L(s) = 1 | + (0.382 − 0.923i)4-s + (1.68 − 0.902i)7-s + (−1.47 + 0.448i)13-s + (−0.707 − 0.707i)16-s + (−0.831 + 1.55i)19-s + (−0.555 − 0.831i)25-s + (−0.187 − 1.90i)28-s + (0.636 + 0.425i)31-s + (1.53 + 1.26i)37-s + (0.149 − 0.360i)43-s + (1.47 − 2.21i)49-s + (−0.151 + 1.53i)52-s − 1.96·61-s + (−0.923 + 0.382i)64-s + (0.187 − 0.0569i)67-s + ⋯ |
L(s) = 1 | + (0.382 − 0.923i)4-s + (1.68 − 0.902i)7-s + (−1.47 + 0.448i)13-s + (−0.707 − 0.707i)16-s + (−0.831 + 1.55i)19-s + (−0.555 − 0.831i)25-s + (−0.187 − 1.90i)28-s + (0.636 + 0.425i)31-s + (1.53 + 1.26i)37-s + (0.149 − 0.360i)43-s + (1.47 − 2.21i)49-s + (−0.151 + 1.53i)52-s − 1.96·61-s + (−0.923 + 0.382i)64-s + (0.187 − 0.0569i)67-s + ⋯ |
Λ(s)=(=(873s/2ΓC(s)L(s)(0.637+0.770i)Λ(1−s)
Λ(s)=(=(873s/2ΓC(s)L(s)(0.637+0.770i)Λ(1−s)
Degree: |
2 |
Conductor: |
873
= 32⋅97
|
Sign: |
0.637+0.770i
|
Analytic conductor: |
0.435683 |
Root analytic conductor: |
0.660063 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ873(46,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 873, ( :0), 0.637+0.770i)
|
Particular Values
L(21) |
≈ |
1.174601651 |
L(21) |
≈ |
1.174601651 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 97 | 1+(−0.555−0.831i)T |
good | 2 | 1+(−0.382+0.923i)T2 |
| 5 | 1+(0.555+0.831i)T2 |
| 7 | 1+(−1.68+0.902i)T+(0.555−0.831i)T2 |
| 11 | 1+(−0.923+0.382i)T2 |
| 13 | 1+(1.47−0.448i)T+(0.831−0.555i)T2 |
| 17 | 1+(0.831−0.555i)T2 |
| 19 | 1+(0.831−1.55i)T+(−0.555−0.831i)T2 |
| 23 | 1+(0.980+0.195i)T2 |
| 29 | 1+(0.980+0.195i)T2 |
| 31 | 1+(−0.636−0.425i)T+(0.382+0.923i)T2 |
| 37 | 1+(−1.53−1.26i)T+(0.195+0.980i)T2 |
| 41 | 1+(−0.195+0.980i)T2 |
| 43 | 1+(−0.149+0.360i)T+(−0.707−0.707i)T2 |
| 47 | 1+(0.707+0.707i)T2 |
| 53 | 1+(−0.923−0.382i)T2 |
| 59 | 1+(−0.980+0.195i)T2 |
| 61 | 1+1.96T+T2 |
| 67 | 1+(−0.187+0.0569i)T+(0.831−0.555i)T2 |
| 71 | 1+(−0.195−0.980i)T2 |
| 73 | 1+(−0.541−1.30i)T+(−0.707+0.707i)T2 |
| 79 | 1+(0.617−0.923i)T+(−0.382−0.923i)T2 |
| 83 | 1+(−0.555−0.831i)T2 |
| 89 | 1+(−0.923+0.382i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.23089681101037697223022650146, −9.742061762025986235146106771191, −8.346091591860330697396174916271, −7.72502997015733101884135307442, −6.85022255975039753392156907492, −5.84653616396044699292887825970, −4.78144690721236767716156081201, −4.28859248049170599807089921917, −2.34220287757922849915631445119, −1.40097538325059712507504642898,
2.10709150590364125851547344004, 2.74930528932712349599109539927, 4.38822877483185302351965633723, 4.99366016905611748692114074335, 6.13793847489178212257811125486, 7.48463624856851664682602167948, 7.74084385723075848434965038593, 8.730408312712736030206437243384, 9.386653708552690928370765302291, 10.79113881037889470115347097677