Properties

Label 867.4.a.l
Level 867867
Weight 44
Character orbit 867.a
Self dual yes
Analytic conductor 51.15551.155
Analytic rank 00
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,4,Mod(1,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 867=3172 867 = 3 \cdot 17^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 867.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 51.154655975051.1546559750
Analytic rank: 00
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x323x2+31x+28 x^{4} - x^{3} - 23x^{2} + 31x + 28 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q23q3+(β2β1+4)q4+(β3β2+2β13)q53β1q6+(β3β2+4β110)q7+(2β3+3β110)q8++(45β39β2++99)q99+O(q100) q + \beta_1 q^{2} - 3 q^{3} + (\beta_{2} - \beta_1 + 4) q^{4} + ( - \beta_{3} - \beta_{2} + 2 \beta_1 - 3) q^{5} - 3 \beta_1 q^{6} + ( - \beta_{3} - \beta_{2} + 4 \beta_1 - 10) q^{7} + (2 \beta_{3} + 3 \beta_1 - 10) q^{8}+ \cdots + ( - 45 \beta_{3} - 9 \beta_{2} + \cdots + 99) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+q212q3+15q49q53q635q739q8+36q9+63q10+47q1145q12+85q13+150q14+27q15+43q16+9q1829q19347q20++423q99+O(q100) 4 q + q^{2} - 12 q^{3} + 15 q^{4} - 9 q^{5} - 3 q^{6} - 35 q^{7} - 39 q^{8} + 36 q^{9} + 63 q^{10} + 47 q^{11} - 45 q^{12} + 85 q^{13} + 150 q^{14} + 27 q^{15} + 43 q^{16} + 9 q^{18} - 29 q^{19} - 347 q^{20}+ \cdots + 423 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x323x2+31x+28 x^{4} - x^{3} - 23x^{2} + 31x + 28 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2+ν12 \nu^{2} + \nu - 12 Copy content Toggle raw display
β3\beta_{3}== (ν319ν+10)/2 ( \nu^{3} - 19\nu + 10 ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2β1+12 \beta_{2} - \beta _1 + 12 Copy content Toggle raw display
ν3\nu^{3}== 2β3+19β110 2\beta_{3} + 19\beta _1 - 10 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−4.83514
−0.625648
2.14433
4.31646
−4.83514 −3.00000 15.3786 −13.6282 14.5054 −30.2985 −35.6765 9.00000 65.8942
1.2 −0.625648 −3.00000 −7.60856 −2.83829 1.87695 −11.0896 9.76547 9.00000 1.77577
1.3 2.14433 −3.00000 −3.40187 16.9873 −6.43298 14.2760 −24.4493 9.00000 36.4264
1.4 4.31646 −3.00000 10.6319 −9.52085 −12.9494 −7.88792 11.3603 9.00000 −41.0964
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
1717 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 867.4.a.l 4
17.b even 2 1 867.4.a.m yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
867.4.a.l 4 1.a even 1 1 trivial
867.4.a.m yes 4 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(867))S_{4}^{\mathrm{new}}(\Gamma_0(867)):

T24T2323T22+31T2+28 T_{2}^{4} - T_{2}^{3} - 23T_{2}^{2} + 31T_{2} + 28 Copy content Toggle raw display
T54+9T53246T522952T56256 T_{5}^{4} + 9T_{5}^{3} - 246T_{5}^{2} - 2952T_{5} - 6256 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4T3++28 T^{4} - T^{3} + \cdots + 28 Copy content Toggle raw display
33 (T+3)4 (T + 3)^{4} Copy content Toggle raw display
55 T4+9T3+6256 T^{4} + 9 T^{3} + \cdots - 6256 Copy content Toggle raw display
77 T4+35T3+37836 T^{4} + 35 T^{3} + \cdots - 37836 Copy content Toggle raw display
1111 T447T3++2366928 T^{4} - 47 T^{3} + \cdots + 2366928 Copy content Toggle raw display
1313 T485T3+8589442 T^{4} - 85 T^{3} + \cdots - 8589442 Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4+29T3+16333452 T^{4} + 29 T^{3} + \cdots - 16333452 Copy content Toggle raw display
2323 T4+60T3++247294304 T^{4} + 60 T^{3} + \cdots + 247294304 Copy content Toggle raw display
2929 T439T3++800114112 T^{4} - 39 T^{3} + \cdots + 800114112 Copy content Toggle raw display
3131 T4+342T3+623524321 T^{4} + 342 T^{3} + \cdots - 623524321 Copy content Toggle raw display
3737 T4+549T3++55504448 T^{4} + 549 T^{3} + \cdots + 55504448 Copy content Toggle raw display
4141 T4102T3+95161824 T^{4} - 102 T^{3} + \cdots - 95161824 Copy content Toggle raw display
4343 T4+5524621524 T^{4} + \cdots - 5524621524 Copy content Toggle raw display
4747 T4+5909013504 T^{4} + \cdots - 5909013504 Copy content Toggle raw display
5353 T4++3943759104 T^{4} + \cdots + 3943759104 Copy content Toggle raw display
5959 T4549T3+52551504 T^{4} - 549 T^{3} + \cdots - 52551504 Copy content Toggle raw display
6161 T4++1908804914 T^{4} + \cdots + 1908804914 Copy content Toggle raw display
6767 T4+5530703342 T^{4} + \cdots - 5530703342 Copy content Toggle raw display
7171 T4++27022765888 T^{4} + \cdots + 27022765888 Copy content Toggle raw display
7373 T4+7734146328 T^{4} + \cdots - 7734146328 Copy content Toggle raw display
7979 T4++36705426048 T^{4} + \cdots + 36705426048 Copy content Toggle raw display
8383 T4+915482243264 T^{4} + \cdots - 915482243264 Copy content Toggle raw display
8989 T4+235655540704 T^{4} + \cdots - 235655540704 Copy content Toggle raw display
9797 T4+370622096929 T^{4} + \cdots - 370622096929 Copy content Toggle raw display
show more
show less