L(s) = 1 | + 0.618i·2-s + i·3-s + 1.61·4-s − 1.23·5-s − 0.618·6-s + 0.236·7-s + 2.23i·8-s − 9-s − 0.763i·10-s − 2.23i·11-s + 1.61i·12-s − 13-s + 0.145i·14-s − 1.23i·15-s + 1.85·16-s − 3i·17-s + ⋯ |
L(s) = 1 | + 0.437i·2-s + 0.577i·3-s + 0.809·4-s − 0.552·5-s − 0.252·6-s + 0.0892·7-s + 0.790i·8-s − 0.333·9-s − 0.241i·10-s − 0.674i·11-s + 0.467i·12-s − 0.277·13-s + 0.0389i·14-s − 0.319i·15-s + 0.463·16-s − 0.727i·17-s + ⋯ |
Λ(s)=(=(87s/2ΓC(s)L(s)(0.557−0.830i)Λ(2−s)
Λ(s)=(=(87s/2ΓC(s+1/2)L(s)(0.557−0.830i)Λ(1−s)
Degree: |
2 |
Conductor: |
87
= 3⋅29
|
Sign: |
0.557−0.830i
|
Analytic conductor: |
0.694698 |
Root analytic conductor: |
0.833485 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ87(28,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 87, ( :1/2), 0.557−0.830i)
|
Particular Values
L(1) |
≈ |
0.924735+0.493197i |
L(21) |
≈ |
0.924735+0.493197i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−iT |
| 29 | 1+(−4.47−3i)T |
good | 2 | 1−0.618iT−2T2 |
| 5 | 1+1.23T+5T2 |
| 7 | 1−0.236T+7T2 |
| 11 | 1+2.23iT−11T2 |
| 13 | 1+T+13T2 |
| 17 | 1+3iT−17T2 |
| 19 | 1+5.70iT−19T2 |
| 23 | 1+3.23T+23T2 |
| 31 | 1+2.76iT−31T2 |
| 37 | 1−9.23iT−37T2 |
| 41 | 1−4.47iT−41T2 |
| 43 | 1−8.47iT−43T2 |
| 47 | 1+5.76iT−47T2 |
| 53 | 1−11.2T+53T2 |
| 59 | 1+8.94T+59T2 |
| 61 | 1−7.23iT−61T2 |
| 67 | 1+8.70T+67T2 |
| 71 | 1−9.23T+71T2 |
| 73 | 1−5.70iT−73T2 |
| 79 | 1+15.7iT−79T2 |
| 83 | 1+6T+83T2 |
| 89 | 1+17.9iT−89T2 |
| 97 | 1+4.18iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.67096616241862822894929310969, −13.52028951706159641456029378348, −11.81541397245759299695200739327, −11.32242339419112691341998908021, −10.07391762188405516333126232330, −8.616094809307978180108285806494, −7.52319752337265024985672880202, −6.25210055772379311908766450576, −4.80171995312976610053413441723, −2.97038936806824430773598937284,
2.00718633194260351255256283593, 3.84268687105472536740287733842, 5.96468628375135172750882048602, 7.23660794278294829129180385198, 8.132810516947386341120299804898, 9.908678994501687779211182638847, 10.92493536013980766844073253122, 12.21812210801941119359865164619, 12.37674484358416324759885608696, 14.00309307262373821971562443762