L(s) = 1 | + 2-s − 12·3-s − 8·4-s − 9·5-s − 12·6-s − 35·7-s − 24·8-s + 90·9-s − 9·10-s + 47·11-s + 96·12-s + 85·13-s − 35·14-s + 108·15-s − 3·16-s + 90·18-s − 29·19-s + 72·20-s + 420·21-s + 47·22-s − 60·23-s + 288·24-s − 173·25-s + 85·26-s − 540·27-s + 280·28-s + 39·29-s + ⋯ |
L(s) = 1 | + 0.353·2-s − 2.30·3-s − 4-s − 0.804·5-s − 0.816·6-s − 1.88·7-s − 1.06·8-s + 10/3·9-s − 0.284·10-s + 1.28·11-s + 2.30·12-s + 1.81·13-s − 0.668·14-s + 1.85·15-s − 0.0468·16-s + 1.17·18-s − 0.350·19-s + 0.804·20-s + 4.36·21-s + 0.455·22-s − 0.543·23-s + 2.44·24-s − 1.38·25-s + 0.641·26-s − 3.84·27-s + 1.88·28-s + 0.249·29-s + ⋯ |
Λ(s)=(=((34⋅178)s/2ΓC(s)4L(s)Λ(4−s)
Λ(s)=(=((34⋅178)s/2ΓC(s+3/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅178
|
Sign: |
1
|
Analytic conductor: |
6.84763×106 |
Root analytic conductor: |
7.15224 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅178, ( :3/2,3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
0.07153034090 |
L(21) |
≈ |
0.07153034090 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1+pT)4 |
| 17 | | 1 |
good | 2 | C2≀S4 | 1−T+9T2+7T3+11p2T4+7p3T5+9p6T6−p9T7+p12T8 |
| 5 | C2≀S4 | 1+9T+254T2+423T3+25994T4+423p3T5+254p6T6+9p9T7+p12T8 |
| 7 | C2≀S4 | 1+5pT+1331T2+29208T3+639932T4+29208p3T5+1331p6T6+5p10T7+p12T8 |
| 11 | C2≀S4 | 1−47T+2608T2−120987T3+5766302T4−120987p3T5+2608p6T6−47p9T7+p12T8 |
| 13 | C2≀S4 | 1−85T+5513T2−132234T3+5981062T4−132234p3T5+5513p6T6−85p9T7+p12T8 |
| 19 | C2≀S4 | 1+29T+13523T2−20244pT3+75083300T4−20244p4T5+13523p6T6+29p9T7+p12T8 |
| 23 | C2≀S4 | 1+60T+17720T2+1275660T3+382421006T4+1275660p3T5+17720p6T6+60p9T7+p12T8 |
| 29 | C2≀S4 | 1−39T+22284T2−174621T3+697436422T4−174621p3T5+22284p6T6−39p9T7+p12T8 |
| 31 | C2≀S4 | 1+342T+76620T2+11555576T3+2166641157T4+11555576p3T5+76620p6T6+342p9T7+p12T8 |
| 37 | C2≀S4 | 1+549T+292215T2+88242794T3+24527184420T4+88242794p3T5+292215p6T6+549p9T7+p12T8 |
| 41 | C2≀S4 | 1−102T+233424T2−16736730T3+22580260702T4−16736730p3T5+233424p6T6−102p9T7+p12T8 |
| 43 | C2≀S4 | 1−797T+411947T2−149795340T3+47337992636T4−149795340p3T5+411947p6T6−797p9T7+p12T8 |
| 47 | C2≀S4 | 1+130T+110812T2−56135910T3−4457775610T4−56135910p3T5+110812p6T6+130p9T7+p12T8 |
| 53 | C2≀S4 | 1+47T+410284T2+2537913T3+81778738982T4+2537913p3T5+410284p6T6+47p9T7+p12T8 |
| 59 | C2≀S4 | 1−549T+876984T2−335147577T3+275814575086T4−335147577p3T5+876984p6T6−549p9T7+p12T8 |
| 61 | C2≀S4 | 1+1175T+1300133T2+847667550T3+489079033138T4+847667550p3T5+1300133p6T6+1175p9T7+p12T8 |
| 67 | C2≀S4 | 1−1465T+1709677T2−1350002212T3+841967699422T4−1350002212p3T5+1709677p6T6−1465p9T7+p12T8 |
| 71 | C2≀S4 | 1+830T+789084T2+622153702T3+335665885094T4+622153702p3T5+789084p6T6+830p9T7+p12T8 |
| 73 | C2≀S4 | 1−1265T+1890366T2−1457351847T3+1160366421538T4−1457351847p3T5+1890366p6T6−1265p9T7+p12T8 |
| 79 | C2≀S4 | 1−165T+1327036T2−319061169T3+859091519814T4−319061169p3T5+1327036p6T6−165p9T7+p12T8 |
| 83 | C2≀S4 | 1+1814T+1851660T2+949344070T3+548147242838T4+949344070p3T5+1851660p6T6+1814p9T7+p12T8 |
| 89 | C2≀S4 | 1−1938T+3434456T2−3565166622T3+3612751901102T4−3565166622p3T5+3434456p6T6−1938p9T7+p12T8 |
| 97 | C2≀S4 | 1+2954T+5863700T2+7891887300T3+8666715233413T4+7891887300p3T5+5863700p6T6+2954p9T7+p12T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.80057692709422321435884398261, −6.57129214667124722007299820332, −6.17601899321999053969563088845, −6.16839533160315592464178820179, −6.00491246745158157862317879464, −5.90827047993528931097139748004, −5.44857387613672643547368280549, −5.31043835716853771963338318773, −5.27723636043273141489640138973, −4.49839658129316028247490392548, −4.46428128400703077373382179826, −4.44906657350861140522410876751, −4.01509327835506274070020722466, −3.68533928771034743473322061576, −3.52832361218103052151873446786, −3.50962412419058390715721608632, −3.31881446715921978574992632373, −2.72965653374639346986331205903, −2.01719938353204761671934518986, −2.00452814729683018286633923154, −1.50462515067122332730292076707, −1.05932609296340146512377304434, −0.78055624942054051629420021079, −0.34180945324770858050881548313, −0.10099313425919209192254729945,
0.10099313425919209192254729945, 0.34180945324770858050881548313, 0.78055624942054051629420021079, 1.05932609296340146512377304434, 1.50462515067122332730292076707, 2.00452814729683018286633923154, 2.01719938353204761671934518986, 2.72965653374639346986331205903, 3.31881446715921978574992632373, 3.50962412419058390715721608632, 3.52832361218103052151873446786, 3.68533928771034743473322061576, 4.01509327835506274070020722466, 4.44906657350861140522410876751, 4.46428128400703077373382179826, 4.49839658129316028247490392548, 5.27723636043273141489640138973, 5.31043835716853771963338318773, 5.44857387613672643547368280549, 5.90827047993528931097139748004, 6.00491246745158157862317879464, 6.16839533160315592464178820179, 6.17601899321999053969563088845, 6.57129214667124722007299820332, 6.80057692709422321435884398261