L(s) = 1 | + 0.618i·2-s + i·3-s + 1.61·4-s − 1.23·5-s − 0.618·6-s + 0.236·7-s + 2.23i·8-s − 9-s − 0.763i·10-s − 2.23i·11-s + 1.61i·12-s − 13-s + 0.145i·14-s − 1.23i·15-s + 1.85·16-s − 3i·17-s + ⋯ |
L(s) = 1 | + 0.437i·2-s + 0.577i·3-s + 0.809·4-s − 0.552·5-s − 0.252·6-s + 0.0892·7-s + 0.790i·8-s − 0.333·9-s − 0.241i·10-s − 0.674i·11-s + 0.467i·12-s − 0.277·13-s + 0.0389i·14-s − 0.319i·15-s + 0.463·16-s − 0.727i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.557 - 0.830i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.557 - 0.830i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.924735 + 0.493197i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.924735 + 0.493197i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - iT \) |
| 29 | \( 1 + (-4.47 - 3i)T \) |
good | 2 | \( 1 - 0.618iT - 2T^{2} \) |
| 5 | \( 1 + 1.23T + 5T^{2} \) |
| 7 | \( 1 - 0.236T + 7T^{2} \) |
| 11 | \( 1 + 2.23iT - 11T^{2} \) |
| 13 | \( 1 + T + 13T^{2} \) |
| 17 | \( 1 + 3iT - 17T^{2} \) |
| 19 | \( 1 + 5.70iT - 19T^{2} \) |
| 23 | \( 1 + 3.23T + 23T^{2} \) |
| 31 | \( 1 + 2.76iT - 31T^{2} \) |
| 37 | \( 1 - 9.23iT - 37T^{2} \) |
| 41 | \( 1 - 4.47iT - 41T^{2} \) |
| 43 | \( 1 - 8.47iT - 43T^{2} \) |
| 47 | \( 1 + 5.76iT - 47T^{2} \) |
| 53 | \( 1 - 11.2T + 53T^{2} \) |
| 59 | \( 1 + 8.94T + 59T^{2} \) |
| 61 | \( 1 - 7.23iT - 61T^{2} \) |
| 67 | \( 1 + 8.70T + 67T^{2} \) |
| 71 | \( 1 - 9.23T + 71T^{2} \) |
| 73 | \( 1 - 5.70iT - 73T^{2} \) |
| 79 | \( 1 + 15.7iT - 79T^{2} \) |
| 83 | \( 1 + 6T + 83T^{2} \) |
| 89 | \( 1 + 17.9iT - 89T^{2} \) |
| 97 | \( 1 + 4.18iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.67096616241862822894929310969, −13.52028951706159641456029378348, −11.81541397245759299695200739327, −11.32242339419112691341998908021, −10.07391762188405516333126232330, −8.616094809307978180108285806494, −7.52319752337265024985672880202, −6.25210055772379311908766450576, −4.80171995312976610053413441723, −2.97038936806824430773598937284,
2.00718633194260351255256283593, 3.84268687105472536740287733842, 5.96468628375135172750882048602, 7.23660794278294829129180385198, 8.132810516947386341120299804898, 9.908678994501687779211182638847, 10.92493536013980766844073253122, 12.21812210801941119359865164619, 12.37674484358416324759885608696, 14.00309307262373821971562443762