Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [867,4,Mod(1,867)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(867, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("867.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 867.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−4.83514 | −3.00000 | 15.3786 | −13.6282 | 14.5054 | −30.2985 | −35.6765 | 9.00000 | 65.8942 | ||||||||||||||||||||||||||||||
1.2 | −0.625648 | −3.00000 | −7.60856 | −2.83829 | 1.87695 | −11.0896 | 9.76547 | 9.00000 | 1.77577 | |||||||||||||||||||||||||||||||
1.3 | 2.14433 | −3.00000 | −3.40187 | 16.9873 | −6.43298 | 14.2760 | −24.4493 | 9.00000 | 36.4264 | |||||||||||||||||||||||||||||||
1.4 | 4.31646 | −3.00000 | 10.6319 | −9.52085 | −12.9494 | −7.88792 | 11.3603 | 9.00000 | −41.0964 | |||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 867.4.a.l | ✓ | 4 |
17.b | even | 2 | 1 | 867.4.a.m | yes | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
867.4.a.l | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
867.4.a.m | yes | 4 | 17.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|