Properties

Label 87.2.c.a.28.3
Level 8787
Weight 22
Character 87.28
Analytic conductor 0.6950.695
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(28,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 87=329 87 = 3 \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 87.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.6946984975850.694698497585
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,5)\Q(i, \sqrt{5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+3x2+1 x^{4} + 3x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 28.3
Root 0.618034i0.618034i of defining polynomial
Character χ\chi == 87.28
Dual form 87.2.c.a.28.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+0.618034iq2+1.00000iq3+1.61803q41.23607q50.618034q6+0.236068q7+2.23607iq81.00000q90.763932iq102.23607iq11+1.61803iq121.00000q13+0.145898iq141.23607iq15+1.85410q163.00000iq170.618034iq185.70820iq192.00000q20+0.236068iq21+1.38197q223.23607q232.23607q243.47214q250.618034iq261.00000iq27+0.381966q28+(4.47214+3.00000i)q29+0.763932q302.76393iq31+5.61803iq32+2.23607q33+1.85410q340.291796q351.61803q36+9.23607iq37+3.52786q381.00000iq392.76393iq40+4.47214iq410.145898q42+8.47214iq433.61803iq44+1.23607q452.00000iq465.76393iq47+1.85410iq486.94427q492.14590iq50+3.00000q511.61803q52+11.2361q53+0.618034q54+2.76393iq55+0.527864iq56+5.70820q57+(1.85410+2.76393i)q588.94427q592.00000iq60+7.23607iq61+1.70820q620.236068q63+0.236068q64+1.23607q65+1.38197iq668.70820q674.85410iq683.23607iq690.180340iq70+9.23607q712.23607iq72+5.70820iq735.70820q743.47214iq759.23607iq760.527864iq77+0.618034q7815.7082iq792.29180q80+1.00000q812.76393q826.00000q83+0.381966iq84+3.70820iq855.23607q86+(3.00000+4.47214i)q87+5.00000q8817.9443iq89+0.763932iq900.236068q915.23607q92+2.76393q93+3.56231q94+7.05573iq955.61803q964.18034iq974.29180iq98+2.23607iq99+O(q100)q+0.618034i q^{2} +1.00000i q^{3} +1.61803 q^{4} -1.23607 q^{5} -0.618034 q^{6} +0.236068 q^{7} +2.23607i q^{8} -1.00000 q^{9} -0.763932i q^{10} -2.23607i q^{11} +1.61803i q^{12} -1.00000 q^{13} +0.145898i q^{14} -1.23607i q^{15} +1.85410 q^{16} -3.00000i q^{17} -0.618034i q^{18} -5.70820i q^{19} -2.00000 q^{20} +0.236068i q^{21} +1.38197 q^{22} -3.23607 q^{23} -2.23607 q^{24} -3.47214 q^{25} -0.618034i q^{26} -1.00000i q^{27} +0.381966 q^{28} +(4.47214 + 3.00000i) q^{29} +0.763932 q^{30} -2.76393i q^{31} +5.61803i q^{32} +2.23607 q^{33} +1.85410 q^{34} -0.291796 q^{35} -1.61803 q^{36} +9.23607i q^{37} +3.52786 q^{38} -1.00000i q^{39} -2.76393i q^{40} +4.47214i q^{41} -0.145898 q^{42} +8.47214i q^{43} -3.61803i q^{44} +1.23607 q^{45} -2.00000i q^{46} -5.76393i q^{47} +1.85410i q^{48} -6.94427 q^{49} -2.14590i q^{50} +3.00000 q^{51} -1.61803 q^{52} +11.2361 q^{53} +0.618034 q^{54} +2.76393i q^{55} +0.527864i q^{56} +5.70820 q^{57} +(-1.85410 + 2.76393i) q^{58} -8.94427 q^{59} -2.00000i q^{60} +7.23607i q^{61} +1.70820 q^{62} -0.236068 q^{63} +0.236068 q^{64} +1.23607 q^{65} +1.38197i q^{66} -8.70820 q^{67} -4.85410i q^{68} -3.23607i q^{69} -0.180340i q^{70} +9.23607 q^{71} -2.23607i q^{72} +5.70820i q^{73} -5.70820 q^{74} -3.47214i q^{75} -9.23607i q^{76} -0.527864i q^{77} +0.618034 q^{78} -15.7082i q^{79} -2.29180 q^{80} +1.00000 q^{81} -2.76393 q^{82} -6.00000 q^{83} +0.381966i q^{84} +3.70820i q^{85} -5.23607 q^{86} +(-3.00000 + 4.47214i) q^{87} +5.00000 q^{88} -17.9443i q^{89} +0.763932i q^{90} -0.236068 q^{91} -5.23607 q^{92} +2.76393 q^{93} +3.56231 q^{94} +7.05573i q^{95} -5.61803 q^{96} -4.18034i q^{97} -4.29180i q^{98} +2.23607i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q4+4q5+2q68q74q94q136q168q20+10q224q23+4q25+6q28+12q306q3428q352q36+32q3814q42+18q96+O(q100) 4 q + 2 q^{4} + 4 q^{5} + 2 q^{6} - 8 q^{7} - 4 q^{9} - 4 q^{13} - 6 q^{16} - 8 q^{20} + 10 q^{22} - 4 q^{23} + 4 q^{25} + 6 q^{28} + 12 q^{30} - 6 q^{34} - 28 q^{35} - 2 q^{36} + 32 q^{38} - 14 q^{42}+ \cdots - 18 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/87Z)×\left(\mathbb{Z}/87\mathbb{Z}\right)^\times.

nn 3131 5959
χ(n)\chi(n) 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.618034i 0.437016i 0.975835 + 0.218508i 0.0701190π0.0701190\pi
−0.975835 + 0.218508i 0.929881π0.929881\pi
33 1.00000i 0.577350i
44 1.61803 0.809017
55 −1.23607 −0.552786 −0.276393 0.961045i 0.589139π-0.589139\pi
−0.276393 + 0.961045i 0.589139π0.589139\pi
66 −0.618034 −0.252311
77 0.236068 0.0892253 0.0446127 0.999004i 0.485795π-0.485795\pi
0.0446127 + 0.999004i 0.485795π0.485795\pi
88 2.23607i 0.790569i
99 −1.00000 −0.333333
1010 0.763932i 0.241577i
1111 2.23607i 0.674200i −0.941469 0.337100i 0.890554π-0.890554\pi
0.941469 0.337100i 0.109446π-0.109446\pi
1212 1.61803i 0.467086i
1313 −1.00000 −0.277350 −0.138675 0.990338i 0.544284π-0.544284\pi
−0.138675 + 0.990338i 0.544284π0.544284\pi
1414 0.145898i 0.0389929i
1515 1.23607i 0.319151i
1616 1.85410 0.463525
1717 3.00000i 0.727607i −0.931476 0.363803i 0.881478π-0.881478\pi
0.931476 0.363803i 0.118522π-0.118522\pi
1818 0.618034i 0.145672i
1919 5.70820i 1.30955i −0.755823 0.654776i 0.772763π-0.772763\pi
0.755823 0.654776i 0.227237π-0.227237\pi
2020 −2.00000 −0.447214
2121 0.236068i 0.0515143i
2222 1.38197 0.294636
2323 −3.23607 −0.674767 −0.337383 0.941367i 0.609542π-0.609542\pi
−0.337383 + 0.941367i 0.609542π0.609542\pi
2424 −2.23607 −0.456435
2525 −3.47214 −0.694427
2626 0.618034i 0.121206i
2727 1.00000i 0.192450i
2828 0.381966 0.0721848
2929 4.47214 + 3.00000i 0.830455 + 0.557086i
3030 0.763932 0.139474
3131 2.76393i 0.496417i −0.968707 0.248208i 0.920158π-0.920158\pi
0.968707 0.248208i 0.0798418π-0.0798418\pi
3232 5.61803i 0.993137i
3333 2.23607 0.389249
3434 1.85410 0.317976
3535 −0.291796 −0.0493225
3636 −1.61803 −0.269672
3737 9.23607i 1.51840i 0.650857 + 0.759200i 0.274410π0.274410\pi
−0.650857 + 0.759200i 0.725590π0.725590\pi
3838 3.52786 0.572295
3939 1.00000i 0.160128i
4040 2.76393i 0.437016i
4141 4.47214i 0.698430i 0.937043 + 0.349215i 0.113552π0.113552\pi
−0.937043 + 0.349215i 0.886448π0.886448\pi
4242 −0.145898 −0.0225126
4343 8.47214i 1.29199i 0.763342 + 0.645994i 0.223557π0.223557\pi
−0.763342 + 0.645994i 0.776443π0.776443\pi
4444 3.61803i 0.545439i
4545 1.23607 0.184262
4646 2.00000i 0.294884i
4747 5.76393i 0.840756i −0.907349 0.420378i 0.861897π-0.861897\pi
0.907349 0.420378i 0.138103π-0.138103\pi
4848 1.85410i 0.267617i
4949 −6.94427 −0.992039
5050 2.14590i 0.303476i
5151 3.00000 0.420084
5252 −1.61803 −0.224381
5353 11.2361 1.54339 0.771696 0.635991i 0.219409π-0.219409\pi
0.771696 + 0.635991i 0.219409π0.219409\pi
5454 0.618034 0.0841038
5555 2.76393i 0.372689i
5656 0.527864i 0.0705388i
5757 5.70820 0.756070
5858 −1.85410 + 2.76393i −0.243456 + 0.362922i
5959 −8.94427 −1.16445 −0.582223 0.813029i 0.697817π-0.697817\pi
−0.582223 + 0.813029i 0.697817π0.697817\pi
6060 2.00000i 0.258199i
6161 7.23607i 0.926484i 0.886232 + 0.463242i 0.153314π0.153314\pi
−0.886232 + 0.463242i 0.846686π0.846686\pi
6262 1.70820 0.216942
6363 −0.236068 −0.0297418
6464 0.236068 0.0295085
6565 1.23607 0.153315
6666 1.38197i 0.170108i
6767 −8.70820 −1.06388 −0.531938 0.846783i 0.678536π-0.678536\pi
−0.531938 + 0.846783i 0.678536π0.678536\pi
6868 4.85410i 0.588646i
6969 3.23607i 0.389577i
7070 0.180340i 0.0215547i
7171 9.23607 1.09612 0.548060 0.836439i 0.315367π-0.315367\pi
0.548060 + 0.836439i 0.315367π0.315367\pi
7272 2.23607i 0.263523i
7373 5.70820i 0.668095i 0.942556 + 0.334047i 0.108415π0.108415\pi
−0.942556 + 0.334047i 0.891585π0.891585\pi
7474 −5.70820 −0.663565
7575 3.47214i 0.400928i
7676 9.23607i 1.05945i
7777 0.527864i 0.0601557i
7878 0.618034 0.0699786
7979 15.7082i 1.76731i −0.468138 0.883656i 0.655075π-0.655075\pi
0.468138 0.883656i 0.344925π-0.344925\pi
8080 −2.29180 −0.256231
8181 1.00000 0.111111
8282 −2.76393 −0.305225
8383 −6.00000 −0.658586 −0.329293 0.944228i 0.606810π-0.606810\pi
−0.329293 + 0.944228i 0.606810π0.606810\pi
8484 0.381966i 0.0416759i
8585 3.70820i 0.402211i
8686 −5.23607 −0.564620
8787 −3.00000 + 4.47214i −0.321634 + 0.479463i
8888 5.00000 0.533002
8989 17.9443i 1.90209i −0.309054 0.951045i 0.600012π-0.600012\pi
0.309054 0.951045i 0.399988π-0.399988\pi
9090 0.763932i 0.0805255i
9191 −0.236068 −0.0247466
9292 −5.23607 −0.545898
9393 2.76393 0.286606
9494 3.56231 0.367424
9595 7.05573i 0.723902i
9696 −5.61803 −0.573388
9797 4.18034i 0.424449i −0.977221 0.212225i 0.931929π-0.931929\pi
0.977221 0.212225i 0.0680708π-0.0680708\pi
9898 4.29180i 0.433537i
9999 2.23607i 0.224733i
100100 −5.61803 −0.561803
101101 13.9443i 1.38751i 0.720213 + 0.693753i 0.244044π0.244044\pi
−0.720213 + 0.693753i 0.755956π0.755956\pi
102102 1.85410i 0.183583i
103103 7.41641 0.730760 0.365380 0.930858i 0.380939π-0.380939\pi
0.365380 + 0.930858i 0.380939π0.380939\pi
104104 2.23607i 0.219265i
105105 0.291796i 0.0284764i
106106 6.94427i 0.674487i
107107 5.23607 0.506190 0.253095 0.967441i 0.418552π-0.418552\pi
0.253095 + 0.967441i 0.418552π0.418552\pi
108108 1.61803i 0.155695i
109109 5.00000 0.478913 0.239457 0.970907i 0.423031π-0.423031\pi
0.239457 + 0.970907i 0.423031π0.423031\pi
110110 −1.70820 −0.162871
111111 −9.23607 −0.876649
112112 0.437694 0.0413582
113113 13.4721i 1.26735i 0.773599 + 0.633676i 0.218455π0.218455\pi
−0.773599 + 0.633676i 0.781545π0.781545\pi
114114 3.52786i 0.330415i
115115 4.00000 0.373002
116116 7.23607 + 4.85410i 0.671852 + 0.450692i
117117 1.00000 0.0924500
118118 5.52786i 0.508881i
119119 0.708204i 0.0649209i
120120 2.76393 0.252311
121121 6.00000 0.545455
122122 −4.47214 −0.404888
123123 −4.47214 −0.403239
124124 4.47214i 0.401610i
125125 10.4721 0.936656
126126 0.145898i 0.0129976i
127127 3.52786i 0.313047i −0.987674 0.156524i 0.949971π-0.949971\pi
0.987674 0.156524i 0.0500287π-0.0500287\pi
128128 11.3820i 1.00603i
129129 −8.47214 −0.745930
130130 0.763932i 0.0670013i
131131 7.76393i 0.678338i 0.940725 + 0.339169i 0.110146π0.110146\pi
−0.940725 + 0.339169i 0.889854π0.889854\pi
132132 3.61803 0.314909
133133 1.34752i 0.116845i
134134 5.38197i 0.464931i
135135 1.23607i 0.106384i
136136 6.70820 0.575224
137137 12.4721i 1.06557i −0.846252 0.532783i 0.821146π-0.821146\pi
0.846252 0.532783i 0.178854π-0.178854\pi
138138 2.00000 0.170251
139139 6.70820 0.568982 0.284491 0.958679i 0.408175π-0.408175\pi
0.284491 + 0.958679i 0.408175π0.408175\pi
140140 −0.472136 −0.0399028
141141 5.76393 0.485411
142142 5.70820i 0.479022i
143143 2.23607i 0.186989i
144144 −1.85410 −0.154508
145145 −5.52786 3.70820i −0.459064 0.307950i
146146 −3.52786 −0.291968
147147 6.94427i 0.572754i
148148 14.9443i 1.22841i
149149 −14.4721 −1.18560 −0.592802 0.805348i 0.701978π-0.701978\pi
−0.592802 + 0.805348i 0.701978π0.701978\pi
150150 2.14590 0.175212
151151 12.0000 0.976546 0.488273 0.872691i 0.337627π-0.337627\pi
0.488273 + 0.872691i 0.337627π0.337627\pi
152152 12.7639 1.03529
153153 3.00000i 0.242536i
154154 0.326238 0.0262890
155155 3.41641i 0.274412i
156156 1.61803i 0.129546i
157157 2.00000i 0.159617i 0.996810 + 0.0798087i 0.0254309π0.0254309\pi
−0.996810 + 0.0798087i 0.974569π0.974569\pi
158158 9.70820 0.772343
159159 11.2361i 0.891078i
160160 6.94427i 0.548993i
161161 −0.763932 −0.0602063
162162 0.618034i 0.0485573i
163163 19.4164i 1.52081i −0.649449 0.760405i 0.725000π-0.725000\pi
0.649449 0.760405i 0.275000π-0.275000\pi
164164 7.23607i 0.565042i
165165 −2.76393 −0.215172
166166 3.70820i 0.287812i
167167 −19.8885 −1.53902 −0.769511 0.638634i 0.779500π-0.779500\pi
−0.769511 + 0.638634i 0.779500π0.779500\pi
168168 −0.527864 −0.0407256
169169 −12.0000 −0.923077
170170 −2.29180 −0.175773
171171 5.70820i 0.436517i
172172 13.7082i 1.04524i
173173 −6.00000 −0.456172 −0.228086 0.973641i 0.573247π-0.573247\pi
−0.228086 + 0.973641i 0.573247π0.573247\pi
174174 −2.76393 1.85410i −0.209533 0.140559i
175175 −0.819660 −0.0619605
176176 4.14590i 0.312509i
177177 8.94427i 0.672293i
178178 11.0902 0.831243
179179 −12.7639 −0.954021 −0.477011 0.878898i 0.658280π-0.658280\pi
−0.477011 + 0.878898i 0.658280π0.658280\pi
180180 2.00000 0.149071
181181 −6.41641 −0.476928 −0.238464 0.971151i 0.576644π-0.576644\pi
−0.238464 + 0.971151i 0.576644π0.576644\pi
182182 0.145898i 0.0108147i
183183 −7.23607 −0.534906
184184 7.23607i 0.533450i
185185 11.4164i 0.839351i
186186 1.70820i 0.125252i
187187 −6.70820 −0.490552
188188 9.32624i 0.680186i
189189 0.236068i 0.0171714i
190190 −4.36068 −0.316357
191191 8.94427i 0.647185i −0.946197 0.323592i 0.895109π-0.895109\pi
0.946197 0.323592i 0.104891π-0.104891\pi
192192 0.236068i 0.0170367i
193193 9.41641i 0.677808i −0.940821 0.338904i 0.889944π-0.889944\pi
0.940821 0.338904i 0.110056π-0.110056\pi
194194 2.58359 0.185491
195195 1.23607i 0.0885167i
196196 −11.2361 −0.802576
197197 9.70820 0.691681 0.345840 0.938293i 0.387594π-0.387594\pi
0.345840 + 0.938293i 0.387594π0.387594\pi
198198 −1.38197 −0.0982120
199199 20.1246 1.42660 0.713298 0.700861i 0.247201π-0.247201\pi
0.713298 + 0.700861i 0.247201π0.247201\pi
200200 7.76393i 0.548993i
201201 8.70820i 0.614229i
202202 −8.61803 −0.606363
203203 1.05573 + 0.708204i 0.0740976 + 0.0497062i
204204 4.85410 0.339855
205205 5.52786i 0.386083i
206206 4.58359i 0.319354i
207207 3.23607 0.224922
208208 −1.85410 −0.128559
209209 −12.7639 −0.882900
210210 0.180340 0.0124446
211211 10.0000i 0.688428i 0.938891 + 0.344214i 0.111855π0.111855\pi
−0.938891 + 0.344214i 0.888145π0.888145\pi
212212 18.1803 1.24863
213213 9.23607i 0.632845i
214214 3.23607i 0.221213i
215215 10.4721i 0.714194i
216216 2.23607 0.152145
217217 0.652476i 0.0442929i
218218 3.09017i 0.209293i
219219 −5.70820 −0.385725
220220 4.47214i 0.301511i
221221 3.00000i 0.201802i
222222 5.70820i 0.383110i
223223 0.708204 0.0474248 0.0237124 0.999719i 0.492451π-0.492451\pi
0.0237124 + 0.999719i 0.492451π0.492451\pi
224224 1.32624i 0.0886130i
225225 3.47214 0.231476
226226 −8.32624 −0.553853
227227 26.9443 1.78835 0.894177 0.447713i 0.147762π-0.147762\pi
0.894177 + 0.447713i 0.147762π0.147762\pi
228228 9.23607 0.611674
229229 0.180340i 0.0119172i −0.999982 0.00595860i 0.998103π-0.998103\pi
0.999982 0.00595860i 0.00189669π-0.00189669\pi
230230 2.47214i 0.163008i
231231 0.527864 0.0347309
232232 −6.70820 + 10.0000i −0.440415 + 0.656532i
233233 −1.52786 −0.100094 −0.0500469 0.998747i 0.515937π-0.515937\pi
−0.0500469 + 0.998747i 0.515937π0.515937\pi
234234 0.618034i 0.0404021i
235235 7.12461i 0.464758i
236236 −14.4721 −0.942056
237237 15.7082 1.02036
238238 0.437694 0.0283715
239239 3.81966 0.247073 0.123537 0.992340i 0.460576π-0.460576\pi
0.123537 + 0.992340i 0.460576π0.460576\pi
240240 2.29180i 0.147935i
241241 −3.00000 −0.193247 −0.0966235 0.995321i 0.530804π-0.530804\pi
−0.0966235 + 0.995321i 0.530804π0.530804\pi
242242 3.70820i 0.238372i
243243 1.00000i 0.0641500i
244244 11.7082i 0.749541i
245245 8.58359 0.548386
246246 2.76393i 0.176222i
247247 5.70820i 0.363204i
248248 6.18034 0.392452
249249 6.00000i 0.380235i
250250 6.47214i 0.409334i
251251 7.76393i 0.490055i −0.969516 0.245028i 0.921203π-0.921203\pi
0.969516 0.245028i 0.0787970π-0.0787970\pi
252252 −0.381966 −0.0240616
253253 7.23607i 0.454928i
254254 2.18034 0.136807
255255 −3.70820 −0.232217
256256 −6.56231 −0.410144
257257 −17.5279 −1.09336 −0.546679 0.837342i 0.684108π-0.684108\pi
−0.546679 + 0.837342i 0.684108π0.684108\pi
258258 5.23607i 0.325983i
259259 2.18034i 0.135480i
260260 2.00000 0.124035
261261 −4.47214 3.00000i −0.276818 0.185695i
262262 −4.79837 −0.296445
263263 12.9443i 0.798178i 0.916912 + 0.399089i 0.130674π0.130674\pi
−0.916912 + 0.399089i 0.869326π0.869326\pi
264264 5.00000i 0.307729i
265265 −13.8885 −0.853166
266266 0.832816 0.0510632
267267 17.9443 1.09817
268268 −14.0902 −0.860694
269269 23.3607i 1.42433i 0.702014 + 0.712163i 0.252284π0.252284\pi
−0.702014 + 0.712163i 0.747716π0.747716\pi
270270 −0.763932 −0.0464914
271271 3.41641i 0.207532i 0.994602 + 0.103766i 0.0330893π0.0330893\pi
−0.994602 + 0.103766i 0.966911π0.966911\pi
272272 5.56231i 0.337264i
273273 0.236068i 0.0142875i
274274 7.70820 0.465670
275275 7.76393i 0.468183i
276276 5.23607i 0.315174i
277277 −20.4164 −1.22670 −0.613352 0.789810i 0.710179π-0.710179\pi
−0.613352 + 0.789810i 0.710179π0.710179\pi
278278 4.14590i 0.248654i
279279 2.76393i 0.165472i
280280 0.652476i 0.0389929i
281281 25.4164 1.51622 0.758108 0.652129i 0.226124π-0.226124\pi
0.758108 + 0.652129i 0.226124π0.226124\pi
282282 3.56231i 0.212132i
283283 21.8885 1.30114 0.650569 0.759447i 0.274530π-0.274530\pi
0.650569 + 0.759447i 0.274530π0.274530\pi
284284 14.9443 0.886779
285285 −7.05573 −0.417945
286286 −1.38197 −0.0817174
287287 1.05573i 0.0623177i
288288 5.61803i 0.331046i
289289 8.00000 0.470588
290290 2.29180 3.41641i 0.134579 0.200618i
291291 4.18034 0.245056
292292 9.23607i 0.540500i
293293 12.0557i 0.704303i −0.935943 0.352152i 0.885450π-0.885450\pi
0.935943 0.352152i 0.114550π-0.114550\pi
294294 4.29180 0.250303
295295 11.0557 0.643689
296296 −20.6525 −1.20040
297297 −2.23607 −0.129750
298298 8.94427i 0.518128i
299299 3.23607 0.187147
300300 5.61803i 0.324357i
301301 2.00000i 0.115278i
302302 7.41641i 0.426766i
303303 −13.9443 −0.801077
304304 10.5836i 0.607011i
305305 8.94427i 0.512148i
306306 −1.85410 −0.105992
307307 5.81966i 0.332146i 0.986113 + 0.166073i 0.0531087π0.0531087\pi
−0.986113 + 0.166073i 0.946891π0.946891\pi
308308 0.854102i 0.0486670i
309309 7.41641i 0.421905i
310310 −2.11146 −0.119923
311311 15.6525i 0.887570i 0.896133 + 0.443785i 0.146365π0.146365\pi
−0.896133 + 0.443785i 0.853635π0.853635\pi
312312 2.23607 0.126592
313313 3.47214 0.196257 0.0981284 0.995174i 0.468714π-0.468714\pi
0.0981284 + 0.995174i 0.468714π0.468714\pi
314314 −1.23607 −0.0697554
315315 0.291796 0.0164408
316316 25.4164i 1.42978i
317317 29.8328i 1.67558i −0.545994 0.837789i 0.683848π-0.683848\pi
0.545994 0.837789i 0.316152π-0.316152\pi
318318 −6.94427 −0.389415
319319 6.70820 10.0000i 0.375587 0.559893i
320320 −0.291796 −0.0163119
321321 5.23607i 0.292249i
322322 0.472136i 0.0263111i
323323 −17.1246 −0.952839
324324 1.61803 0.0898908
325325 3.47214 0.192599
326326 12.0000 0.664619
327327 5.00000i 0.276501i
328328 −10.0000 −0.552158
329329 1.36068i 0.0750167i
330330 1.70820i 0.0940335i
331331 21.7082i 1.19319i −0.802542 0.596595i 0.796520π-0.796520\pi
0.802542 0.596595i 0.203480π-0.203480\pi
332332 −9.70820 −0.532807
333333 9.23607i 0.506133i
334334 12.2918i 0.672577i
335335 10.7639 0.588096
336336 0.437694i 0.0238782i
337337 14.7639i 0.804243i 0.915586 + 0.402121i 0.131727π0.131727\pi
−0.915586 + 0.402121i 0.868273π0.868273\pi
338338 7.41641i 0.403399i
339339 −13.4721 −0.731706
340340 6.00000i 0.325396i
341341 −6.18034 −0.334684
342342 −3.52786 −0.190765
343343 −3.29180 −0.177740
344344 −18.9443 −1.02141
345345 4.00000i 0.215353i
346346 3.70820i 0.199354i
347347 8.65248 0.464489 0.232245 0.972657i 0.425393π-0.425393\pi
0.232245 + 0.972657i 0.425393π0.425393\pi
348348 −4.85410 + 7.23607i −0.260207 + 0.387894i
349349 10.0000 0.535288 0.267644 0.963518i 0.413755π-0.413755\pi
0.267644 + 0.963518i 0.413755π0.413755\pi
350350 0.506578i 0.0270777i
351351 1.00000i 0.0533761i
352352 12.5623 0.669573
353353 −26.6525 −1.41857 −0.709284 0.704923i 0.750982π-0.750982\pi
−0.709284 + 0.704923i 0.750982π0.750982\pi
354354 5.52786 0.293803
355355 −11.4164 −0.605920
356356 29.0344i 1.53882i
357357 0.708204 0.0374821
358358 7.88854i 0.416922i
359359 37.3050i 1.96888i 0.175721 + 0.984440i 0.443774π0.443774\pi
−0.175721 + 0.984440i 0.556226π0.556226\pi
360360 2.76393i 0.145672i
361361 −13.5836 −0.714926
362362 3.96556i 0.208425i
363363 6.00000i 0.314918i
364364 −0.381966 −0.0200205
365365 7.05573i 0.369314i
366366 4.47214i 0.233762i
367367 18.0000i 0.939592i −0.882775 0.469796i 0.844327π-0.844327\pi
0.882775 0.469796i 0.155673π-0.155673\pi
368368 −6.00000 −0.312772
369369 4.47214i 0.232810i
370370 7.05573 0.366810
371371 2.65248 0.137710
372372 4.47214 0.231869
373373 31.8885 1.65113 0.825563 0.564310i 0.190858π-0.190858\pi
0.825563 + 0.564310i 0.190858π0.190858\pi
374374 4.14590i 0.214379i
375375 10.4721i 0.540779i
376376 12.8885 0.664676
377377 −4.47214 3.00000i −0.230327 0.154508i
378378 0.145898 0.00750419
379379 27.7082i 1.42327i 0.702547 + 0.711637i 0.252046π0.252046\pi
−0.702547 + 0.711637i 0.747954π0.747954\pi
380380 11.4164i 0.585649i
381381 3.52786 0.180738
382382 5.52786 0.282830
383383 −36.6525 −1.87285 −0.936427 0.350862i 0.885888π-0.885888\pi
−0.936427 + 0.350862i 0.885888π0.885888\pi
384384 −11.3820 −0.580834
385385 0.652476i 0.0332532i
386386 5.81966 0.296213
387387 8.47214i 0.430663i
388388 6.76393i 0.343387i
389389 4.52786i 0.229572i −0.993390 0.114786i 0.963382π-0.963382\pi
0.993390 0.114786i 0.0366182π-0.0366182\pi
390390 −0.763932 −0.0386832
391391 9.70820i 0.490965i
392392 15.5279i 0.784276i
393393 −7.76393 −0.391639
394394 6.00000i 0.302276i
395395 19.4164i 0.976946i
396396 3.61803i 0.181813i
397397 −10.9443 −0.549277 −0.274639 0.961548i 0.588558π-0.588558\pi
−0.274639 + 0.961548i 0.588558π0.588558\pi
398398 12.4377i 0.623445i
399399 1.34752 0.0674606
400400 −6.43769 −0.321885
401401 20.2918 1.01332 0.506662 0.862145i 0.330879π-0.330879\pi
0.506662 + 0.862145i 0.330879π0.330879\pi
402402 5.38197 0.268428
403403 2.76393i 0.137681i
404404 22.5623i 1.12252i
405405 −1.23607 −0.0614207
406406 −0.437694 + 0.652476i −0.0217224 + 0.0323818i
407407 20.6525 1.02371
408408 6.70820i 0.332106i
409409 37.4164i 1.85012i −0.379818 0.925061i 0.624013π-0.624013\pi
0.379818 0.925061i 0.375987π-0.375987\pi
410410 3.41641 0.168724
411411 12.4721 0.615205
412412 12.0000 0.591198
413413 −2.11146 −0.103898
414414 2.00000i 0.0982946i
415415 7.41641 0.364057
416416 5.61803i 0.275447i
417417 6.70820i 0.328502i
418418 7.88854i 0.385841i
419419 26.1803 1.27899 0.639497 0.768794i 0.279143π-0.279143\pi
0.639497 + 0.768794i 0.279143π0.279143\pi
420420 0.472136i 0.0230379i
421421 20.0000i 0.974740i 0.873195 + 0.487370i 0.162044π0.162044\pi
−0.873195 + 0.487370i 0.837956π0.837956\pi
422422 −6.18034 −0.300854
423423 5.76393i 0.280252i
424424 25.1246i 1.22016i
425425 10.4164i 0.505270i
426426 −5.70820 −0.276563
427427 1.70820i 0.0826658i
428428 8.47214 0.409516
429429 −2.23607 −0.107958
430430 6.47214 0.312114
431431 −30.3607 −1.46242 −0.731211 0.682151i 0.761045π-0.761045\pi
−0.731211 + 0.682151i 0.761045π0.761045\pi
432432 1.85410i 0.0892055i
433433 27.7082i 1.33157i −0.746143 0.665786i 0.768097π-0.768097\pi
0.746143 0.665786i 0.231903π-0.231903\pi
434434 0.403252 0.0193567
435435 3.70820 5.52786i 0.177795 0.265041i
436436 8.09017 0.387449
437437 18.4721i 0.883642i
438438 3.52786i 0.168568i
439439 26.7082 1.27471 0.637357 0.770569i 0.280028π-0.280028\pi
0.637357 + 0.770569i 0.280028π0.280028\pi
440440 −6.18034 −0.294636
441441 6.94427 0.330680
442442 −1.85410 −0.0881906
443443 21.6525i 1.02874i −0.857568 0.514370i 0.828026π-0.828026\pi
0.857568 0.514370i 0.171974π-0.171974\pi
444444 −14.9443 −0.709224
445445 22.1803i 1.05145i
446446 0.437694i 0.0207254i
447447 14.4721i 0.684509i
448448 0.0557281 0.00263290
449449 16.8885i 0.797020i −0.917164 0.398510i 0.869527π-0.869527\pi
0.917164 0.398510i 0.130473π-0.130473\pi
450450 2.14590i 0.101159i
451451 10.0000 0.470882
452452 21.7984i 1.02531i
453453 12.0000i 0.563809i
454454 16.6525i 0.781539i
455455 0.291796 0.0136796
456456 12.7639i 0.597726i
457457 −20.4164 −0.955039 −0.477520 0.878621i 0.658464π-0.658464\pi
−0.477520 + 0.878621i 0.658464π0.658464\pi
458458 0.111456 0.00520801
459459 −3.00000 −0.140028
460460 6.47214 0.301765
461461 1.05573i 0.0491702i −0.999698 0.0245851i 0.992174π-0.992174\pi
0.999698 0.0245851i 0.00782646π-0.00782646\pi
462462 0.326238i 0.0151780i
463463 −12.7082 −0.590600 −0.295300 0.955405i 0.595420π-0.595420\pi
−0.295300 + 0.955405i 0.595420π0.595420\pi
464464 8.29180 + 5.56231i 0.384937 + 0.258224i
465465 −3.41641 −0.158432
466466 0.944272i 0.0437426i
467467 22.4721i 1.03989i −0.854201 0.519943i 0.825953π-0.825953\pi
0.854201 0.519943i 0.174047π-0.174047\pi
468468 1.61803 0.0747936
469469 −2.05573 −0.0949247
470470 −4.40325 −0.203107
471471 −2.00000 −0.0921551
472472 20.0000i 0.920575i
473473 18.9443 0.871059
474474 9.70820i 0.445913i
475475 19.8197i 0.909388i
476476 1.14590i 0.0525222i
477477 −11.2361 −0.514464
478478 2.36068i 0.107975i
479479 1.52786i 0.0698099i 0.999391 + 0.0349049i 0.0111128π0.0111128\pi
−0.999391 + 0.0349049i 0.988887π0.988887\pi
480480 6.94427 0.316961
481481 9.23607i 0.421128i
482482 1.85410i 0.0844520i
483483 0.763932i 0.0347601i
484484 9.70820 0.441282
485485 5.16718i 0.234630i
486486 −0.618034 −0.0280346
487487 −24.3607 −1.10389 −0.551944 0.833881i 0.686114π-0.686114\pi
−0.551944 + 0.833881i 0.686114π0.686114\pi
488488 −16.1803 −0.732450
489489 19.4164 0.878040
490490 5.30495i 0.239653i
491491 0 0 1.00000 00
−1.00000 π\pi
492492 −7.23607 −0.326227
493493 9.00000 13.4164i 0.405340 0.604245i
494494 −3.52786 −0.158726
495495 2.76393i 0.124230i
496496 5.12461i 0.230102i
497497 2.18034 0.0978016
498498 3.70820 0.166169
499499 −1.18034 −0.0528393 −0.0264196 0.999651i 0.508411π-0.508411\pi
−0.0264196 + 0.999651i 0.508411π0.508411\pi
500500 16.9443 0.757771
501501 19.8885i 0.888555i
502502 4.79837 0.214162
503503 2.81966i 0.125722i 0.998022 + 0.0628612i 0.0200225π0.0200225\pi
−0.998022 + 0.0628612i 0.979977π0.979977\pi
504504 0.527864i 0.0235129i
505505 17.2361i 0.766995i
506506 −4.47214 −0.198811
507507 12.0000i 0.532939i
508508 5.70820i 0.253261i
509509 26.8328 1.18934 0.594672 0.803969i 0.297282π-0.297282\pi
0.594672 + 0.803969i 0.297282π0.297282\pi
510510 2.29180i 0.101482i
511511 1.34752i 0.0596110i
512512 18.7082i 0.826794i
513513 −5.70820 −0.252023
514514 10.8328i 0.477815i
515515 −9.16718 −0.403954
516516 −13.7082 −0.603470
517517 −12.8885 −0.566838
518518 −1.34752 −0.0592068
519519 6.00000i 0.263371i
520520 2.76393i 0.121206i
521521 −12.4721 −0.546414 −0.273207 0.961955i 0.588084π-0.588084\pi
−0.273207 + 0.961955i 0.588084π0.588084\pi
522522 1.85410 2.76393i 0.0811518 0.120974i
523523 −25.0689 −1.09619 −0.548093 0.836417i 0.684646π-0.684646\pi
−0.548093 + 0.836417i 0.684646π0.684646\pi
524524 12.5623i 0.548787i
525525 0.819660i 0.0357729i
526526 −8.00000 −0.348817
527527 −8.29180 −0.361196
528528 4.14590 0.180427
529529 −12.5279 −0.544690
530530 8.58359i 0.372847i
531531 8.94427 0.388148
532532 2.18034i 0.0945297i
533533 4.47214i 0.193710i
534534 11.0902i 0.479919i
535535 −6.47214 −0.279815
536536 19.4721i 0.841068i
537537 12.7639i 0.550804i
538538 −14.4377 −0.622453
539539 15.5279i 0.668832i
540540 2.00000i 0.0860663i
541541 20.6525i 0.887919i 0.896047 + 0.443960i 0.146427π0.146427\pi
−0.896047 + 0.443960i 0.853573π0.853573\pi
542542 −2.11146 −0.0906948
543543 6.41641i 0.275354i
544544 16.8541 0.722614
545545 −6.18034 −0.264737
546546 0.145898 0.00624386
547547 −37.6525 −1.60990 −0.804952 0.593340i 0.797809π-0.797809\pi
−0.804952 + 0.593340i 0.797809π0.797809\pi
548548 20.1803i 0.862061i
549549 7.23607i 0.308828i
550550 −4.79837 −0.204603
551551 17.1246 25.5279i 0.729533 1.08752i
552552 7.23607 0.307988
553553 3.70820i 0.157689i
554554 12.6180i 0.536089i
555555 11.4164 0.484600
556556 10.8541 0.460316
557557 −7.52786 −0.318966 −0.159483 0.987201i 0.550983π-0.550983\pi
−0.159483 + 0.987201i 0.550983π0.550983\pi
558558 −1.70820 −0.0723140
559559 8.47214i 0.358333i
560560 −0.541020 −0.0228623
561561 6.70820i 0.283221i
562562 15.7082i 0.662611i
563563 45.0689i 1.89943i −0.313120 0.949713i 0.601374π-0.601374\pi
0.313120 0.949713i 0.398626π-0.398626\pi
564564 9.32624 0.392705
565565 16.6525i 0.700575i
566566 13.5279i 0.568619i
567567 0.236068 0.00991392
568568 20.6525i 0.866559i
569569 21.0000i 0.880366i 0.897908 + 0.440183i 0.145086π0.145086\pi
−0.897908 + 0.440183i 0.854914π0.854914\pi
570570 4.36068i 0.182649i
571571 −34.8328 −1.45771 −0.728854 0.684669i 0.759947π-0.759947\pi
−0.728854 + 0.684669i 0.759947π0.759947\pi
572572 3.61803i 0.151278i
573573 8.94427 0.373652
574574 −0.652476 −0.0272338
575575 11.2361 0.468576
576576 −0.236068 −0.00983617
577577 28.8328i 1.20033i 0.799878 + 0.600163i 0.204898π0.204898\pi
−0.799878 + 0.600163i 0.795102π0.795102\pi
578578 4.94427i 0.205655i
579579 9.41641 0.391333
580580 −8.94427 6.00000i −0.371391 0.249136i
581581 −1.41641 −0.0587625
582582 2.58359i 0.107093i
583583 25.1246i 1.04056i
584584 −12.7639 −0.528175
585585 −1.23607 −0.0511051
586586 7.45085 0.307792
587587 16.9443 0.699365 0.349682 0.936868i 0.386289π-0.386289\pi
0.349682 + 0.936868i 0.386289π0.386289\pi
588588 11.2361i 0.463368i
589589 −15.7771 −0.650084
590590 6.83282i 0.281303i
591591 9.70820i 0.399342i
592592 17.1246i 0.703817i
593593 17.8197 0.731766 0.365883 0.930661i 0.380767π-0.380767\pi
0.365883 + 0.930661i 0.380767π0.380767\pi
594594 1.38197i 0.0567028i
595595 0.875388i 0.0358874i
596596 −23.4164 −0.959173
597597 20.1246i 0.823646i
598598 2.00000i 0.0817861i
599599 6.23607i 0.254799i −0.991851 0.127399i 0.959337π-0.959337\pi
0.991851 0.127399i 0.0406630π-0.0406630\pi
600600 7.76393 0.316961
601601 48.5410i 1.98003i 0.140964 + 0.990015i 0.454980π0.454980\pi
−0.140964 + 0.990015i 0.545020π0.545020\pi
602602 −1.23607 −0.0503784
603603 8.70820 0.354625
604604 19.4164 0.790042
605605 −7.41641 −0.301520
606606 8.61803i 0.350084i
607607 1.41641i 0.0574902i −0.999587 0.0287451i 0.990849π-0.990849\pi
0.999587 0.0287451i 0.00915111π-0.00915111\pi
608608 32.0689 1.30056
609609 −0.708204 + 1.05573i −0.0286979 + 0.0427803i
610610 5.52786 0.223817
611611 5.76393i 0.233184i
612612 4.85410i 0.196215i
613613 2.41641 0.0975978 0.0487989 0.998809i 0.484461π-0.484461\pi
0.0487989 + 0.998809i 0.484461π0.484461\pi
614614 −3.59675 −0.145153
615615 5.52786 0.222905
616616 1.18034 0.0475572
617617 15.8885i 0.639649i −0.947477 0.319824i 0.896376π-0.896376\pi
0.947477 0.319824i 0.103624π-0.103624\pi
618618 −4.58359 −0.184379
619619 34.5410i 1.38832i 0.719820 + 0.694160i 0.244224π0.244224\pi
−0.719820 + 0.694160i 0.755776π0.755776\pi
620620 5.52786i 0.222004i
621621 3.23607i 0.129859i
622622 −9.67376 −0.387883
623623 4.23607i 0.169714i
624624 1.85410i 0.0742235i
625625 4.41641 0.176656
626626 2.14590i 0.0857673i
627627 12.7639i 0.509742i
628628 3.23607i 0.129133i
629629 27.7082 1.10480
630630 0.180340i 0.00718491i
631631 15.2918 0.608757 0.304378 0.952551i 0.401551π-0.401551\pi
0.304378 + 0.952551i 0.401551π0.401551\pi
632632 35.1246 1.39718
633633 −10.0000 −0.397464
634634 18.4377 0.732254
635635 4.36068i 0.173048i
636636 18.1803i 0.720897i
637637 6.94427 0.275142
638638 6.18034 + 4.14590i 0.244682 + 0.164138i
639639 −9.23607 −0.365373
640640 14.0689i 0.556121i
641641 10.5279i 0.415826i −0.978147 0.207913i 0.933333π-0.933333\pi
0.978147 0.207913i 0.0666670π-0.0666670\pi
642642 −3.23607 −0.127717
643643 −12.7082 −0.501163 −0.250581 0.968096i 0.580622π-0.580622\pi
−0.250581 + 0.968096i 0.580622π0.580622\pi
644644 −1.23607 −0.0487079
645645 10.4721 0.412340
646646 10.5836i 0.416406i
647647 −31.5967 −1.24220 −0.621098 0.783733i 0.713313π-0.713313\pi
−0.621098 + 0.783733i 0.713313π0.713313\pi
648648 2.23607i 0.0878410i
649649 20.0000i 0.785069i
650650 2.14590i 0.0841690i
651651 0.652476 0.0255725
652652 31.4164i 1.23036i
653653 30.3050i 1.18592i 0.805230 + 0.592962i 0.202042π0.202042\pi
−0.805230 + 0.592962i 0.797958π0.797958\pi
654654 −3.09017 −0.120835
655655 9.59675i 0.374976i
656656 8.29180i 0.323740i
657657 5.70820i 0.222698i
658658 0.840946 0.0327835
659659 21.7639i 0.847802i −0.905708 0.423901i 0.860660π-0.860660\pi
0.905708 0.423901i 0.139340π-0.139340\pi
660660 −4.47214 −0.174078
661661 23.8328 0.926989 0.463495 0.886100i 0.346595π-0.346595\pi
0.463495 + 0.886100i 0.346595π0.346595\pi
662662 13.4164 0.521443
663663 −3.00000 −0.116510
664664 13.4164i 0.520658i
665665 1.66563i 0.0645904i
666666 5.70820 0.221188
667667 −14.4721 9.70820i −0.560363 0.375903i
668668 −32.1803 −1.24509
669669 0.708204i 0.0273807i
670670 6.65248i 0.257008i
671671 16.1803 0.624635
672672 −1.32624 −0.0511607
673673 22.4164 0.864089 0.432045 0.901852i 0.357792π-0.357792\pi
0.432045 + 0.901852i 0.357792π0.357792\pi
674674 −9.12461 −0.351467
675675 3.47214i 0.133643i
676676 −19.4164 −0.746785
677677 35.9443i 1.38145i 0.723117 + 0.690725i 0.242709π0.242709\pi
−0.723117 + 0.690725i 0.757291π0.757291\pi
678678 8.32624i 0.319767i
679679 0.986844i 0.0378716i
680680 −8.29180 −0.317976
681681 26.9443i 1.03251i
682682 3.81966i 0.146262i
683683 15.0557 0.576091 0.288046 0.957617i 0.406994π-0.406994\pi
0.288046 + 0.957617i 0.406994π0.406994\pi
684684 9.23607i 0.353150i
685685 15.4164i 0.589031i
686686 2.03444i 0.0776754i
687687 0.180340 0.00688040
688688 15.7082i 0.598870i
689689 −11.2361 −0.428060
690690 −2.47214 −0.0941126
691691 −25.7639 −0.980106 −0.490053 0.871693i 0.663023π-0.663023\pi
−0.490053 + 0.871693i 0.663023π0.663023\pi
692692 −9.70820 −0.369051
693693 0.527864i 0.0200519i
694694 5.34752i 0.202989i
695695 −8.29180 −0.314526
696696 −10.0000 6.70820i −0.379049 0.254274i
697697 13.4164 0.508183
698698 6.18034i 0.233929i
699699 1.52786i 0.0577891i
700700 −1.32624 −0.0501271
701701 −14.1803 −0.535584 −0.267792 0.963477i 0.586294π-0.586294\pi
−0.267792 + 0.963477i 0.586294π0.586294\pi
702702 −0.618034 −0.0233262
703703 52.7214 1.98842
704704 0.527864i 0.0198946i
705705 −7.12461 −0.268328
706706 16.4721i 0.619937i
707707 3.29180i 0.123801i
708708 14.4721i 0.543896i
709709 13.4164 0.503864 0.251932 0.967745i 0.418934π-0.418934\pi
0.251932 + 0.967745i 0.418934π0.418934\pi
710710 7.05573i 0.264797i
711711 15.7082i 0.589104i
712712 40.1246 1.50373
713713 8.94427i 0.334966i
714714 0.437694i 0.0163803i
715715 2.76393i 0.103365i
716716 −20.6525 −0.771819
717717 3.81966i 0.142648i
718718 −23.0557 −0.860432
719719 −30.0000 −1.11881 −0.559406 0.828894i 0.688971π-0.688971\pi
−0.559406 + 0.828894i 0.688971π0.688971\pi
720720 2.29180 0.0854102
721721 1.75078 0.0652023
722722 8.39512i 0.312434i
723723 3.00000i 0.111571i
724724 −10.3820 −0.385843
725725 −15.5279 10.4164i −0.576690 0.386856i
726726 −3.70820 −0.137624
727727 28.1803i 1.04515i 0.852593 + 0.522575i 0.175029π0.175029\pi
−0.852593 + 0.522575i 0.824971π0.824971\pi
728728 0.527864i 0.0195639i
729729 −1.00000 −0.0370370
730730 4.36068 0.161396
731731 25.4164 0.940060
732732 −11.7082 −0.432748
733733 0.472136i 0.0174387i −0.999962 0.00871937i 0.997225π-0.997225\pi
0.999962 0.00871937i 0.00277550π-0.00277550\pi
734734 11.1246 0.410617
735735 8.58359i 0.316611i
736736 18.1803i 0.670136i
737737 19.4721i 0.717265i
738738 2.76393 0.101742
739739 10.1803i 0.374490i −0.982313 0.187245i 0.940044π-0.940044\pi
0.982313 0.187245i 0.0599558π-0.0599558\pi
740740 18.4721i 0.679049i
741741 −5.70820 −0.209696
742742 1.63932i 0.0601813i
743743 15.0689i 0.552824i −0.961039 0.276412i 0.910855π-0.910855\pi
0.961039 0.276412i 0.0891454π-0.0891454\pi
744744 6.18034i 0.226582i
745745 17.8885 0.655386
746746 19.7082i 0.721569i
747747 6.00000 0.219529
748748 −10.8541 −0.396865
749749 1.23607 0.0451649
750750 −6.47214 −0.236329
751751 26.8328i 0.979143i −0.871963 0.489572i 0.837153π-0.837153\pi
0.871963 0.489572i 0.162847π-0.162847\pi
752752 10.6869i 0.389712i
753753 7.76393 0.282933
754754 1.85410 2.76393i 0.0675224 0.100656i
755755 −14.8328 −0.539821
756756 0.381966i 0.0138920i
757757 38.0000i 1.38113i −0.723269 0.690567i 0.757361π-0.757361\pi
0.723269 0.690567i 0.242639π-0.242639\pi
758758 −17.1246 −0.621994
759759 −7.23607 −0.262653
760760 −15.7771 −0.572295
761761 −28.6525 −1.03865 −0.519326 0.854576i 0.673817π-0.673817\pi
−0.519326 + 0.854576i 0.673817π0.673817\pi
762762 2.18034i 0.0789854i
763763 1.18034 0.0427312
764764 14.4721i 0.523584i
765765 3.70820i 0.134070i
766766 22.6525i 0.818467i
767767 8.94427 0.322959
768768 6.56231i 0.236797i
769769 17.8197i 0.642593i −0.946979 0.321297i 0.895881π-0.895881\pi
0.946979 0.321297i 0.104119π-0.104119\pi
770770 −0.403252 −0.0145322
771771 17.5279i 0.631251i
772772 15.2361i 0.548358i
773773 3.88854i 0.139861i −0.997552 0.0699306i 0.977722π-0.977722\pi
0.997552 0.0699306i 0.0222778π-0.0222778\pi
774774 5.23607 0.188207
775775 9.59675i 0.344725i
776776 9.34752 0.335557
777777 −2.18034 −0.0782193
778778 2.79837 0.100327
779779 25.5279 0.914631
780780 2.00000i 0.0716115i
781781 20.6525i 0.739004i
782782 −6.00000 −0.214560
783783 3.00000 4.47214i 0.107211 0.159821i
784784 −12.8754 −0.459835
785785 2.47214i 0.0882343i
786786 4.79837i 0.171152i
787787 −12.0000 −0.427754 −0.213877 0.976861i 0.568609π-0.568609\pi
−0.213877 + 0.976861i 0.568609π0.568609\pi
788788 15.7082 0.559582
789789 −12.9443 −0.460828
790790 −12.0000 −0.426941
791791 3.18034i 0.113080i
792792 −5.00000 −0.177667
793793 7.23607i 0.256960i
794794 6.76393i 0.240043i
795795 13.8885i 0.492576i
796796 32.5623 1.15414
797797 8.83282i 0.312874i 0.987688 + 0.156437i 0.0500009π0.0500009\pi
−0.987688 + 0.156437i 0.949999π0.949999\pi
798798 0.832816i 0.0294814i
799799 −17.2918 −0.611740
800800 19.5066i 0.689662i
801801 17.9443i 0.634030i
802802 12.5410i 0.442839i
803803 12.7639 0.450429
804804 14.0902i 0.496922i
805805 0.944272 0.0332812
806806 −1.70820 −0.0601689
807807 −23.3607 −0.822335
808808 −31.1803 −1.09692
809809 1.36068i 0.0478390i −0.999714 0.0239195i 0.992385π-0.992385\pi
0.999714 0.0239195i 0.00761453π-0.00761453\pi
810810 0.763932i 0.0268418i
811811 −2.59675 −0.0911841 −0.0455921 0.998960i 0.514517π-0.514517\pi
−0.0455921 + 0.998960i 0.514517π0.514517\pi
812812 1.70820 + 1.14590i 0.0599462 + 0.0402131i
813813 −3.41641 −0.119819
814814 12.7639i 0.447376i
815815 24.0000i 0.840683i
816816 5.56231 0.194720
817817 48.3607 1.69193
818818 23.1246 0.808533
819819 0.236068 0.00824888
820820 8.94427i 0.312348i
821821 −3.52786 −0.123123 −0.0615617 0.998103i 0.519608π-0.519608\pi
−0.0615617 + 0.998103i 0.519608π0.519608\pi
822822 7.70820i 0.268854i
823823 18.3607i 0.640013i −0.947415 0.320007i 0.896315π-0.896315\pi
0.947415 0.320007i 0.103685π-0.103685\pi
824824 16.5836i 0.577717i
825825 −7.76393 −0.270305
826826 1.30495i 0.0454051i
827827 5.88854i 0.204765i −0.994745 0.102382i 0.967353π-0.967353\pi
0.994745 0.102382i 0.0326465π-0.0326465\pi
828828 5.23607 0.181966
829829 35.3050i 1.22619i −0.790009 0.613096i 0.789924π-0.789924\pi
0.790009 0.613096i 0.210076π-0.210076\pi
830830 4.58359i 0.159099i
831831 20.4164i 0.708237i
832832 −0.236068 −0.00818418
833833 20.8328i 0.721814i
834834 −4.14590 −0.143561
835835 24.5836 0.850750
836836 −20.6525 −0.714281
837837 −2.76393 −0.0955355
838838 16.1803i 0.558941i
839839 12.7082i 0.438736i 0.975642 + 0.219368i 0.0703995π0.0703995\pi
−0.975642 + 0.219368i 0.929600π0.929600\pi
840840 0.652476 0.0225126
841841 11.0000 + 26.8328i 0.379310 + 0.925270i
842842 −12.3607 −0.425977
843843 25.4164i 0.875388i
844844 16.1803i 0.556950i
845845 14.8328 0.510264
846846 −3.56231 −0.122475
847847 1.41641 0.0486684
848848 20.8328 0.715402
849849 21.8885i 0.751213i
850850 −6.43769 −0.220811
851851 29.8885i 1.02457i
852852 14.9443i 0.511982i
853853 53.1935i 1.82131i 0.413167 + 0.910655i 0.364423π0.364423\pi
−0.413167 + 0.910655i 0.635577π0.635577\pi
854854 −1.05573 −0.0361263
855855 7.05573i 0.241301i
856856 11.7082i 0.400178i
857857 −11.5967 −0.396137 −0.198069 0.980188i 0.563467π-0.563467\pi
−0.198069 + 0.980188i 0.563467π0.563467\pi
858858 1.38197i 0.0471795i
859859 8.36068i 0.285263i 0.989776 + 0.142631i 0.0455563π0.0455563\pi
−0.989776 + 0.142631i 0.954444π0.954444\pi
860860 16.9443i 0.577795i
861861 −1.05573 −0.0359791
862862 18.7639i 0.639102i
863863 −15.3475 −0.522436 −0.261218 0.965280i 0.584124π-0.584124\pi
−0.261218 + 0.965280i 0.584124π0.584124\pi
864864 5.61803 0.191129
865865 7.41641 0.252165
866866 17.1246 0.581918
867867 8.00000i 0.271694i
868868 1.05573i 0.0358337i
869869 −35.1246 −1.19152
870870 3.41641 + 2.29180i 0.115827 + 0.0776992i
871871 8.70820 0.295066
872872 11.1803i 0.378614i
873873 4.18034i 0.141483i
874874 −11.4164 −0.386166
875875 2.47214 0.0835734
876876 −9.23607 −0.312058
877877 23.5279 0.794480 0.397240 0.917715i 0.369968π-0.369968\pi
0.397240 + 0.917715i 0.369968π0.369968\pi
878878 16.5066i 0.557070i
879879 12.0557 0.406630
880880 5.12461i 0.172751i
881881 25.2492i 0.850668i 0.905036 + 0.425334i 0.139843π0.139843\pi
−0.905036 + 0.425334i 0.860157π0.860157\pi
882882 4.29180i 0.144512i
883883 −46.2492 −1.55641 −0.778205 0.628010i 0.783870π-0.783870\pi
−0.778205 + 0.628010i 0.783870π0.783870\pi
884884 4.85410i 0.163261i
885885 11.0557i 0.371634i
886886 13.3820 0.449576
887887 41.0689i 1.37896i 0.724306 + 0.689479i 0.242160π0.242160\pi
−0.724306 + 0.689479i 0.757840π0.757840\pi
888888 20.6525i 0.693052i
889889 0.832816i 0.0279317i
890890 −13.7082 −0.459500
891891 2.23607i 0.0749111i
892892 1.14590 0.0383675
893893 −32.9017 −1.10101
894894 8.94427 0.299141
895895 15.7771 0.527370
896896 2.68692i 0.0897636i
897897 3.23607i 0.108049i
898898 10.4377 0.348310
899899 8.29180 12.3607i 0.276547 0.412252i
900900 5.61803 0.187268
901901 33.7082i 1.12298i
902902 6.18034i 0.205783i
903903 −2.00000 −0.0665558
904904 −30.1246 −1.00193
905905 7.93112 0.263639
906906 −7.41641 −0.246394
907907 17.5279i 0.582003i 0.956723 + 0.291002i 0.0939885π0.0939885\pi
−0.956723 + 0.291002i 0.906012π0.906012\pi
908908 43.5967 1.44681
909909 13.9443i 0.462502i
910910 0.180340i 0.00597821i
911911 28.8197i 0.954838i −0.878676 0.477419i 0.841572π-0.841572\pi
0.878676 0.477419i 0.158428π-0.158428\pi
912912 10.5836 0.350458
913913 13.4164i 0.444018i
914914 12.6180i 0.417367i
915915 8.94427 0.295689
916916 0.291796i 0.00964121i
917917 1.83282i 0.0605249i
918918 1.85410i 0.0611945i
919919 5.65248 0.186458 0.0932290 0.995645i 0.470281π-0.470281\pi
0.0932290 + 0.995645i 0.470281π0.470281\pi
920920 8.94427i 0.294884i
921921 −5.81966 −0.191764
922922 0.652476 0.0214881
923923 −9.23607 −0.304009
924924 0.854102 0.0280979
925925 32.0689i 1.05442i
926926 7.85410i 0.258102i
927927 −7.41641 −0.243587
928928 −16.8541 + 25.1246i −0.553263 + 0.824756i
929929 12.3607 0.405541 0.202770 0.979226i 0.435006π-0.435006\pi
0.202770 + 0.979226i 0.435006π0.435006\pi
930930 2.11146i 0.0692374i
931931 39.6393i 1.29913i
932932 −2.47214 −0.0809775
933933 −15.6525 −0.512439
934934 13.8885 0.454447
935935 8.29180 0.271171
936936 2.23607i 0.0730882i
937937 33.0000 1.07806 0.539032 0.842286i 0.318790π-0.318790\pi
0.539032 + 0.842286i 0.318790π0.318790\pi
938938 1.27051i 0.0414836i
939939 3.47214i 0.113309i
940940 11.5279i 0.375997i
941941 8.83282 0.287942 0.143971 0.989582i 0.454013π-0.454013\pi
0.143971 + 0.989582i 0.454013π0.454013\pi
942942 1.23607i 0.0402733i
943943 14.4721i 0.471278i
944944 −16.5836 −0.539750
945945 0.291796i 0.00949213i
946946 11.7082i 0.380667i
947947 39.1803i 1.27319i −0.771198 0.636595i 0.780342π-0.780342\pi
0.771198 0.636595i 0.219658π-0.219658\pi
948948 25.4164 0.825487
949949 5.70820i 0.185296i
950950 −12.2492 −0.397417
951951 29.8328 0.967395
952952 1.58359 0.0513245
953953 47.6656 1.54404 0.772021 0.635597i 0.219246π-0.219246\pi
0.772021 + 0.635597i 0.219246π0.219246\pi
954954 6.94427i 0.224829i
955955 11.0557i 0.357755i
956956 6.18034 0.199886
957957 10.0000 + 6.70820i 0.323254 + 0.216845i
958958 −0.944272 −0.0305080
959959 2.94427i 0.0950755i
960960 0.291796i 0.00941768i
961961 23.3607 0.753570
962962 5.70820 0.184040
963963 −5.23607 −0.168730
964964 −4.85410 −0.156340
965965 11.6393i 0.374683i
966966 0.472136 0.0151907
967967 13.1246i 0.422059i −0.977480 0.211030i 0.932318π-0.932318\pi
0.977480 0.211030i 0.0676816π-0.0676816\pi
968968 13.4164i 0.431220i
969969 17.1246i 0.550122i
970970 −3.19350 −0.102537
971971 43.4164i 1.39330i 0.717412 + 0.696649i 0.245327π0.245327\pi
−0.717412 + 0.696649i 0.754673π0.754673\pi
972972 1.61803i 0.0518985i
973973 1.58359 0.0507676
974974 15.0557i 0.482417i
975975 3.47214i 0.111197i
976976 13.4164i 0.429449i
977977 −25.0132 −0.800242 −0.400121 0.916462i 0.631032π-0.631032\pi
−0.400121 + 0.916462i 0.631032π0.631032\pi
978978 12.0000i 0.383718i
979979 −40.1246 −1.28239
980980 13.8885 0.443653
981981 −5.00000 −0.159638
982982 0 0
983983 21.8885i 0.698136i 0.937097 + 0.349068i 0.113502π0.113502\pi
−0.937097 + 0.349068i 0.886498π0.886498\pi
984984 10.0000i 0.318788i
985985 −12.0000 −0.382352
986986 8.29180 + 5.56231i 0.264065 + 0.177140i
987987 1.36068 0.0433109
988988 9.23607i 0.293838i
989989 27.4164i 0.871791i
990990 1.70820 0.0542903
991991 −34.7082 −1.10254 −0.551271 0.834326i 0.685857π-0.685857\pi
−0.551271 + 0.834326i 0.685857π0.685857\pi
992992 15.5279 0.493010
993993 21.7082 0.688889
994994 1.34752i 0.0427409i
995995 −24.8754 −0.788603
996996 9.70820i 0.307616i
997997 51.4164i 1.62837i −0.580603 0.814187i 0.697183π-0.697183\pi
0.580603 0.814187i 0.302817π-0.302817\pi
998998 0.729490i 0.0230916i
999999 9.23607 0.292216
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 87.2.c.a.28.3 yes 4
3.2 odd 2 261.2.c.b.28.2 4
4.3 odd 2 1392.2.o.i.289.1 4
5.2 odd 4 2175.2.f.b.724.2 4
5.3 odd 4 2175.2.f.a.724.3 4
5.4 even 2 2175.2.d.e.376.2 4
12.11 even 2 4176.2.o.l.289.3 4
29.12 odd 4 2523.2.a.e.1.1 2
29.17 odd 4 2523.2.a.d.1.2 2
29.28 even 2 inner 87.2.c.a.28.2 4
87.17 even 4 7569.2.a.n.1.1 2
87.41 even 4 7569.2.a.f.1.2 2
87.86 odd 2 261.2.c.b.28.3 4
116.115 odd 2 1392.2.o.i.289.3 4
145.28 odd 4 2175.2.f.b.724.1 4
145.57 odd 4 2175.2.f.a.724.4 4
145.144 even 2 2175.2.d.e.376.3 4
348.347 even 2 4176.2.o.l.289.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.c.a.28.2 4 29.28 even 2 inner
87.2.c.a.28.3 yes 4 1.1 even 1 trivial
261.2.c.b.28.2 4 3.2 odd 2
261.2.c.b.28.3 4 87.86 odd 2
1392.2.o.i.289.1 4 4.3 odd 2
1392.2.o.i.289.3 4 116.115 odd 2
2175.2.d.e.376.2 4 5.4 even 2
2175.2.d.e.376.3 4 145.144 even 2
2175.2.f.a.724.3 4 5.3 odd 4
2175.2.f.a.724.4 4 145.57 odd 4
2175.2.f.b.724.1 4 145.28 odd 4
2175.2.f.b.724.2 4 5.2 odd 4
2523.2.a.d.1.2 2 29.17 odd 4
2523.2.a.e.1.1 2 29.12 odd 4
4176.2.o.l.289.3 4 12.11 even 2
4176.2.o.l.289.4 4 348.347 even 2
7569.2.a.f.1.2 2 87.41 even 4
7569.2.a.n.1.1 2 87.17 even 4