Properties

Label 867.4.a.l
Level $867$
Weight $4$
Character orbit 867.a
Self dual yes
Analytic conductor $51.155$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,4,Mod(1,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 867.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.1546559750\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 23x^{2} + 31x + 28 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - 3 q^{3} + (\beta_{2} - \beta_1 + 4) q^{4} + ( - \beta_{3} - \beta_{2} + 2 \beta_1 - 3) q^{5} - 3 \beta_1 q^{6} + ( - \beta_{3} - \beta_{2} + 4 \beta_1 - 10) q^{7} + (2 \beta_{3} + 3 \beta_1 - 10) q^{8}+ \cdots + ( - 45 \beta_{3} - 9 \beta_{2} + \cdots + 99) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - 12 q^{3} + 15 q^{4} - 9 q^{5} - 3 q^{6} - 35 q^{7} - 39 q^{8} + 36 q^{9} + 63 q^{10} + 47 q^{11} - 45 q^{12} + 85 q^{13} + 150 q^{14} + 27 q^{15} + 43 q^{16} + 9 q^{18} - 29 q^{19} - 347 q^{20}+ \cdots + 423 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 23x^{2} + 31x + 28 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu - 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 19\nu + 10 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - \beta _1 + 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} + 19\beta _1 - 10 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.83514
−0.625648
2.14433
4.31646
−4.83514 −3.00000 15.3786 −13.6282 14.5054 −30.2985 −35.6765 9.00000 65.8942
1.2 −0.625648 −3.00000 −7.60856 −2.83829 1.87695 −11.0896 9.76547 9.00000 1.77577
1.3 2.14433 −3.00000 −3.40187 16.9873 −6.43298 14.2760 −24.4493 9.00000 36.4264
1.4 4.31646 −3.00000 10.6319 −9.52085 −12.9494 −7.88792 11.3603 9.00000 −41.0964
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 867.4.a.l 4
17.b even 2 1 867.4.a.m yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
867.4.a.l 4 1.a even 1 1 trivial
867.4.a.m yes 4 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(867))\):

\( T_{2}^{4} - T_{2}^{3} - 23T_{2}^{2} + 31T_{2} + 28 \) Copy content Toggle raw display
\( T_{5}^{4} + 9T_{5}^{3} - 246T_{5}^{2} - 2952T_{5} - 6256 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{3} + \cdots + 28 \) Copy content Toggle raw display
$3$ \( (T + 3)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 9 T^{3} + \cdots - 6256 \) Copy content Toggle raw display
$7$ \( T^{4} + 35 T^{3} + \cdots - 37836 \) Copy content Toggle raw display
$11$ \( T^{4} - 47 T^{3} + \cdots + 2366928 \) Copy content Toggle raw display
$13$ \( T^{4} - 85 T^{3} + \cdots - 8589442 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + 29 T^{3} + \cdots - 16333452 \) Copy content Toggle raw display
$23$ \( T^{4} + 60 T^{3} + \cdots + 247294304 \) Copy content Toggle raw display
$29$ \( T^{4} - 39 T^{3} + \cdots + 800114112 \) Copy content Toggle raw display
$31$ \( T^{4} + 342 T^{3} + \cdots - 623524321 \) Copy content Toggle raw display
$37$ \( T^{4} + 549 T^{3} + \cdots + 55504448 \) Copy content Toggle raw display
$41$ \( T^{4} - 102 T^{3} + \cdots - 95161824 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 5524621524 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 5909013504 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 3943759104 \) Copy content Toggle raw display
$59$ \( T^{4} - 549 T^{3} + \cdots - 52551504 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 1908804914 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 5530703342 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 27022765888 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 7734146328 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 36705426048 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 915482243264 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 235655540704 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 370622096929 \) Copy content Toggle raw display
show more
show less