Properties

Label 873.1.br.a
Level 873873
Weight 11
Character orbit 873.br
Analytic conductor 0.4360.436
Analytic rank 00
Dimension 1616
Projective image D32D_{32}
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [873,1,Mod(19,873)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(873, base_ring=CyclotomicField(32))
 
chi = DirichletCharacter(H, H._module([0, 27]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("873.19");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 873=3297 873 = 3^{2} \cdot 97
Weight: k k == 1 1
Character orbit: [χ][\chi] == 873.br (of order 3232, degree 1616, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.4356837560290.435683756029
Analytic rank: 00
Dimension: 1616
Coefficient field: Q(ζ32)\Q(\zeta_{32})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+1 x^{16} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D32D_{32}
Projective field: Galois closure of Q[x]/(x32)\mathbb{Q}[x]/(x^{32} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ326q4+(ζ324+ζ32)q7+(ζ3214ζ325)q13+ζ3212q16+(ζ328ζ323)q19+ζ3211q25+ζ3211q97+O(q100) q + \zeta_{32}^{6} q^{4} + (\zeta_{32}^{4} + \zeta_{32}) q^{7} + (\zeta_{32}^{14} - \zeta_{32}^{5}) q^{13} + \zeta_{32}^{12} q^{16} + ( - \zeta_{32}^{8} - \zeta_{32}^{3}) q^{19} + \zeta_{32}^{11} q^{25}+ \cdots - \zeta_{32}^{11} q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q16q79+O(q100) 16 q - 16 q^{79}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/873Z)×\left(\mathbb{Z}/873\mathbb{Z}\right)^\times.

nn 199199 389389
χ(n)\chi(n) ζ3211-\zeta_{32}^{11} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
19.1
0.980785 + 0.195090i
−0.831470 0.555570i
0.980785 0.195090i
0.195090 + 0.980785i
0.195090 0.980785i
0.555570 + 0.831470i
−0.555570 + 0.831470i
−0.831470 + 0.555570i
0.831470 0.555570i
0.555570 0.831470i
−0.555570 0.831470i
−0.195090 + 0.980785i
−0.195090 0.980785i
−0.980785 + 0.195090i
0.831470 + 0.555570i
−0.980785 0.195090i
0 0 0.382683 + 0.923880i 0 0 1.68789 + 0.902197i 0 0 0
28.1 0 0 −0.923880 0.382683i 0 0 −1.53858 + 0.151537i 0 0 0
46.1 0 0 0.382683 0.923880i 0 0 1.68789 0.902197i 0 0 0
55.1 0 0 −0.382683 + 0.923880i 0 0 0.902197 + 0.273678i 0 0 0
127.1 0 0 −0.382683 0.923880i 0 0 0.902197 0.273678i 0 0 0
271.1 0 0 0.923880 0.382683i 0 0 −0.151537 + 0.124363i 0 0 0
325.1 0 0 0.923880 + 0.382683i 0 0 −1.26268 + 1.53858i 0 0 0
343.1 0 0 −0.923880 + 0.382683i 0 0 −1.53858 0.151537i 0 0 0
433.1 0 0 −0.923880 + 0.382683i 0 0 0.124363 1.26268i 0 0 0
451.1 0 0 0.923880 + 0.382683i 0 0 −0.151537 0.124363i 0 0 0
505.1 0 0 0.923880 0.382683i 0 0 −1.26268 1.53858i 0 0 0
649.1 0 0 −0.382683 0.923880i 0 0 0.512016 + 1.68789i 0 0 0
721.1 0 0 −0.382683 + 0.923880i 0 0 0.512016 1.68789i 0 0 0
730.1 0 0 0.382683 0.923880i 0 0 −0.273678 0.512016i 0 0 0
748.1 0 0 −0.923880 0.382683i 0 0 0.124363 + 1.26268i 0 0 0
757.1 0 0 0.382683 + 0.923880i 0 0 −0.273678 + 0.512016i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 19.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
97.j odd 32 1 inner
291.s even 32 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 873.1.br.a 16
3.b odd 2 1 CM 873.1.br.a 16
97.j odd 32 1 inner 873.1.br.a 16
291.s even 32 1 inner 873.1.br.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
873.1.br.a 16 1.a even 1 1 trivial
873.1.br.a 16 3.b odd 2 1 CM
873.1.br.a 16 97.j odd 32 1 inner
873.1.br.a 16 291.s even 32 1 inner

Hecke kernels

This newform subspace is the entire newspace S1new(873,[χ])S_{1}^{\mathrm{new}}(873, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16 T^{16} Copy content Toggle raw display
33 T16 T^{16} Copy content Toggle raw display
55 T16 T^{16} Copy content Toggle raw display
77 T16+4T12++2 T^{16} + 4 T^{12} + \cdots + 2 Copy content Toggle raw display
1111 T16 T^{16} Copy content Toggle raw display
1313 T16+40T10++2 T^{16} + 40 T^{10} + \cdots + 2 Copy content Toggle raw display
1717 T16 T^{16} Copy content Toggle raw display
1919 T16+8T14++2 T^{16} + 8 T^{14} + \cdots + 2 Copy content Toggle raw display
2323 T16 T^{16} Copy content Toggle raw display
2929 T16 T^{16} Copy content Toggle raw display
3131 T1616T12++16 T^{16} - 16 T^{12} + \cdots + 16 Copy content Toggle raw display
3737 T16+4T12++2 T^{16} + 4 T^{12} + \cdots + 2 Copy content Toggle raw display
4141 T16 T^{16} Copy content Toggle raw display
4343 T1616T10++4 T^{16} - 16 T^{10} + \cdots + 4 Copy content Toggle raw display
4747 T16 T^{16} Copy content Toggle raw display
5353 T16 T^{16} Copy content Toggle raw display
5959 T16 T^{16} Copy content Toggle raw display
6161 (T88T6+20T4++2)2 (T^{8} - 8 T^{6} + 20 T^{4} + \cdots + 2)^{2} Copy content Toggle raw display
6767 T1632T11++2 T^{16} - 32 T^{11} + \cdots + 2 Copy content Toggle raw display
7171 T16 T^{16} Copy content Toggle raw display
7373 (T8+16)2 (T^{8} + 16)^{2} Copy content Toggle raw display
7979 (T8+8T7+28T6++2)2 (T^{8} + 8 T^{7} + 28 T^{6} + \cdots + 2)^{2} Copy content Toggle raw display
8383 T16 T^{16} Copy content Toggle raw display
8989 T16 T^{16} Copy content Toggle raw display
9797 T16+1 T^{16} + 1 Copy content Toggle raw display
show more
show less