.694628\pi\)
−0.574049 + 0.818821i \(0.694628\pi\)
\(878\) −56.9848 −1.92315
\(879\) −1.12311 −0.0378814
\(880\) −42.7386 −1.44072
\(881\) −40.2462 −1.35593 −0.677965 0.735095i \(-0.737138\pi\)
−0.677965 + 0.735095i \(0.737138\pi\)
\(882\) 0 0
\(883\) −23.4233 −0.788257 −0.394128 0.919055i \(-0.628953\pi\)
−0.394128 + 0.919055i \(0.628953\pi\)
\(884\) 2.00000 0.0672673
\(885\) 25.3693 0.852780
\(886\) 79.7235 2.67836
\(887\) −18.4384 −0.619102 −0.309551 0.950883i \(-0.600179\pi\)
−0.309551 + 0.950883i \(0.600179\pi\)
\(888\) 33.6155 1.12806
\(889\) 0 0
\(890\) 10.2462 0.343454
\(891\) 1.56155 0.0523140
\(892\) 68.1080 2.28042
\(893\) 52.1080 1.74373
\(894\) −31.3693 −1.04915
\(895\) 3.12311 0.104394
\(896\) 0 0
\(897\) 1.06913 0.0356972
\(898\) −94.1080 −3.14042
\(899\) 25.7538 0.858937
\(900\) 35.0540 1.16847
\(901\) −12.2462 −0.407980
\(902\) −14.2462 −0.474347
\(903\) 0 0
\(904\) 2.87689 0.0956841
\(905\) 21.3693 0.710340
\(906\) −20.4924 −0.680815
\(907\) −9.86174 −0.327454 −0.163727 0.986506i \(-0.552352\pi\)
−0.163727 + 0.986506i \(0.552352\pi\)
\(908\) 64.1080 2.12750
\(909\) −10.8769 −0.360764
\(910\) 0 0
\(911\) 24.3002 0.805101 0.402551 0.915398i \(-0.368124\pi\)
0.402551 + 0.915398i \(0.368124\pi\)
\(912\) 36.0000 1.19208
\(913\) 1.36932 0.0453178
\(914\) −35.3693 −1.16991
\(915\) 32.4924 1.07417
\(916\) −27.3693 −0.904308
\(917\) 0 0
\(918\) 2.56155 0.0845438
\(919\) −16.6847 −0.550376 −0.275188 0.961390i \(-0.588740\pi\)
−0.275188 + 0.961390i \(0.588740\pi\)
\(920\) −56.9848 −1.87873
\(921\) −32.4924 −1.07066
\(922\) −21.1231 −0.695652
\(923\) 2.73863 0.0901432
\(924\) 0 0
\(925\) −39.3693 −1.29446
\(926\) 104.985 3.45002
\(927\) −16.6847 −0.547996
\(928\) 54.1080 1.77618
\(929\) −3.06913 −0.100695 −0.0503474 0.998732i \(-0.516033\pi\)
−0.0503474 + 0.998732i \(0.516033\pi\)
\(930\) −28.4924 −0.934303
\(931\) 0 0
\(932\) −16.2462 −0.532162
\(933\) 0 0
\(934\) 54.7386 1.79110
\(935\) 5.56155 0.181882
\(936\) 2.87689 0.0940342
\(937\) 22.0000 0.718709 0.359354 0.933201i \(-0.382997\pi\)
0.359354 + 0.933201i \(0.382997\pi\)
\(938\) 0 0
\(939\) −33.6155 −1.09700
\(940\) −180.708 −5.89406
\(941\) −30.0000 −0.977972 −0.488986 0.872292i \(-0.662633\pi\)
−0.488986 + 0.872292i \(0.662633\pi\)
\(942\) 17.1231 0.557901
\(943\) −8.68466 −0.282811
\(944\) −54.7386 −1.78159
\(945\) 0 0
\(946\) −18.7386 −0.609246
\(947\) 12.0000 0.389948 0.194974 0.980808i \(-0.437538\pi\)
0.194974 + 0.980808i \(0.437538\pi\)
\(948\) −42.7386 −1.38809
\(949\) −5.36932 −0.174295
\(950\) −92.2159 −2.99188
\(951\) −18.0000 −0.583690
\(952\) 0 0
\(953\) 36.3542 1.17763 0.588813 0.808269i \(-0.299595\pi\)
0.588813 + 0.808269i \(0.299595\pi\)
\(954\) −31.3693 −1.01562
\(955\) 17.3693 0.562058
\(956\) −28.4924 −0.921511
\(957\) −12.8769 −0.416251
\(958\) 62.2462 2.01108
\(959\) 0 0
\(960\) −5.12311 −0.165348
\(961\) −21.2462 −0.685362
\(962\) −5.75379 −0.185510
\(963\) −4.68466 −0.150961
\(964\) −15.3693 −0.495012
\(965\) 27.6155 0.888975
\(966\) 0 0
\(967\) 42.4384 1.36473 0.682364 0.731012i \(-0.260952\pi\)
0.682364 + 0.731012i \(0.260952\pi\)
\(968\) 56.1771 1.80560
\(969\) −4.68466 −0.150493
\(970\) 26.2462 0.842715
\(971\) 43.6155 1.39969 0.699844 0.714295i \(-0.253253\pi\)
0.699844 + 0.714295i \(0.253253\pi\)
\(972\) 4.56155 0.146312
\(973\) 0 0
\(974\) −44.4924 −1.42563
\(975\) −3.36932 −0.107904
\(976\) −70.1080 −2.24410
\(977\) 8.24621 0.263820 0.131910 0.991262i \(-0.457889\pi\)
0.131910 + 0.991262i \(0.457889\pi\)
\(978\) 38.7386 1.23872
\(979\) 1.75379 0.0560513
\(980\) 0 0
\(981\) −6.87689 −0.219562
\(982\) 54.7386 1.74678
\(983\) −30.9309 −0.986542 −0.493271 0.869876i \(-0.664199\pi\)
−0.493271 + 0.869876i \(0.664199\pi\)
\(984\) −23.3693 −0.744987
\(985\) 31.8078 1.01348
\(986\) −21.1231 −0.672697
\(987\) 0 0
\(988\) −9.36932 −0.298078
\(989\) −11.4233 −0.363240
\(990\) 14.2462 0.452774
\(991\) 42.7386 1.35764 0.678819 0.734306i \(-0.262492\pi\)
0.678819 + 0.734306i \(0.262492\pi\)
\(992\) 20.4924 0.650635
\(993\) −34.9309 −1.10850
\(994\) 0 0
\(995\) 56.9848 1.80654
\(996\) 4.00000 0.126745
\(997\) 10.0000 0.316703 0.158352 0.987383i \(-0.449382\pi\)
0.158352 + 0.987383i \(0.449382\pi\)
\(998\) −34.2462 −1.08404
\(999\) −5.12311 −0.162088
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2499.2.a.o.1.1 2
3.2 odd 2 7497.2.a.v.1.2 2
7.6 odd 2 51.2.a.b.1.1 2
21.20 even 2 153.2.a.e.1.2 2
28.27 even 2 816.2.a.m.1.2 2
35.13 even 4 1275.2.b.d.1174.4 4
35.27 even 4 1275.2.b.d.1174.1 4
35.34 odd 2 1275.2.a.n.1.2 2
56.13 odd 2 3264.2.a.bl.1.1 2
56.27 even 2 3264.2.a.bg.1.1 2
77.76 even 2 6171.2.a.p.1.2 2
84.83 odd 2 2448.2.a.v.1.1 2
91.90 odd 2 8619.2.a.q.1.2 2
105.104 even 2 3825.2.a.s.1.1 2
119.6 even 16 867.2.h.j.733.1 16
119.13 odd 4 867.2.d.c.577.3 4
119.20 even 16 867.2.h.j.757.1 16
119.27 even 16 867.2.h.j.712.3 16
119.41 even 16 867.2.h.j.712.4 16
119.48 even 16 867.2.h.j.757.2 16
119.55 odd 4 867.2.d.c.577.4 4
119.62 even 16 867.2.h.j.733.2 16
119.76 odd 8 867.2.e.f.829.4 8
119.83 odd 8 867.2.e.f.616.2 8
119.90 even 16 867.2.h.j.688.4 16
119.97 even 16 867.2.h.j.688.3 16
119.104 odd 8 867.2.e.f.616.1 8
119.111 odd 8 867.2.e.f.829.3 8
119.118 odd 2 867.2.a.f.1.1 2
168.83 odd 2 9792.2.a.cz.1.2 2
168.125 even 2 9792.2.a.cy.1.2 2
357.356 even 2 2601.2.a.t.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.a.b.1.1 2 7.6 odd 2
153.2.a.e.1.2 2 21.20 even 2
816.2.a.m.1.2 2 28.27 even 2
867.2.a.f.1.1 2 119.118 odd 2
867.2.d.c.577.3 4 119.13 odd 4
867.2.d.c.577.4 4 119.55 odd 4
867.2.e.f.616.1 8 119.104 odd 8
867.2.e.f.616.2 8 119.83 odd 8
867.2.e.f.829.3 8 119.111 odd 8
867.2.e.f.829.4 8 119.76 odd 8
867.2.h.j.688.3 16 119.97 even 16
867.2.h.j.688.4 16 119.90 even 16
867.2.h.j.712.3 16 119.27 even 16
867.2.h.j.712.4 16 119.41 even 16
867.2.h.j.733.1 16 119.6 even 16
867.2.h.j.733.2 16 119.62 even 16
867.2.h.j.757.1 16 119.20 even 16
867.2.h.j.757.2 16 119.48 even 16
1275.2.a.n.1.2 2 35.34 odd 2
1275.2.b.d.1174.1 4 35.27 even 4
1275.2.b.d.1174.4 4 35.13 even 4
2448.2.a.v.1.1 2 84.83 odd 2
2499.2.a.o.1.1 2 1.1 even 1 trivial
2601.2.a.t.1.2 2 357.356 even 2
3264.2.a.bg.1.1 2 56.27 even 2
3264.2.a.bl.1.1 2 56.13 odd 2
3825.2.a.s.1.1 2 105.104 even 2
6171.2.a.p.1.2 2 77.76 even 2
7497.2.a.v.1.2 2 3.2 odd 2
8619.2.a.q.1.2 2 91.90 odd 2
9792.2.a.cy.1.2 2 168.125 even 2
9792.2.a.cz.1.2 2 168.83 odd 2