Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [873,1,Mod(19,873)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(873, base_ring=CyclotomicField(32))
chi = DirichletCharacter(H, H._module([0, 27]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("873.19");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 873.br (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 |
|
0 | 0 | 0.382683 | + | 0.923880i | 0 | 0 | 1.68789 | + | 0.902197i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
28.1 | 0 | 0 | −0.923880 | − | 0.382683i | 0 | 0 | −1.53858 | + | 0.151537i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
46.1 | 0 | 0 | 0.382683 | − | 0.923880i | 0 | 0 | 1.68789 | − | 0.902197i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
55.1 | 0 | 0 | −0.382683 | + | 0.923880i | 0 | 0 | 0.902197 | + | 0.273678i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
127.1 | 0 | 0 | −0.382683 | − | 0.923880i | 0 | 0 | 0.902197 | − | 0.273678i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
271.1 | 0 | 0 | 0.923880 | − | 0.382683i | 0 | 0 | −0.151537 | + | 0.124363i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
325.1 | 0 | 0 | 0.923880 | + | 0.382683i | 0 | 0 | −1.26268 | + | 1.53858i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
343.1 | 0 | 0 | −0.923880 | + | 0.382683i | 0 | 0 | −1.53858 | − | 0.151537i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
433.1 | 0 | 0 | −0.923880 | + | 0.382683i | 0 | 0 | 0.124363 | − | 1.26268i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
451.1 | 0 | 0 | 0.923880 | + | 0.382683i | 0 | 0 | −0.151537 | − | 0.124363i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
505.1 | 0 | 0 | 0.923880 | − | 0.382683i | 0 | 0 | −1.26268 | − | 1.53858i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
649.1 | 0 | 0 | −0.382683 | − | 0.923880i | 0 | 0 | 0.512016 | + | 1.68789i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
721.1 | 0 | 0 | −0.382683 | + | 0.923880i | 0 | 0 | 0.512016 | − | 1.68789i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
730.1 | 0 | 0 | 0.382683 | − | 0.923880i | 0 | 0 | −0.273678 | − | 0.512016i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
748.1 | 0 | 0 | −0.923880 | − | 0.382683i | 0 | 0 | 0.124363 | + | 1.26268i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
757.1 | 0 | 0 | 0.382683 | + | 0.923880i | 0 | 0 | −0.273678 | + | 0.512016i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | CM by |
97.j | odd | 32 | 1 | inner |
291.s | even | 32 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 873.1.br.a | ✓ | 16 |
3.b | odd | 2 | 1 | CM | 873.1.br.a | ✓ | 16 |
97.j | odd | 32 | 1 | inner | 873.1.br.a | ✓ | 16 |
291.s | even | 32 | 1 | inner | 873.1.br.a | ✓ | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
873.1.br.a | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
873.1.br.a | ✓ | 16 | 3.b | odd | 2 | 1 | CM |
873.1.br.a | ✓ | 16 | 97.j | odd | 32 | 1 | inner |
873.1.br.a | ✓ | 16 | 291.s | even | 32 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace .