gp: [N,k,chi] = [867,4,Mod(1,867)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(867, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("867.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [4,1,-12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − x 3 − 23 x 2 + 31 x + 28 x^{4} - x^{3} - 23x^{2} + 31x + 28 x 4 − x 3 − 2 3 x 2 + 3 1 x + 2 8
x^4 - x^3 - 23*x^2 + 31*x + 28
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
ν 2 + ν − 12 \nu^{2} + \nu - 12 ν 2 + ν − 1 2
v^2 + v - 12
β 3 \beta_{3} β 3 = = =
( ν 3 − 19 ν + 10 ) / 2 ( \nu^{3} - 19\nu + 10 ) / 2 ( ν 3 − 1 9 ν + 1 0 ) / 2
(v^3 - 19*v + 10) / 2
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 2 − β 1 + 12 \beta_{2} - \beta _1 + 12 β 2 − β 1 + 1 2
b2 - b1 + 12
ν 3 \nu^{3} ν 3 = = =
2 β 3 + 19 β 1 − 10 2\beta_{3} + 19\beta _1 - 10 2 β 3 + 1 9 β 1 − 1 0
2*b3 + 19*b1 - 10
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
3 3 3
+ 1 +1 + 1
17 17 1 7
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 867 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(867)) S 4 n e w ( Γ 0 ( 8 6 7 ) ) :
T 2 4 − T 2 3 − 23 T 2 2 + 31 T 2 + 28 T_{2}^{4} - T_{2}^{3} - 23T_{2}^{2} + 31T_{2} + 28 T 2 4 − T 2 3 − 2 3 T 2 2 + 3 1 T 2 + 2 8
T2^4 - T2^3 - 23*T2^2 + 31*T2 + 28
T 5 4 + 9 T 5 3 − 246 T 5 2 − 2952 T 5 − 6256 T_{5}^{4} + 9T_{5}^{3} - 246T_{5}^{2} - 2952T_{5} - 6256 T 5 4 + 9 T 5 3 − 2 4 6 T 5 2 − 2 9 5 2 T 5 − 6 2 5 6
T5^4 + 9*T5^3 - 246*T5^2 - 2952*T5 - 6256
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 − T 3 + ⋯ + 28 T^{4} - T^{3} + \cdots + 28 T 4 − T 3 + ⋯ + 2 8
T^4 - T^3 - 23*T^2 + 31*T + 28
3 3 3
( T + 3 ) 4 (T + 3)^{4} ( T + 3 ) 4
(T + 3)^4
5 5 5
T 4 + 9 T 3 + ⋯ − 6256 T^{4} + 9 T^{3} + \cdots - 6256 T 4 + 9 T 3 + ⋯ − 6 2 5 6
T^4 + 9*T^3 - 246*T^2 - 2952*T - 6256
7 7 7
T 4 + 35 T 3 + ⋯ − 37836 T^{4} + 35 T^{3} + \cdots - 37836 T 4 + 3 5 T 3 + ⋯ − 3 7 8 3 6
T^4 + 35*T^3 - 41*T^2 - 6807*T - 37836
11 11 1 1
T 4 − 47 T 3 + ⋯ + 2366928 T^{4} - 47 T^{3} + \cdots + 2366928 T 4 − 4 7 T 3 + ⋯ + 2 3 6 6 9 2 8
T^4 - 47*T^3 - 2716*T^2 + 66684*T + 2366928
13 13 1 3
T 4 − 85 T 3 + ⋯ − 8589442 T^{4} - 85 T^{3} + \cdots - 8589442 T 4 − 8 5 T 3 + ⋯ − 8 5 8 9 4 4 2
T^4 - 85*T^3 - 3275*T^2 + 428001*T - 8589442
17 17 1 7
T 4 T^{4} T 4
T^4
19 19 1 9
T 4 + 29 T 3 + ⋯ − 16333452 T^{4} + 29 T^{3} + \cdots - 16333452 T 4 + 2 9 T 3 + ⋯ − 1 6 3 3 3 4 5 2
T^4 + 29*T^3 - 13913*T^2 - 981369*T - 16333452
23 23 2 3
T 4 + 60 T 3 + ⋯ + 247294304 T^{4} + 60 T^{3} + \cdots + 247294304 T 4 + 6 0 T 3 + ⋯ + 2 4 7 2 9 4 3 0 4
T^4 + 60*T^3 - 30948*T^2 - 914400*T + 247294304
29 29 2 9
T 4 − 39 T 3 + ⋯ + 800114112 T^{4} - 39 T^{3} + \cdots + 800114112 T 4 − 3 9 T 3 + ⋯ + 8 0 0 1 1 4 1 1 2
T^4 - 39*T^3 - 75272*T^2 + 2678892*T + 800114112
31 31 3 1
T 4 + 342 T 3 + ⋯ − 623524321 T^{4} + 342 T^{3} + \cdots - 623524321 T 4 + 3 4 2 T 3 + ⋯ − 6 2 3 5 2 4 3 2 1
T^4 + 342*T^3 - 42544*T^2 - 19009990*T - 623524321
37 37 3 7
T 4 + 549 T 3 + ⋯ + 55504448 T^{4} + 549 T^{3} + \cdots + 55504448 T 4 + 5 4 9 T 3 + ⋯ + 5 5 5 0 4 4 4 8
T^4 + 549*T^3 + 89603*T^2 + 4817303*T + 55504448
41 41 4 1
T 4 − 102 T 3 + ⋯ − 95161824 T^{4} - 102 T^{3} + \cdots - 95161824 T 4 − 1 0 2 T 3 + ⋯ − 9 5 1 6 1 8 2 4
T^4 - 102*T^3 - 42260*T^2 + 4353096*T - 95161824
43 43 4 3
T 4 + ⋯ − 5524621524 T^{4} + \cdots - 5524621524 T 4 + ⋯ − 5 5 2 4 6 2 1 5 2 4
T^4 - 797*T^3 + 93919*T^2 + 40305897*T - 5524621524
47 47 4 7
T 4 + ⋯ − 5909013504 T^{4} + \cdots - 5909013504 T 4 + ⋯ − 5 9 0 9 0 1 3 5 0 4
T^4 + 130*T^3 - 304480*T^2 - 96626880*T - 5909013504
53 53 5 3
T 4 + ⋯ + 3943759104 T^{4} + \cdots + 3943759104 T 4 + ⋯ + 3 9 4 3 7 5 9 1 0 4
T^4 + 47*T^3 - 185224*T^2 - 18453744*T + 3943759104
59 59 5 9
T 4 − 549 T 3 + ⋯ − 52551504 T^{4} - 549 T^{3} + \cdots - 52551504 T 4 − 5 4 9 T 3 + ⋯ − 5 2 5 5 1 5 0 4
T^4 - 549*T^3 + 55468*T^2 + 3111636*T - 52551504
61 61 6 1
T 4 + ⋯ + 1908804914 T^{4} + \cdots + 1908804914 T 4 + ⋯ + 1 9 0 8 8 0 4 9 1 4
T^4 + 1175*T^3 + 392209*T^2 + 47559525*T + 1908804914
67 67 6 7
T 4 + ⋯ − 5530703342 T^{4} + \cdots - 5530703342 T 4 + ⋯ − 5 5 3 0 7 0 3 3 4 2
T^4 - 1465*T^3 + 506625*T^2 - 28148827*T - 5530703342
71 71 7 1
T 4 + ⋯ + 27022765888 T^{4} + \cdots + 27022765888 T 4 + ⋯ + 2 7 0 2 2 7 6 5 8 8 8
T^4 + 830*T^3 - 642560*T^2 - 269044688*T + 27022765888
73 73 7 3
T 4 + ⋯ − 7734146328 T^{4} + \cdots - 7734146328 T 4 + ⋯ − 7 7 3 4 1 4 6 3 2 8
T^4 - 1265*T^3 + 334298*T^2 + 18967668*T - 7734146328
79 79 7 9
T 4 + ⋯ + 36705426048 T^{4} + \cdots + 36705426048 T 4 + ⋯ + 3 6 7 0 5 4 2 6 0 4 8
T^4 - 165*T^3 - 645120*T^2 - 75006864*T + 36705426048
83 83 8 3
T 4 + ⋯ − 915482243264 T^{4} + \cdots - 915482243264 T 4 + ⋯ − 9 1 5 4 8 2 2 4 3 2 6 4
T^4 + 1814*T^3 - 435488*T^2 - 2162320784*T - 915482243264
89 89 8 9
T 4 + ⋯ − 235655540704 T^{4} + \cdots - 235655540704 T 4 + ⋯ − 2 3 5 6 5 5 5 4 0 7 0 4
T^4 - 1938*T^3 + 614580*T^2 + 533523144*T - 235655540704
97 97 9 7
T 4 + ⋯ − 370622096929 T^{4} + \cdots - 370622096929 T 4 + ⋯ − 3 7 0 6 2 2 0 9 6 9 2 9
T^4 + 2954*T^3 + 2213008*T^2 - 196220826*T - 370622096929
show more
show less