Properties

Label 87.2.c.a.28.3
Level $87$
Weight $2$
Character 87.28
Analytic conductor $0.695$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(28,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 28.3
Root \(0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 87.28
Dual form 87.2.c.a.28.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.618034i q^{2} +1.00000i q^{3} +1.61803 q^{4} -1.23607 q^{5} -0.618034 q^{6} +0.236068 q^{7} +2.23607i q^{8} -1.00000 q^{9} -0.763932i q^{10} -2.23607i q^{11} +1.61803i q^{12} -1.00000 q^{13} +0.145898i q^{14} -1.23607i q^{15} +1.85410 q^{16} -3.00000i q^{17} -0.618034i q^{18} -5.70820i q^{19} -2.00000 q^{20} +0.236068i q^{21} +1.38197 q^{22} -3.23607 q^{23} -2.23607 q^{24} -3.47214 q^{25} -0.618034i q^{26} -1.00000i q^{27} +0.381966 q^{28} +(4.47214 + 3.00000i) q^{29} +0.763932 q^{30} -2.76393i q^{31} +5.61803i q^{32} +2.23607 q^{33} +1.85410 q^{34} -0.291796 q^{35} -1.61803 q^{36} +9.23607i q^{37} +3.52786 q^{38} -1.00000i q^{39} -2.76393i q^{40} +4.47214i q^{41} -0.145898 q^{42} +8.47214i q^{43} -3.61803i q^{44} +1.23607 q^{45} -2.00000i q^{46} -5.76393i q^{47} +1.85410i q^{48} -6.94427 q^{49} -2.14590i q^{50} +3.00000 q^{51} -1.61803 q^{52} +11.2361 q^{53} +0.618034 q^{54} +2.76393i q^{55} +0.527864i q^{56} +5.70820 q^{57} +(-1.85410 + 2.76393i) q^{58} -8.94427 q^{59} -2.00000i q^{60} +7.23607i q^{61} +1.70820 q^{62} -0.236068 q^{63} +0.236068 q^{64} +1.23607 q^{65} +1.38197i q^{66} -8.70820 q^{67} -4.85410i q^{68} -3.23607i q^{69} -0.180340i q^{70} +9.23607 q^{71} -2.23607i q^{72} +5.70820i q^{73} -5.70820 q^{74} -3.47214i q^{75} -9.23607i q^{76} -0.527864i q^{77} +0.618034 q^{78} -15.7082i q^{79} -2.29180 q^{80} +1.00000 q^{81} -2.76393 q^{82} -6.00000 q^{83} +0.381966i q^{84} +3.70820i q^{85} -5.23607 q^{86} +(-3.00000 + 4.47214i) q^{87} +5.00000 q^{88} -17.9443i q^{89} +0.763932i q^{90} -0.236068 q^{91} -5.23607 q^{92} +2.76393 q^{93} +3.56231 q^{94} +7.05573i q^{95} -5.61803 q^{96} -4.18034i q^{97} -4.29180i q^{98} +2.23607i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 4 q^{5} + 2 q^{6} - 8 q^{7} - 4 q^{9} - 4 q^{13} - 6 q^{16} - 8 q^{20} + 10 q^{22} - 4 q^{23} + 4 q^{25} + 6 q^{28} + 12 q^{30} - 6 q^{34} - 28 q^{35} - 2 q^{36} + 32 q^{38} - 14 q^{42}+ \cdots - 18 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.618034i 0.437016i 0.975835 + 0.218508i \(0.0701190\pi\)
−0.975835 + 0.218508i \(0.929881\pi\)
\(3\) 1.00000i 0.577350i
\(4\) 1.61803 0.809017
\(5\) −1.23607 −0.552786 −0.276393 0.961045i \(-0.589139\pi\)
−0.276393 + 0.961045i \(0.589139\pi\)
\(6\) −0.618034 −0.252311
\(7\) 0.236068 0.0892253 0.0446127 0.999004i \(-0.485795\pi\)
0.0446127 + 0.999004i \(0.485795\pi\)
\(8\) 2.23607i 0.790569i
\(9\) −1.00000 −0.333333
\(10\) 0.763932i 0.241577i
\(11\) 2.23607i 0.674200i −0.941469 0.337100i \(-0.890554\pi\)
0.941469 0.337100i \(-0.109446\pi\)
\(12\) 1.61803i 0.467086i
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0.145898i 0.0389929i
\(15\) 1.23607i 0.319151i
\(16\) 1.85410 0.463525
\(17\) 3.00000i 0.727607i −0.931476 0.363803i \(-0.881478\pi\)
0.931476 0.363803i \(-0.118522\pi\)
\(18\) 0.618034i 0.145672i
\(19\) 5.70820i 1.30955i −0.755823 0.654776i \(-0.772763\pi\)
0.755823 0.654776i \(-0.227237\pi\)
\(20\) −2.00000 −0.447214
\(21\) 0.236068i 0.0515143i
\(22\) 1.38197 0.294636
\(23\) −3.23607 −0.674767 −0.337383 0.941367i \(-0.609542\pi\)
−0.337383 + 0.941367i \(0.609542\pi\)
\(24\) −2.23607 −0.456435
\(25\) −3.47214 −0.694427
\(26\) 0.618034i 0.121206i
\(27\) 1.00000i 0.192450i
\(28\) 0.381966 0.0721848
\(29\) 4.47214 + 3.00000i 0.830455 + 0.557086i
\(30\) 0.763932 0.139474
\(31\) 2.76393i 0.496417i −0.968707 0.248208i \(-0.920158\pi\)
0.968707 0.248208i \(-0.0798418\pi\)
\(32\) 5.61803i 0.993137i
\(33\) 2.23607 0.389249
\(34\) 1.85410 0.317976
\(35\) −0.291796 −0.0493225
\(36\) −1.61803 −0.269672
\(37\) 9.23607i 1.51840i 0.650857 + 0.759200i \(0.274410\pi\)
−0.650857 + 0.759200i \(0.725590\pi\)
\(38\) 3.52786 0.572295
\(39\) 1.00000i 0.160128i
\(40\) 2.76393i 0.437016i
\(41\) 4.47214i 0.698430i 0.937043 + 0.349215i \(0.113552\pi\)
−0.937043 + 0.349215i \(0.886448\pi\)
\(42\) −0.145898 −0.0225126
\(43\) 8.47214i 1.29199i 0.763342 + 0.645994i \(0.223557\pi\)
−0.763342 + 0.645994i \(0.776443\pi\)
\(44\) 3.61803i 0.545439i
\(45\) 1.23607 0.184262
\(46\) 2.00000i 0.294884i
\(47\) 5.76393i 0.840756i −0.907349 0.420378i \(-0.861897\pi\)
0.907349 0.420378i \(-0.138103\pi\)
\(48\) 1.85410i 0.267617i
\(49\) −6.94427 −0.992039
\(50\) 2.14590i 0.303476i
\(51\) 3.00000 0.420084
\(52\) −1.61803 −0.224381
\(53\) 11.2361 1.54339 0.771696 0.635991i \(-0.219409\pi\)
0.771696 + 0.635991i \(0.219409\pi\)
\(54\) 0.618034 0.0841038
\(55\) 2.76393i 0.372689i
\(56\) 0.527864i 0.0705388i
\(57\) 5.70820 0.756070
\(58\) −1.85410 + 2.76393i −0.243456 + 0.362922i
\(59\) −8.94427 −1.16445 −0.582223 0.813029i \(-0.697817\pi\)
−0.582223 + 0.813029i \(0.697817\pi\)
\(60\) 2.00000i 0.258199i
\(61\) 7.23607i 0.926484i 0.886232 + 0.463242i \(0.153314\pi\)
−0.886232 + 0.463242i \(0.846686\pi\)
\(62\) 1.70820 0.216942
\(63\) −0.236068 −0.0297418
\(64\) 0.236068 0.0295085
\(65\) 1.23607 0.153315
\(66\) 1.38197i 0.170108i
\(67\) −8.70820 −1.06388 −0.531938 0.846783i \(-0.678536\pi\)
−0.531938 + 0.846783i \(0.678536\pi\)
\(68\) 4.85410i 0.588646i
\(69\) 3.23607i 0.389577i
\(70\) 0.180340i 0.0215547i
\(71\) 9.23607 1.09612 0.548060 0.836439i \(-0.315367\pi\)
0.548060 + 0.836439i \(0.315367\pi\)
\(72\) 2.23607i 0.263523i
\(73\) 5.70820i 0.668095i 0.942556 + 0.334047i \(0.108415\pi\)
−0.942556 + 0.334047i \(0.891585\pi\)
\(74\) −5.70820 −0.663565
\(75\) 3.47214i 0.400928i
\(76\) 9.23607i 1.05945i
\(77\) 0.527864i 0.0601557i
\(78\) 0.618034 0.0699786
\(79\) 15.7082i 1.76731i −0.468138 0.883656i \(-0.655075\pi\)
0.468138 0.883656i \(-0.344925\pi\)
\(80\) −2.29180 −0.256231
\(81\) 1.00000 0.111111
\(82\) −2.76393 −0.305225
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0.381966i 0.0416759i
\(85\) 3.70820i 0.402211i
\(86\) −5.23607 −0.564620
\(87\) −3.00000 + 4.47214i −0.321634 + 0.479463i
\(88\) 5.00000 0.533002
\(89\) 17.9443i 1.90209i −0.309054 0.951045i \(-0.600012\pi\)
0.309054 0.951045i \(-0.399988\pi\)
\(90\) 0.763932i 0.0805255i
\(91\) −0.236068 −0.0247466
\(92\) −5.23607 −0.545898
\(93\) 2.76393 0.286606
\(94\) 3.56231 0.367424
\(95\) 7.05573i 0.723902i
\(96\) −5.61803 −0.573388
\(97\) 4.18034i 0.424449i −0.977221 0.212225i \(-0.931929\pi\)
0.977221 0.212225i \(-0.0680708\pi\)
\(98\) 4.29180i 0.433537i
\(99\) 2.23607i 0.224733i
\(100\) −5.61803 −0.561803
\(101\) 13.9443i 1.38751i 0.720213 + 0.693753i \(0.244044\pi\)
−0.720213 + 0.693753i \(0.755956\pi\)
\(102\) 1.85410i 0.183583i
\(103\) 7.41641 0.730760 0.365380 0.930858i \(-0.380939\pi\)
0.365380 + 0.930858i \(0.380939\pi\)
\(104\) 2.23607i 0.219265i
\(105\) 0.291796i 0.0284764i
\(106\) 6.94427i 0.674487i
\(107\) 5.23607 0.506190 0.253095 0.967441i \(-0.418552\pi\)
0.253095 + 0.967441i \(0.418552\pi\)
\(108\) 1.61803i 0.155695i
\(109\) 5.00000 0.478913 0.239457 0.970907i \(-0.423031\pi\)
0.239457 + 0.970907i \(0.423031\pi\)
\(110\) −1.70820 −0.162871
\(111\) −9.23607 −0.876649
\(112\) 0.437694 0.0413582
\(113\) 13.4721i 1.26735i 0.773599 + 0.633676i \(0.218455\pi\)
−0.773599 + 0.633676i \(0.781545\pi\)
\(114\) 3.52786i 0.330415i
\(115\) 4.00000 0.373002
\(116\) 7.23607 + 4.85410i 0.671852 + 0.450692i
\(117\) 1.00000 0.0924500
\(118\) 5.52786i 0.508881i
\(119\) 0.708204i 0.0649209i
\(120\) 2.76393 0.252311
\(121\) 6.00000 0.545455
\(122\) −4.47214 −0.404888
\(123\) −4.47214 −0.403239
\(124\) 4.47214i 0.401610i
\(125\) 10.4721 0.936656
\(126\) 0.145898i 0.0129976i
\(127\) 3.52786i 0.313047i −0.987674 0.156524i \(-0.949971\pi\)
0.987674 0.156524i \(-0.0500287\pi\)
\(128\) 11.3820i 1.00603i
\(129\) −8.47214 −0.745930
\(130\) 0.763932i 0.0670013i
\(131\) 7.76393i 0.678338i 0.940725 + 0.339169i \(0.110146\pi\)
−0.940725 + 0.339169i \(0.889854\pi\)
\(132\) 3.61803 0.314909
\(133\) 1.34752i 0.116845i
\(134\) 5.38197i 0.464931i
\(135\) 1.23607i 0.106384i
\(136\) 6.70820 0.575224
\(137\) 12.4721i 1.06557i −0.846252 0.532783i \(-0.821146\pi\)
0.846252 0.532783i \(-0.178854\pi\)
\(138\) 2.00000 0.170251
\(139\) 6.70820 0.568982 0.284491 0.958679i \(-0.408175\pi\)
0.284491 + 0.958679i \(0.408175\pi\)
\(140\) −0.472136 −0.0399028
\(141\) 5.76393 0.485411
\(142\) 5.70820i 0.479022i
\(143\) 2.23607i 0.186989i
\(144\) −1.85410 −0.154508
\(145\) −5.52786 3.70820i −0.459064 0.307950i
\(146\) −3.52786 −0.291968
\(147\) 6.94427i 0.572754i
\(148\) 14.9443i 1.22841i
\(149\) −14.4721 −1.18560 −0.592802 0.805348i \(-0.701978\pi\)
−0.592802 + 0.805348i \(0.701978\pi\)
\(150\) 2.14590 0.175212
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) 12.7639 1.03529
\(153\) 3.00000i 0.242536i
\(154\) 0.326238 0.0262890
\(155\) 3.41641i 0.274412i
\(156\) 1.61803i 0.129546i
\(157\) 2.00000i 0.159617i 0.996810 + 0.0798087i \(0.0254309\pi\)
−0.996810 + 0.0798087i \(0.974569\pi\)
\(158\) 9.70820 0.772343
\(159\) 11.2361i 0.891078i
\(160\) 6.94427i 0.548993i
\(161\) −0.763932 −0.0602063
\(162\) 0.618034i 0.0485573i
\(163\) 19.4164i 1.52081i −0.649449 0.760405i \(-0.725000\pi\)
0.649449 0.760405i \(-0.275000\pi\)
\(164\) 7.23607i 0.565042i
\(165\) −2.76393 −0.215172
\(166\) 3.70820i 0.287812i
\(167\) −19.8885 −1.53902 −0.769511 0.638634i \(-0.779500\pi\)
−0.769511 + 0.638634i \(0.779500\pi\)
\(168\) −0.527864 −0.0407256
\(169\) −12.0000 −0.923077
\(170\) −2.29180 −0.175773
\(171\) 5.70820i 0.436517i
\(172\) 13.7082i 1.04524i
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) −2.76393 1.85410i −0.209533 0.140559i
\(175\) −0.819660 −0.0619605
\(176\) 4.14590i 0.312509i
\(177\) 8.94427i 0.672293i
\(178\) 11.0902 0.831243
\(179\) −12.7639 −0.954021 −0.477011 0.878898i \(-0.658280\pi\)
−0.477011 + 0.878898i \(0.658280\pi\)
\(180\) 2.00000 0.149071
\(181\) −6.41641 −0.476928 −0.238464 0.971151i \(-0.576644\pi\)
−0.238464 + 0.971151i \(0.576644\pi\)
\(182\) 0.145898i 0.0108147i
\(183\) −7.23607 −0.534906
\(184\) 7.23607i 0.533450i
\(185\) 11.4164i 0.839351i
\(186\) 1.70820i 0.125252i
\(187\) −6.70820 −0.490552
\(188\) 9.32624i 0.680186i
\(189\) 0.236068i 0.0171714i
\(190\) −4.36068 −0.316357
\(191\) 8.94427i 0.647185i −0.946197 0.323592i \(-0.895109\pi\)
0.946197 0.323592i \(-0.104891\pi\)
\(192\) 0.236068i 0.0170367i
\(193\) 9.41641i 0.677808i −0.940821 0.338904i \(-0.889944\pi\)
0.940821 0.338904i \(-0.110056\pi\)
\(194\) 2.58359 0.185491
\(195\) 1.23607i 0.0885167i
\(196\) −11.2361 −0.802576
\(197\) 9.70820 0.691681 0.345840 0.938293i \(-0.387594\pi\)
0.345840 + 0.938293i \(0.387594\pi\)
\(198\) −1.38197 −0.0982120
\(199\) 20.1246 1.42660 0.713298 0.700861i \(-0.247201\pi\)
0.713298 + 0.700861i \(0.247201\pi\)
\(200\) 7.76393i 0.548993i
\(201\) 8.70820i 0.614229i
\(202\) −8.61803 −0.606363
\(203\) 1.05573 + 0.708204i 0.0740976 + 0.0497062i
\(204\) 4.85410 0.339855
\(205\) 5.52786i 0.386083i
\(206\) 4.58359i 0.319354i
\(207\) 3.23607 0.224922
\(208\) −1.85410 −0.128559
\(209\) −12.7639 −0.882900
\(210\) 0.180340 0.0124446
\(211\) 10.0000i 0.688428i 0.938891 + 0.344214i \(0.111855\pi\)
−0.938891 + 0.344214i \(0.888145\pi\)
\(212\) 18.1803 1.24863
\(213\) 9.23607i 0.632845i
\(214\) 3.23607i 0.221213i
\(215\) 10.4721i 0.714194i
\(216\) 2.23607 0.152145
\(217\) 0.652476i 0.0442929i
\(218\) 3.09017i 0.209293i
\(219\) −5.70820 −0.385725
\(220\) 4.47214i 0.301511i
\(221\) 3.00000i 0.201802i
\(222\) 5.70820i 0.383110i
\(223\) 0.708204 0.0474248 0.0237124 0.999719i \(-0.492451\pi\)
0.0237124 + 0.999719i \(0.492451\pi\)
\(224\) 1.32624i 0.0886130i
\(225\) 3.47214 0.231476
\(226\) −8.32624 −0.553853
\(227\) 26.9443 1.78835 0.894177 0.447713i \(-0.147762\pi\)
0.894177 + 0.447713i \(0.147762\pi\)
\(228\) 9.23607 0.611674
\(229\) 0.180340i 0.0119172i −0.999982 0.00595860i \(-0.998103\pi\)
0.999982 0.00595860i \(-0.00189669\pi\)
\(230\) 2.47214i 0.163008i
\(231\) 0.527864 0.0347309
\(232\) −6.70820 + 10.0000i −0.440415 + 0.656532i
\(233\) −1.52786 −0.100094 −0.0500469 0.998747i \(-0.515937\pi\)
−0.0500469 + 0.998747i \(0.515937\pi\)
\(234\) 0.618034i 0.0404021i
\(235\) 7.12461i 0.464758i
\(236\) −14.4721 −0.942056
\(237\) 15.7082 1.02036
\(238\) 0.437694 0.0283715
\(239\) 3.81966 0.247073 0.123537 0.992340i \(-0.460576\pi\)
0.123537 + 0.992340i \(0.460576\pi\)
\(240\) 2.29180i 0.147935i
\(241\) −3.00000 −0.193247 −0.0966235 0.995321i \(-0.530804\pi\)
−0.0966235 + 0.995321i \(0.530804\pi\)
\(242\) 3.70820i 0.238372i
\(243\) 1.00000i 0.0641500i
\(244\) 11.7082i 0.749541i
\(245\) 8.58359 0.548386
\(246\) 2.76393i 0.176222i
\(247\) 5.70820i 0.363204i
\(248\) 6.18034 0.392452
\(249\) 6.00000i 0.380235i
\(250\) 6.47214i 0.409334i
\(251\) 7.76393i 0.490055i −0.969516 0.245028i \(-0.921203\pi\)
0.969516 0.245028i \(-0.0787970\pi\)
\(252\) −0.381966 −0.0240616
\(253\) 7.23607i 0.454928i
\(254\) 2.18034 0.136807
\(255\) −3.70820 −0.232217
\(256\) −6.56231 −0.410144
\(257\) −17.5279 −1.09336 −0.546679 0.837342i \(-0.684108\pi\)
−0.546679 + 0.837342i \(0.684108\pi\)
\(258\) 5.23607i 0.325983i
\(259\) 2.18034i 0.135480i
\(260\) 2.00000 0.124035
\(261\) −4.47214 3.00000i −0.276818 0.185695i
\(262\) −4.79837 −0.296445
\(263\) 12.9443i 0.798178i 0.916912 + 0.399089i \(0.130674\pi\)
−0.916912 + 0.399089i \(0.869326\pi\)
\(264\) 5.00000i 0.307729i
\(265\) −13.8885 −0.853166
\(266\) 0.832816 0.0510632
\(267\) 17.9443 1.09817
\(268\) −14.0902 −0.860694
\(269\) 23.3607i 1.42433i 0.702014 + 0.712163i \(0.252284\pi\)
−0.702014 + 0.712163i \(0.747716\pi\)
\(270\) −0.763932 −0.0464914
\(271\) 3.41641i 0.207532i 0.994602 + 0.103766i \(0.0330893\pi\)
−0.994602 + 0.103766i \(0.966911\pi\)
\(272\) 5.56231i 0.337264i
\(273\) 0.236068i 0.0142875i
\(274\) 7.70820 0.465670
\(275\) 7.76393i 0.468183i
\(276\) 5.23607i 0.315174i
\(277\) −20.4164 −1.22670 −0.613352 0.789810i \(-0.710179\pi\)
−0.613352 + 0.789810i \(0.710179\pi\)
\(278\) 4.14590i 0.248654i
\(279\) 2.76393i 0.165472i
\(280\) 0.652476i 0.0389929i
\(281\) 25.4164 1.51622 0.758108 0.652129i \(-0.226124\pi\)
0.758108 + 0.652129i \(0.226124\pi\)
\(282\) 3.56231i 0.212132i
\(283\) 21.8885 1.30114 0.650569 0.759447i \(-0.274530\pi\)
0.650569 + 0.759447i \(0.274530\pi\)
\(284\) 14.9443 0.886779
\(285\) −7.05573 −0.417945
\(286\) −1.38197 −0.0817174
\(287\) 1.05573i 0.0623177i
\(288\) 5.61803i 0.331046i
\(289\) 8.00000 0.470588
\(290\) 2.29180 3.41641i 0.134579 0.200618i
\(291\) 4.18034 0.245056
\(292\) 9.23607i 0.540500i
\(293\) 12.0557i 0.704303i −0.935943 0.352152i \(-0.885450\pi\)
0.935943 0.352152i \(-0.114550\pi\)
\(294\) 4.29180 0.250303
\(295\) 11.0557 0.643689
\(296\) −20.6525 −1.20040
\(297\) −2.23607 −0.129750
\(298\) 8.94427i 0.518128i
\(299\) 3.23607 0.187147
\(300\) 5.61803i 0.324357i
\(301\) 2.00000i 0.115278i
\(302\) 7.41641i 0.426766i
\(303\) −13.9443 −0.801077
\(304\) 10.5836i 0.607011i
\(305\) 8.94427i 0.512148i
\(306\) −1.85410 −0.105992
\(307\) 5.81966i 0.332146i 0.986113 + 0.166073i \(0.0531087\pi\)
−0.986113 + 0.166073i \(0.946891\pi\)
\(308\) 0.854102i 0.0486670i
\(309\) 7.41641i 0.421905i
\(310\) −2.11146 −0.119923
\(311\) 15.6525i 0.887570i 0.896133 + 0.443785i \(0.146365\pi\)
−0.896133 + 0.443785i \(0.853635\pi\)
\(312\) 2.23607 0.126592
\(313\) 3.47214 0.196257 0.0981284 0.995174i \(-0.468714\pi\)
0.0981284 + 0.995174i \(0.468714\pi\)
\(314\) −1.23607 −0.0697554
\(315\) 0.291796 0.0164408
\(316\) 25.4164i 1.42978i
\(317\) 29.8328i 1.67558i −0.545994 0.837789i \(-0.683848\pi\)
0.545994 0.837789i \(-0.316152\pi\)
\(318\) −6.94427 −0.389415
\(319\) 6.70820 10.0000i 0.375587 0.559893i
\(320\) −0.291796 −0.0163119
\(321\) 5.23607i 0.292249i
\(322\) 0.472136i 0.0263111i
\(323\) −17.1246 −0.952839
\(324\) 1.61803 0.0898908
\(325\) 3.47214 0.192599
\(326\) 12.0000 0.664619
\(327\) 5.00000i 0.276501i
\(328\) −10.0000 −0.552158
\(329\) 1.36068i 0.0750167i
\(330\) 1.70820i 0.0940335i
\(331\) 21.7082i 1.19319i −0.802542 0.596595i \(-0.796520\pi\)
0.802542 0.596595i \(-0.203480\pi\)
\(332\) −9.70820 −0.532807
\(333\) 9.23607i 0.506133i
\(334\) 12.2918i 0.672577i
\(335\) 10.7639 0.588096
\(336\) 0.437694i 0.0238782i
\(337\) 14.7639i 0.804243i 0.915586 + 0.402121i \(0.131727\pi\)
−0.915586 + 0.402121i \(0.868273\pi\)
\(338\) 7.41641i 0.403399i
\(339\) −13.4721 −0.731706
\(340\) 6.00000i 0.325396i
\(341\) −6.18034 −0.334684
\(342\) −3.52786 −0.190765
\(343\) −3.29180 −0.177740
\(344\) −18.9443 −1.02141
\(345\) 4.00000i 0.215353i
\(346\) 3.70820i 0.199354i
\(347\) 8.65248 0.464489 0.232245 0.972657i \(-0.425393\pi\)
0.232245 + 0.972657i \(0.425393\pi\)
\(348\) −4.85410 + 7.23607i −0.260207 + 0.387894i
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0.506578i 0.0270777i
\(351\) 1.00000i 0.0533761i
\(352\) 12.5623 0.669573
\(353\) −26.6525 −1.41857 −0.709284 0.704923i \(-0.750982\pi\)
−0.709284 + 0.704923i \(0.750982\pi\)
\(354\) 5.52786 0.293803
\(355\) −11.4164 −0.605920
\(356\) 29.0344i 1.53882i
\(357\) 0.708204 0.0374821
\(358\) 7.88854i 0.416922i
\(359\) 37.3050i 1.96888i 0.175721 + 0.984440i \(0.443774\pi\)
−0.175721 + 0.984440i \(0.556226\pi\)
\(360\) 2.76393i 0.145672i
\(361\) −13.5836 −0.714926
\(362\) 3.96556i 0.208425i
\(363\) 6.00000i 0.314918i
\(364\) −0.381966 −0.0200205
\(365\) 7.05573i 0.369314i
\(366\) 4.47214i 0.233762i
\(367\) 18.0000i 0.939592i −0.882775 0.469796i \(-0.844327\pi\)
0.882775 0.469796i \(-0.155673\pi\)
\(368\) −6.00000 −0.312772
\(369\) 4.47214i 0.232810i
\(370\) 7.05573 0.366810
\(371\) 2.65248 0.137710
\(372\) 4.47214 0.231869
\(373\) 31.8885 1.65113 0.825563 0.564310i \(-0.190858\pi\)
0.825563 + 0.564310i \(0.190858\pi\)
\(374\) 4.14590i 0.214379i
\(375\) 10.4721i 0.540779i
\(376\) 12.8885 0.664676
\(377\) −4.47214 3.00000i −0.230327 0.154508i
\(378\) 0.145898 0.00750419
\(379\) 27.7082i 1.42327i 0.702547 + 0.711637i \(0.252046\pi\)
−0.702547 + 0.711637i \(0.747954\pi\)
\(380\) 11.4164i 0.585649i
\(381\) 3.52786 0.180738
\(382\) 5.52786 0.282830
\(383\) −36.6525 −1.87285 −0.936427 0.350862i \(-0.885888\pi\)
−0.936427 + 0.350862i \(0.885888\pi\)
\(384\) −11.3820 −0.580834
\(385\) 0.652476i 0.0332532i
\(386\) 5.81966 0.296213
\(387\) 8.47214i 0.430663i
\(388\) 6.76393i 0.343387i
\(389\) 4.52786i 0.229572i −0.993390 0.114786i \(-0.963382\pi\)
0.993390 0.114786i \(-0.0366182\pi\)
\(390\) −0.763932 −0.0386832
\(391\) 9.70820i 0.490965i
\(392\) 15.5279i 0.784276i
\(393\) −7.76393 −0.391639
\(394\) 6.00000i 0.302276i
\(395\) 19.4164i 0.976946i
\(396\) 3.61803i 0.181813i
\(397\) −10.9443 −0.549277 −0.274639 0.961548i \(-0.588558\pi\)
−0.274639 + 0.961548i \(0.588558\pi\)
\(398\) 12.4377i 0.623445i
\(399\) 1.34752 0.0674606
\(400\) −6.43769 −0.321885
\(401\) 20.2918 1.01332 0.506662 0.862145i \(-0.330879\pi\)
0.506662 + 0.862145i \(0.330879\pi\)
\(402\) 5.38197 0.268428
\(403\) 2.76393i 0.137681i
\(404\) 22.5623i 1.12252i
\(405\) −1.23607 −0.0614207
\(406\) −0.437694 + 0.652476i −0.0217224 + 0.0323818i
\(407\) 20.6525 1.02371
\(408\) 6.70820i 0.332106i
\(409\) 37.4164i 1.85012i −0.379818 0.925061i \(-0.624013\pi\)
0.379818 0.925061i \(-0.375987\pi\)
\(410\) 3.41641 0.168724
\(411\) 12.4721 0.615205
\(412\) 12.0000 0.591198
\(413\) −2.11146 −0.103898
\(414\) 2.00000i 0.0982946i
\(415\) 7.41641 0.364057
\(416\) 5.61803i 0.275447i
\(417\) 6.70820i 0.328502i
\(418\) 7.88854i 0.385841i
\(419\) 26.1803 1.27899 0.639497 0.768794i \(-0.279143\pi\)
0.639497 + 0.768794i \(0.279143\pi\)
\(420\) 0.472136i 0.0230379i
\(421\) 20.0000i 0.974740i 0.873195 + 0.487370i \(0.162044\pi\)
−0.873195 + 0.487370i \(0.837956\pi\)
\(422\) −6.18034 −0.300854
\(423\) 5.76393i 0.280252i
\(424\) 25.1246i 1.22016i
\(425\) 10.4164i 0.505270i
\(426\) −5.70820 −0.276563
\(427\) 1.70820i 0.0826658i
\(428\) 8.47214 0.409516
\(429\) −2.23607 −0.107958
\(430\) 6.47214 0.312114
\(431\) −30.3607 −1.46242 −0.731211 0.682151i \(-0.761045\pi\)
−0.731211 + 0.682151i \(0.761045\pi\)
\(432\) 1.85410i 0.0892055i
\(433\) 27.7082i 1.33157i −0.746143 0.665786i \(-0.768097\pi\)
0.746143 0.665786i \(-0.231903\pi\)
\(434\) 0.403252 0.0193567
\(435\) 3.70820 5.52786i 0.177795 0.265041i
\(436\) 8.09017 0.387449
\(437\) 18.4721i 0.883642i
\(438\) 3.52786i 0.168568i
\(439\) 26.7082 1.27471 0.637357 0.770569i \(-0.280028\pi\)
0.637357 + 0.770569i \(0.280028\pi\)
\(440\) −6.18034 −0.294636
\(441\) 6.94427 0.330680
\(442\) −1.85410 −0.0881906
\(443\) 21.6525i 1.02874i −0.857568 0.514370i \(-0.828026\pi\)
0.857568 0.514370i \(-0.171974\pi\)
\(444\) −14.9443 −0.709224
\(445\) 22.1803i 1.05145i
\(446\) 0.437694i 0.0207254i
\(447\) 14.4721i 0.684509i
\(448\) 0.0557281 0.00263290
\(449\) 16.8885i 0.797020i −0.917164 0.398510i \(-0.869527\pi\)
0.917164 0.398510i \(-0.130473\pi\)
\(450\) 2.14590i 0.101159i
\(451\) 10.0000 0.470882
\(452\) 21.7984i 1.02531i
\(453\) 12.0000i 0.563809i
\(454\) 16.6525i 0.781539i
\(455\) 0.291796 0.0136796
\(456\) 12.7639i 0.597726i
\(457\) −20.4164 −0.955039 −0.477520 0.878621i \(-0.658464\pi\)
−0.477520 + 0.878621i \(0.658464\pi\)
\(458\) 0.111456 0.00520801
\(459\) −3.00000 −0.140028
\(460\) 6.47214 0.301765
\(461\) 1.05573i 0.0491702i −0.999698 0.0245851i \(-0.992174\pi\)
0.999698 0.0245851i \(-0.00782646\pi\)
\(462\) 0.326238i 0.0151780i
\(463\) −12.7082 −0.590600 −0.295300 0.955405i \(-0.595420\pi\)
−0.295300 + 0.955405i \(0.595420\pi\)
\(464\) 8.29180 + 5.56231i 0.384937 + 0.258224i
\(465\) −3.41641 −0.158432
\(466\) 0.944272i 0.0437426i
\(467\) 22.4721i 1.03989i −0.854201 0.519943i \(-0.825953\pi\)
0.854201 0.519943i \(-0.174047\pi\)
\(468\) 1.61803 0.0747936
\(469\) −2.05573 −0.0949247
\(470\) −4.40325 −0.203107
\(471\) −2.00000 −0.0921551
\(472\) 20.0000i 0.920575i
\(473\) 18.9443 0.871059
\(474\) 9.70820i 0.445913i
\(475\) 19.8197i 0.909388i
\(476\) 1.14590i 0.0525222i
\(477\) −11.2361 −0.514464
\(478\) 2.36068i 0.107975i
\(479\) 1.52786i 0.0698099i 0.999391 + 0.0349049i \(0.0111128\pi\)
−0.999391 + 0.0349049i \(0.988887\pi\)
\(480\) 6.94427 0.316961
\(481\) 9.23607i 0.421128i
\(482\) 1.85410i 0.0844520i
\(483\) 0.763932i 0.0347601i
\(484\) 9.70820 0.441282
\(485\) 5.16718i 0.234630i
\(486\) −0.618034 −0.0280346
\(487\) −24.3607 −1.10389 −0.551944 0.833881i \(-0.686114\pi\)
−0.551944 + 0.833881i \(0.686114\pi\)
\(488\) −16.1803 −0.732450
\(489\) 19.4164 0.878040
\(490\) 5.30495i 0.239653i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) −7.23607 −0.326227
\(493\) 9.00000 13.4164i 0.405340 0.604245i
\(494\) −3.52786 −0.158726
\(495\) 2.76393i 0.124230i
\(496\) 5.12461i 0.230102i
\(497\) 2.18034 0.0978016
\(498\) 3.70820 0.166169
\(499\) −1.18034 −0.0528393 −0.0264196 0.999651i \(-0.508411\pi\)
−0.0264196 + 0.999651i \(0.508411\pi\)
\(500\) 16.9443 0.757771
\(501\) 19.8885i 0.888555i
\(502\) 4.79837 0.214162
\(503\) 2.81966i 0.125722i 0.998022 + 0.0628612i \(0.0200225\pi\)
−0.998022 + 0.0628612i \(0.979977\pi\)
\(504\) 0.527864i 0.0235129i
\(505\) 17.2361i 0.766995i
\(506\) −4.47214 −0.198811
\(507\) 12.0000i 0.532939i
\(508\) 5.70820i 0.253261i
\(509\) 26.8328 1.18934 0.594672 0.803969i \(-0.297282\pi\)
0.594672 + 0.803969i \(0.297282\pi\)
\(510\) 2.29180i 0.101482i
\(511\) 1.34752i 0.0596110i
\(512\) 18.7082i 0.826794i
\(513\) −5.70820 −0.252023
\(514\) 10.8328i 0.477815i
\(515\) −9.16718 −0.403954
\(516\) −13.7082 −0.603470
\(517\) −12.8885 −0.566838
\(518\) −1.34752 −0.0592068
\(519\) 6.00000i 0.263371i
\(520\) 2.76393i 0.121206i
\(521\) −12.4721 −0.546414 −0.273207 0.961955i \(-0.588084\pi\)
−0.273207 + 0.961955i \(0.588084\pi\)
\(522\) 1.85410 2.76393i 0.0811518 0.120974i
\(523\) −25.0689 −1.09619 −0.548093 0.836417i \(-0.684646\pi\)
−0.548093 + 0.836417i \(0.684646\pi\)
\(524\) 12.5623i 0.548787i
\(525\) 0.819660i 0.0357729i
\(526\) −8.00000 −0.348817
\(527\) −8.29180 −0.361196
\(528\) 4.14590 0.180427
\(529\) −12.5279 −0.544690
\(530\) 8.58359i 0.372847i
\(531\) 8.94427 0.388148
\(532\) 2.18034i 0.0945297i
\(533\) 4.47214i 0.193710i
\(534\) 11.0902i 0.479919i
\(535\) −6.47214 −0.279815
\(536\) 19.4721i 0.841068i
\(537\) 12.7639i 0.550804i
\(538\) −14.4377 −0.622453
\(539\) 15.5279i 0.668832i
\(540\) 2.00000i 0.0860663i
\(541\) 20.6525i 0.887919i 0.896047 + 0.443960i \(0.146427\pi\)
−0.896047 + 0.443960i \(0.853573\pi\)
\(542\) −2.11146 −0.0906948
\(543\) 6.41641i 0.275354i
\(544\) 16.8541 0.722614
\(545\) −6.18034 −0.264737
\(546\) 0.145898 0.00624386
\(547\) −37.6525 −1.60990 −0.804952 0.593340i \(-0.797809\pi\)
−0.804952 + 0.593340i \(0.797809\pi\)
\(548\) 20.1803i 0.862061i
\(549\) 7.23607i 0.308828i
\(550\) −4.79837 −0.204603
\(551\) 17.1246 25.5279i 0.729533 1.08752i
\(552\) 7.23607 0.307988
\(553\) 3.70820i 0.157689i
\(554\) 12.6180i 0.536089i
\(555\) 11.4164 0.484600
\(556\) 10.8541 0.460316
\(557\) −7.52786 −0.318966 −0.159483 0.987201i \(-0.550983\pi\)
−0.159483 + 0.987201i \(0.550983\pi\)
\(558\) −1.70820 −0.0723140
\(559\) 8.47214i 0.358333i
\(560\) −0.541020 −0.0228623
\(561\) 6.70820i 0.283221i
\(562\) 15.7082i 0.662611i
\(563\) 45.0689i 1.89943i −0.313120 0.949713i \(-0.601374\pi\)
0.313120 0.949713i \(-0.398626\pi\)
\(564\) 9.32624 0.392705
\(565\) 16.6525i 0.700575i
\(566\) 13.5279i 0.568619i
\(567\) 0.236068 0.00991392
\(568\) 20.6525i 0.866559i
\(569\) 21.0000i 0.880366i 0.897908 + 0.440183i \(0.145086\pi\)
−0.897908 + 0.440183i \(0.854914\pi\)
\(570\) 4.36068i 0.182649i
\(571\) −34.8328 −1.45771 −0.728854 0.684669i \(-0.759947\pi\)
−0.728854 + 0.684669i \(0.759947\pi\)
\(572\) 3.61803i 0.151278i
\(573\) 8.94427 0.373652
\(574\) −0.652476 −0.0272338
\(575\) 11.2361 0.468576
\(576\) −0.236068 −0.00983617
\(577\) 28.8328i 1.20033i 0.799878 + 0.600163i \(0.204898\pi\)
−0.799878 + 0.600163i \(0.795102\pi\)
\(578\) 4.94427i 0.205655i
\(579\) 9.41641 0.391333
\(580\) −8.94427 6.00000i −0.371391 0.249136i
\(581\) −1.41641 −0.0587625
\(582\) 2.58359i 0.107093i
\(583\) 25.1246i 1.04056i
\(584\) −12.7639 −0.528175
\(585\) −1.23607 −0.0511051
\(586\) 7.45085 0.307792
\(587\) 16.9443 0.699365 0.349682 0.936868i \(-0.386289\pi\)
0.349682 + 0.936868i \(0.386289\pi\)
\(588\) 11.2361i 0.463368i
\(589\) −15.7771 −0.650084
\(590\) 6.83282i 0.281303i
\(591\) 9.70820i 0.399342i
\(592\) 17.1246i 0.703817i
\(593\) 17.8197 0.731766 0.365883 0.930661i \(-0.380767\pi\)
0.365883 + 0.930661i \(0.380767\pi\)
\(594\) 1.38197i 0.0567028i
\(595\) 0.875388i 0.0358874i
\(596\) −23.4164 −0.959173
\(597\) 20.1246i 0.823646i
\(598\) 2.00000i 0.0817861i
\(599\) 6.23607i 0.254799i −0.991851 0.127399i \(-0.959337\pi\)
0.991851 0.127399i \(-0.0406630\pi\)
\(600\) 7.76393 0.316961
\(601\) 48.5410i 1.98003i 0.140964 + 0.990015i \(0.454980\pi\)
−0.140964 + 0.990015i \(0.545020\pi\)
\(602\) −1.23607 −0.0503784
\(603\) 8.70820 0.354625
\(604\) 19.4164 0.790042
\(605\) −7.41641 −0.301520
\(606\) 8.61803i 0.350084i
\(607\) 1.41641i 0.0574902i −0.999587 0.0287451i \(-0.990849\pi\)
0.999587 0.0287451i \(-0.00915111\pi\)
\(608\) 32.0689 1.30056
\(609\) −0.708204 + 1.05573i −0.0286979 + 0.0427803i
\(610\) 5.52786 0.223817
\(611\) 5.76393i 0.233184i
\(612\) 4.85410i 0.196215i
\(613\) 2.41641 0.0975978 0.0487989 0.998809i \(-0.484461\pi\)
0.0487989 + 0.998809i \(0.484461\pi\)
\(614\) −3.59675 −0.145153
\(615\) 5.52786 0.222905
\(616\) 1.18034 0.0475572
\(617\) 15.8885i 0.639649i −0.947477 0.319824i \(-0.896376\pi\)
0.947477 0.319824i \(-0.103624\pi\)
\(618\) −4.58359 −0.184379
\(619\) 34.5410i 1.38832i 0.719820 + 0.694160i \(0.244224\pi\)
−0.719820 + 0.694160i \(0.755776\pi\)
\(620\) 5.52786i 0.222004i
\(621\) 3.23607i 0.129859i
\(622\) −9.67376 −0.387883
\(623\) 4.23607i 0.169714i
\(624\) 1.85410i 0.0742235i
\(625\) 4.41641 0.176656
\(626\) 2.14590i 0.0857673i
\(627\) 12.7639i 0.509742i
\(628\) 3.23607i 0.129133i
\(629\) 27.7082 1.10480
\(630\) 0.180340i 0.00718491i
\(631\) 15.2918 0.608757 0.304378 0.952551i \(-0.401551\pi\)
0.304378 + 0.952551i \(0.401551\pi\)
\(632\) 35.1246 1.39718
\(633\) −10.0000 −0.397464
\(634\) 18.4377 0.732254
\(635\) 4.36068i 0.173048i
\(636\) 18.1803i 0.720897i
\(637\) 6.94427 0.275142
\(638\) 6.18034 + 4.14590i 0.244682 + 0.164138i
\(639\) −9.23607 −0.365373
\(640\) 14.0689i 0.556121i
\(641\) 10.5279i 0.415826i −0.978147 0.207913i \(-0.933333\pi\)
0.978147 0.207913i \(-0.0666670\pi\)
\(642\) −3.23607 −0.127717
\(643\) −12.7082 −0.501163 −0.250581 0.968096i \(-0.580622\pi\)
−0.250581 + 0.968096i \(0.580622\pi\)
\(644\) −1.23607 −0.0487079
\(645\) 10.4721 0.412340
\(646\) 10.5836i 0.416406i
\(647\) −31.5967 −1.24220 −0.621098 0.783733i \(-0.713313\pi\)
−0.621098 + 0.783733i \(0.713313\pi\)
\(648\) 2.23607i 0.0878410i
\(649\) 20.0000i 0.785069i
\(650\) 2.14590i 0.0841690i
\(651\) 0.652476 0.0255725
\(652\) 31.4164i 1.23036i
\(653\) 30.3050i 1.18592i 0.805230 + 0.592962i \(0.202042\pi\)
−0.805230 + 0.592962i \(0.797958\pi\)
\(654\) −3.09017 −0.120835
\(655\) 9.59675i 0.374976i
\(656\) 8.29180i 0.323740i
\(657\) 5.70820i 0.222698i
\(658\) 0.840946 0.0327835
\(659\) 21.7639i 0.847802i −0.905708 0.423901i \(-0.860660\pi\)
0.905708 0.423901i \(-0.139340\pi\)
\(660\) −4.47214 −0.174078
\(661\) 23.8328 0.926989 0.463495 0.886100i \(-0.346595\pi\)
0.463495 + 0.886100i \(0.346595\pi\)
\(662\) 13.4164 0.521443
\(663\) −3.00000 −0.116510
\(664\) 13.4164i 0.520658i
\(665\) 1.66563i 0.0645904i
\(666\) 5.70820 0.221188
\(667\) −14.4721 9.70820i −0.560363 0.375903i
\(668\) −32.1803 −1.24509
\(669\) 0.708204i 0.0273807i
\(670\) 6.65248i 0.257008i
\(671\) 16.1803 0.624635
\(672\) −1.32624 −0.0511607
\(673\) 22.4164 0.864089 0.432045 0.901852i \(-0.357792\pi\)
0.432045 + 0.901852i \(0.357792\pi\)
\(674\) −9.12461 −0.351467
\(675\) 3.47214i 0.133643i
\(676\) −19.4164 −0.746785
\(677\) 35.9443i 1.38145i 0.723117 + 0.690725i \(0.242709\pi\)
−0.723117 + 0.690725i \(0.757291\pi\)
\(678\) 8.32624i 0.319767i
\(679\) 0.986844i 0.0378716i
\(680\) −8.29180 −0.317976
\(681\) 26.9443i 1.03251i
\(682\) 3.81966i 0.146262i
\(683\) 15.0557 0.576091 0.288046 0.957617i \(-0.406994\pi\)
0.288046 + 0.957617i \(0.406994\pi\)
\(684\) 9.23607i 0.353150i
\(685\) 15.4164i 0.589031i
\(686\) 2.03444i 0.0776754i
\(687\) 0.180340 0.00688040
\(688\) 15.7082i 0.598870i
\(689\) −11.2361 −0.428060
\(690\) −2.47214 −0.0941126
\(691\) −25.7639 −0.980106 −0.490053 0.871693i \(-0.663023\pi\)
−0.490053 + 0.871693i \(0.663023\pi\)
\(692\) −9.70820 −0.369051
\(693\) 0.527864i 0.0200519i
\(694\) 5.34752i 0.202989i
\(695\) −8.29180 −0.314526
\(696\) −10.0000 6.70820i −0.379049 0.254274i
\(697\) 13.4164 0.508183
\(698\) 6.18034i 0.233929i
\(699\) 1.52786i 0.0577891i
\(700\) −1.32624 −0.0501271
\(701\) −14.1803 −0.535584 −0.267792 0.963477i \(-0.586294\pi\)
−0.267792 + 0.963477i \(0.586294\pi\)
\(702\) −0.618034 −0.0233262
\(703\) 52.7214 1.98842
\(704\) 0.527864i 0.0198946i
\(705\) −7.12461 −0.268328
\(706\) 16.4721i 0.619937i
\(707\) 3.29180i 0.123801i
\(708\) 14.4721i 0.543896i
\(709\) 13.4164 0.503864 0.251932 0.967745i \(-0.418934\pi\)
0.251932 + 0.967745i \(0.418934\pi\)
\(710\) 7.05573i 0.264797i
\(711\) 15.7082i 0.589104i
\(712\) 40.1246 1.50373
\(713\) 8.94427i 0.334966i
\(714\) 0.437694i 0.0163803i
\(715\) 2.76393i 0.103365i
\(716\) −20.6525 −0.771819
\(717\) 3.81966i 0.142648i
\(718\) −23.0557 −0.860432
\(719\) −30.0000 −1.11881 −0.559406 0.828894i \(-0.688971\pi\)
−0.559406 + 0.828894i \(0.688971\pi\)
\(720\) 2.29180 0.0854102
\(721\) 1.75078 0.0652023
\(722\) 8.39512i 0.312434i
\(723\) 3.00000i 0.111571i
\(724\) −10.3820 −0.385843
\(725\) −15.5279 10.4164i −0.576690 0.386856i
\(726\) −3.70820 −0.137624
\(727\) 28.1803i 1.04515i 0.852593 + 0.522575i \(0.175029\pi\)
−0.852593 + 0.522575i \(0.824971\pi\)
\(728\) 0.527864i 0.0195639i
\(729\) −1.00000 −0.0370370
\(730\) 4.36068 0.161396
\(731\) 25.4164 0.940060
\(732\) −11.7082 −0.432748
\(733\) 0.472136i 0.0174387i −0.999962 0.00871937i \(-0.997225\pi\)
0.999962 0.00871937i \(-0.00277550\pi\)
\(734\) 11.1246 0.410617
\(735\) 8.58359i 0.316611i
\(736\) 18.1803i 0.670136i
\(737\) 19.4721i 0.717265i
\(738\) 2.76393 0.101742
\(739\) 10.1803i 0.374490i −0.982313 0.187245i \(-0.940044\pi\)
0.982313 0.187245i \(-0.0599558\pi\)
\(740\) 18.4721i 0.679049i
\(741\) −5.70820 −0.209696
\(742\) 1.63932i 0.0601813i
\(743\) 15.0689i 0.552824i −0.961039 0.276412i \(-0.910855\pi\)
0.961039 0.276412i \(-0.0891454\pi\)
\(744\) 6.18034i 0.226582i
\(745\) 17.8885 0.655386
\(746\) 19.7082i 0.721569i
\(747\) 6.00000 0.219529
\(748\) −10.8541 −0.396865
\(749\) 1.23607 0.0451649
\(750\) −6.47214 −0.236329
\(751\) 26.8328i 0.979143i −0.871963 0.489572i \(-0.837153\pi\)
0.871963 0.489572i \(-0.162847\pi\)
\(752\) 10.6869i 0.389712i
\(753\) 7.76393 0.282933
\(754\) 1.85410 2.76393i 0.0675224 0.100656i
\(755\) −14.8328 −0.539821
\(756\) 0.381966i 0.0138920i
\(757\) 38.0000i 1.38113i −0.723269 0.690567i \(-0.757361\pi\)
0.723269 0.690567i \(-0.242639\pi\)
\(758\) −17.1246 −0.621994
\(759\) −7.23607 −0.262653
\(760\) −15.7771 −0.572295
\(761\) −28.6525 −1.03865 −0.519326 0.854576i \(-0.673817\pi\)
−0.519326 + 0.854576i \(0.673817\pi\)
\(762\) 2.18034i 0.0789854i
\(763\) 1.18034 0.0427312
\(764\) 14.4721i 0.523584i
\(765\) 3.70820i 0.134070i
\(766\) 22.6525i 0.818467i
\(767\) 8.94427 0.322959
\(768\) 6.56231i 0.236797i
\(769\) 17.8197i 0.642593i −0.946979 0.321297i \(-0.895881\pi\)
0.946979 0.321297i \(-0.104119\pi\)
\(770\) −0.403252 −0.0145322
\(771\) 17.5279i 0.631251i
\(772\) 15.2361i 0.548358i
\(773\) 3.88854i 0.139861i −0.997552 0.0699306i \(-0.977722\pi\)
0.997552 0.0699306i \(-0.0222778\pi\)
\(774\) 5.23607 0.188207
\(775\) 9.59675i 0.344725i
\(776\) 9.34752 0.335557
\(777\) −2.18034 −0.0782193
\(778\) 2.79837 0.100327
\(779\) 25.5279 0.914631
\(780\) 2.00000i 0.0716115i
\(781\) 20.6525i 0.739004i
\(782\) −6.00000 −0.214560
\(783\) 3.00000 4.47214i 0.107211 0.159821i
\(784\) −12.8754 −0.459835
\(785\) 2.47214i 0.0882343i
\(786\) 4.79837i 0.171152i
\(787\) −12.0000 −0.427754 −0.213877 0.976861i \(-0.568609\pi\)
−0.213877 + 0.976861i \(0.568609\pi\)
\(788\) 15.7082 0.559582
\(789\) −12.9443 −0.460828
\(790\) −12.0000 −0.426941
\(791\) 3.18034i 0.113080i
\(792\) −5.00000 −0.177667
\(793\) 7.23607i 0.256960i
\(794\) 6.76393i 0.240043i
\(795\) 13.8885i 0.492576i
\(796\) 32.5623 1.15414
\(797\) 8.83282i 0.312874i 0.987688 + 0.156437i \(0.0500009\pi\)
−0.987688 + 0.156437i \(0.949999\pi\)
\(798\) 0.832816i 0.0294814i
\(799\) −17.2918 −0.611740
\(800\) 19.5066i 0.689662i
\(801\) 17.9443i 0.634030i
\(802\) 12.5410i 0.442839i
\(803\) 12.7639 0.450429
\(804\) 14.0902i 0.496922i
\(805\) 0.944272 0.0332812
\(806\) −1.70820 −0.0601689
\(807\) −23.3607 −0.822335
\(808\) −31.1803 −1.09692
\(809\) 1.36068i 0.0478390i −0.999714 0.0239195i \(-0.992385\pi\)
0.999714 0.0239195i \(-0.00761453\pi\)
\(810\) 0.763932i 0.0268418i
\(811\) −2.59675 −0.0911841 −0.0455921 0.998960i \(-0.514517\pi\)
−0.0455921 + 0.998960i \(0.514517\pi\)
\(812\) 1.70820 + 1.14590i 0.0599462 + 0.0402131i
\(813\) −3.41641 −0.119819
\(814\) 12.7639i 0.447376i
\(815\) 24.0000i 0.840683i
\(816\) 5.56231 0.194720
\(817\) 48.3607 1.69193
\(818\) 23.1246 0.808533
\(819\) 0.236068 0.00824888
\(820\) 8.94427i 0.312348i
\(821\) −3.52786 −0.123123 −0.0615617 0.998103i \(-0.519608\pi\)
−0.0615617 + 0.998103i \(0.519608\pi\)
\(822\) 7.70820i 0.268854i
\(823\) 18.3607i 0.640013i −0.947415 0.320007i \(-0.896315\pi\)
0.947415 0.320007i \(-0.103685\pi\)
\(824\) 16.5836i 0.577717i
\(825\) −7.76393 −0.270305
\(826\) 1.30495i 0.0454051i
\(827\) 5.88854i 0.204765i −0.994745 0.102382i \(-0.967353\pi\)
0.994745 0.102382i \(-0.0326465\pi\)
\(828\) 5.23607 0.181966
\(829\) 35.3050i 1.22619i −0.790009 0.613096i \(-0.789924\pi\)
0.790009 0.613096i \(-0.210076\pi\)
\(830\) 4.58359i 0.159099i
\(831\) 20.4164i 0.708237i
\(832\) −0.236068 −0.00818418
\(833\) 20.8328i 0.721814i
\(834\) −4.14590 −0.143561
\(835\) 24.5836 0.850750
\(836\) −20.6525 −0.714281
\(837\) −2.76393 −0.0955355
\(838\) 16.1803i 0.558941i
\(839\) 12.7082i 0.438736i 0.975642 + 0.219368i \(0.0703995\pi\)
−0.975642 + 0.219368i \(0.929600\pi\)
\(840\) 0.652476 0.0225126
\(841\) 11.0000 + 26.8328i 0.379310 + 0.925270i
\(842\) −12.3607 −0.425977
\(843\) 25.4164i 0.875388i
\(844\) 16.1803i 0.556950i
\(845\) 14.8328 0.510264
\(846\) −3.56231 −0.122475
\(847\) 1.41641 0.0486684
\(848\) 20.8328 0.715402
\(849\) 21.8885i 0.751213i
\(850\) −6.43769 −0.220811
\(851\) 29.8885i 1.02457i
\(852\) 14.9443i 0.511982i
\(853\) 53.1935i 1.82131i 0.413167 + 0.910655i \(0.364423\pi\)
−0.413167 + 0.910655i \(0.635577\pi\)
\(854\) −1.05573 −0.0361263
\(855\) 7.05573i 0.241301i
\(856\) 11.7082i 0.400178i
\(857\) −11.5967 −0.396137 −0.198069 0.980188i \(-0.563467\pi\)
−0.198069 + 0.980188i \(0.563467\pi\)
\(858\) 1.38197i 0.0471795i
\(859\) 8.36068i 0.285263i 0.989776 + 0.142631i \(0.0455563\pi\)
−0.989776 + 0.142631i \(0.954444\pi\)
\(860\) 16.9443i 0.577795i
\(861\) −1.05573 −0.0359791
\(862\) 18.7639i 0.639102i
\(863\) −15.3475 −0.522436 −0.261218 0.965280i \(-0.584124\pi\)
−0.261218 + 0.965280i \(0.584124\pi\)
\(864\) 5.61803 0.191129
\(865\) 7.41641 0.252165
\(866\) 17.1246 0.581918
\(867\) 8.00000i 0.271694i
\(868\) 1.05573i 0.0358337i
\(869\) −35.1246 −1.19152
\(870\) 3.41641 + 2.29180i 0.115827 + 0.0776992i
\(871\) 8.70820 0.295066
\(872\) 11.1803i 0.378614i
\(873\) 4.18034i 0.141483i
\(874\) −11.4164 −0.386166
\(875\) 2.47214 0.0835734
\(876\) −9.23607 −0.312058
\(877\) 23.5279 0.794480 0.397240 0.917715i \(-0.369968\pi\)
0.397240 + 0.917715i \(0.369968\pi\)
\(878\) 16.5066i 0.557070i
\(879\) 12.0557 0.406630
\(880\) 5.12461i 0.172751i
\(881\) 25.2492i 0.850668i 0.905036 + 0.425334i \(0.139843\pi\)
−0.905036 + 0.425334i \(0.860157\pi\)
\(882\) 4.29180i 0.144512i
\(883\) −46.2492 −1.55641 −0.778205 0.628010i \(-0.783870\pi\)
−0.778205 + 0.628010i \(0.783870\pi\)
\(884\) 4.85410i 0.163261i
\(885\) 11.0557i 0.371634i
\(886\) 13.3820 0.449576
\(887\) 41.0689i 1.37896i 0.724306 + 0.689479i \(0.242160\pi\)
−0.724306 + 0.689479i \(0.757840\pi\)
\(888\) 20.6525i 0.693052i
\(889\) 0.832816i 0.0279317i
\(890\) −13.7082 −0.459500
\(891\) 2.23607i 0.0749111i
\(892\) 1.14590 0.0383675
\(893\) −32.9017 −1.10101
\(894\) 8.94427 0.299141
\(895\) 15.7771 0.527370
\(896\) 2.68692i 0.0897636i
\(897\) 3.23607i 0.108049i
\(898\) 10.4377 0.348310
\(899\) 8.29180 12.3607i 0.276547 0.412252i
\(900\) 5.61803 0.187268
\(901\) 33.7082i 1.12298i
\(902\) 6.18034i 0.205783i
\(903\) −2.00000 −0.0665558
\(904\) −30.1246 −1.00193
\(905\) 7.93112 0.263639
\(906\) −7.41641 −0.246394
\(907\) 17.5279i 0.582003i 0.956723 + 0.291002i \(0.0939885\pi\)
−0.956723 + 0.291002i \(0.906012\pi\)
\(908\) 43.5967 1.44681
\(909\) 13.9443i 0.462502i
\(910\) 0.180340i 0.00597821i
\(911\) 28.8197i 0.954838i −0.878676 0.477419i \(-0.841572\pi\)
0.878676 0.477419i \(-0.158428\pi\)
\(912\) 10.5836 0.350458
\(913\) 13.4164i 0.444018i
\(914\) 12.6180i 0.417367i
\(915\) 8.94427 0.295689
\(916\) 0.291796i 0.00964121i
\(917\) 1.83282i 0.0605249i
\(918\) 1.85410i 0.0611945i
\(919\) 5.65248 0.186458 0.0932290 0.995645i \(-0.470281\pi\)
0.0932290 + 0.995645i \(0.470281\pi\)
\(920\) 8.94427i 0.294884i
\(921\) −5.81966 −0.191764
\(922\) 0.652476 0.0214881
\(923\) −9.23607 −0.304009
\(924\) 0.854102 0.0280979
\(925\) 32.0689i 1.05442i
\(926\) 7.85410i 0.258102i
\(927\) −7.41641 −0.243587
\(928\) −16.8541 + 25.1246i −0.553263 + 0.824756i
\(929\) 12.3607 0.405541 0.202770 0.979226i \(-0.435006\pi\)
0.202770 + 0.979226i \(0.435006\pi\)
\(930\) 2.11146i 0.0692374i
\(931\) 39.6393i 1.29913i
\(932\) −2.47214 −0.0809775
\(933\) −15.6525 −0.512439
\(934\) 13.8885 0.454447
\(935\) 8.29180 0.271171
\(936\) 2.23607i 0.0730882i
\(937\) 33.0000 1.07806 0.539032 0.842286i \(-0.318790\pi\)
0.539032 + 0.842286i \(0.318790\pi\)
\(938\) 1.27051i 0.0414836i
\(939\) 3.47214i 0.113309i
\(940\) 11.5279i 0.375997i
\(941\) 8.83282 0.287942 0.143971 0.989582i \(-0.454013\pi\)
0.143971 + 0.989582i \(0.454013\pi\)
\(942\) 1.23607i 0.0402733i
\(943\) 14.4721i 0.471278i
\(944\) −16.5836 −0.539750
\(945\) 0.291796i 0.00949213i
\(946\) 11.7082i 0.380667i
\(947\) 39.1803i 1.27319i −0.771198 0.636595i \(-0.780342\pi\)
0.771198 0.636595i \(-0.219658\pi\)
\(948\) 25.4164 0.825487
\(949\) 5.70820i 0.185296i
\(950\) −12.2492 −0.397417
\(951\) 29.8328 0.967395
\(952\) 1.58359 0.0513245
\(953\) 47.6656 1.54404 0.772021 0.635597i \(-0.219246\pi\)
0.772021 + 0.635597i \(0.219246\pi\)
\(954\) 6.94427i 0.224829i
\(955\) 11.0557i 0.357755i
\(956\) 6.18034 0.199886
\(957\) 10.0000 + 6.70820i 0.323254 + 0.216845i
\(958\) −0.944272 −0.0305080
\(959\) 2.94427i 0.0950755i
\(960\) 0.291796i 0.00941768i
\(961\) 23.3607 0.753570
\(962\) 5.70820 0.184040
\(963\) −5.23607 −0.168730
\(964\) −4.85410 −0.156340
\(965\) 11.6393i 0.374683i
\(966\) 0.472136 0.0151907
\(967\) 13.1246i 0.422059i −0.977480 0.211030i \(-0.932318\pi\)
0.977480 0.211030i \(-0.0676816\pi\)
\(968\) 13.4164i 0.431220i
\(969\) 17.1246i 0.550122i
\(970\) −3.19350 −0.102537
\(971\) 43.4164i 1.39330i 0.717412 + 0.696649i \(0.245327\pi\)
−0.717412 + 0.696649i \(0.754673\pi\)
\(972\) 1.61803i 0.0518985i
\(973\) 1.58359 0.0507676
\(974\) 15.0557i 0.482417i
\(975\) 3.47214i 0.111197i
\(976\) 13.4164i 0.429449i
\(977\) −25.0132 −0.800242 −0.400121 0.916462i \(-0.631032\pi\)
−0.400121 + 0.916462i \(0.631032\pi\)
\(978\) 12.0000i 0.383718i
\(979\) −40.1246 −1.28239
\(980\) 13.8885 0.443653
\(981\) −5.00000 −0.159638
\(982\) 0 0
\(983\) 21.8885i 0.698136i 0.937097 + 0.349068i \(0.113502\pi\)
−0.937097 + 0.349068i \(0.886498\pi\)
\(984\) 10.0000i 0.318788i
\(985\) −12.0000 −0.382352
\(986\) 8.29180 + 5.56231i 0.264065 + 0.177140i
\(987\) 1.36068 0.0433109
\(988\) 9.23607i 0.293838i
\(989\) 27.4164i 0.871791i
\(990\) 1.70820 0.0542903
\(991\) −34.7082 −1.10254 −0.551271 0.834326i \(-0.685857\pi\)
−0.551271 + 0.834326i \(0.685857\pi\)
\(992\) 15.5279 0.493010
\(993\) 21.7082 0.688889
\(994\) 1.34752i 0.0427409i
\(995\) −24.8754 −0.788603
\(996\) 9.70820i 0.307616i
\(997\) 51.4164i 1.62837i −0.580603 0.814187i \(-0.697183\pi\)
0.580603 0.814187i \(-0.302817\pi\)
\(998\) 0.729490i 0.0230916i
\(999\) 9.23607 0.292216
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 87.2.c.a.28.3 yes 4
3.2 odd 2 261.2.c.b.28.2 4
4.3 odd 2 1392.2.o.i.289.1 4
5.2 odd 4 2175.2.f.b.724.2 4
5.3 odd 4 2175.2.f.a.724.3 4
5.4 even 2 2175.2.d.e.376.2 4
12.11 even 2 4176.2.o.l.289.3 4
29.12 odd 4 2523.2.a.e.1.1 2
29.17 odd 4 2523.2.a.d.1.2 2
29.28 even 2 inner 87.2.c.a.28.2 4
87.17 even 4 7569.2.a.n.1.1 2
87.41 even 4 7569.2.a.f.1.2 2
87.86 odd 2 261.2.c.b.28.3 4
116.115 odd 2 1392.2.o.i.289.3 4
145.28 odd 4 2175.2.f.b.724.1 4
145.57 odd 4 2175.2.f.a.724.4 4
145.144 even 2 2175.2.d.e.376.3 4
348.347 even 2 4176.2.o.l.289.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.c.a.28.2 4 29.28 even 2 inner
87.2.c.a.28.3 yes 4 1.1 even 1 trivial
261.2.c.b.28.2 4 3.2 odd 2
261.2.c.b.28.3 4 87.86 odd 2
1392.2.o.i.289.1 4 4.3 odd 2
1392.2.o.i.289.3 4 116.115 odd 2
2175.2.d.e.376.2 4 5.4 even 2
2175.2.d.e.376.3 4 145.144 even 2
2175.2.f.a.724.3 4 5.3 odd 4
2175.2.f.a.724.4 4 145.57 odd 4
2175.2.f.b.724.1 4 145.28 odd 4
2175.2.f.b.724.2 4 5.2 odd 4
2523.2.a.d.1.2 2 29.17 odd 4
2523.2.a.e.1.1 2 29.12 odd 4
4176.2.o.l.289.3 4 12.11 even 2
4176.2.o.l.289.4 4 348.347 even 2
7569.2.a.f.1.2 2 87.41 even 4
7569.2.a.n.1.1 2 87.17 even 4