Properties

Label 2-875-1.1-c1-0-0
Degree $2$
Conductor $875$
Sign $1$
Analytic cond. $6.98691$
Root an. cond. $2.64327$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.88·2-s − 3.34·3-s + 1.57·4-s + 6.32·6-s − 7-s + 0.810·8-s + 8.18·9-s − 4.79·11-s − 5.25·12-s + 2.71·13-s + 1.88·14-s − 4.67·16-s − 0.520·17-s − 15.4·18-s + 0.405·19-s + 3.34·21-s + 9.05·22-s − 5.82·23-s − 2.71·24-s − 5.12·26-s − 17.3·27-s − 1.57·28-s + 0.163·29-s − 9.18·31-s + 7.21·32-s + 16.0·33-s + 0.982·34-s + ⋯
L(s)  = 1  − 1.33·2-s − 1.93·3-s + 0.785·4-s + 2.58·6-s − 0.377·7-s + 0.286·8-s + 2.72·9-s − 1.44·11-s − 1.51·12-s + 0.752·13-s + 0.505·14-s − 1.16·16-s − 0.126·17-s − 3.64·18-s + 0.0930·19-s + 0.729·21-s + 1.93·22-s − 1.21·23-s − 0.553·24-s − 1.00·26-s − 3.34·27-s − 0.296·28-s + 0.0303·29-s − 1.65·31-s + 1.27·32-s + 2.78·33-s + 0.168·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 875 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 875 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(875\)    =    \(5^{3} \cdot 7\)
Sign: $1$
Analytic conductor: \(6.98691\)
Root analytic conductor: \(2.64327\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 875,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1992820682\)
\(L(\frac12)\) \(\approx\) \(0.1992820682\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 + T \)
good2 \( 1 + 1.88T + 2T^{2} \)
3 \( 1 + 3.34T + 3T^{2} \)
11 \( 1 + 4.79T + 11T^{2} \)
13 \( 1 - 2.71T + 13T^{2} \)
17 \( 1 + 0.520T + 17T^{2} \)
19 \( 1 - 0.405T + 19T^{2} \)
23 \( 1 + 5.82T + 23T^{2} \)
29 \( 1 - 0.163T + 29T^{2} \)
31 \( 1 + 9.18T + 31T^{2} \)
37 \( 1 + 4.98T + 37T^{2} \)
41 \( 1 + 5.25T + 41T^{2} \)
43 \( 1 - 9.37T + 43T^{2} \)
47 \( 1 + 1.98T + 47T^{2} \)
53 \( 1 - 1.42T + 53T^{2} \)
59 \( 1 - 2.21T + 59T^{2} \)
61 \( 1 - 8.65T + 61T^{2} \)
67 \( 1 - 7.72T + 67T^{2} \)
71 \( 1 - 2.12T + 71T^{2} \)
73 \( 1 + 2.38T + 73T^{2} \)
79 \( 1 - 11.7T + 79T^{2} \)
83 \( 1 + 5.80T + 83T^{2} \)
89 \( 1 + 14.5T + 89T^{2} \)
97 \( 1 + 16.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.20172685812857652861610185617, −9.661445478592356354744640819717, −8.466217233916646351978292952546, −7.52598349992473229230379840501, −6.84887778457395237877047382863, −5.84453625938192914854974818920, −5.17227656745360752254168327419, −3.99425352217126385964214022213, −1.87961127812172784989789306050, −0.47400405256328581197096774433, 0.47400405256328581197096774433, 1.87961127812172784989789306050, 3.99425352217126385964214022213, 5.17227656745360752254168327419, 5.84453625938192914854974818920, 6.84887778457395237877047382863, 7.52598349992473229230379840501, 8.466217233916646351978292952546, 9.661445478592356354744640819717, 10.20172685812857652861610185617

Graph of the $Z$-function along the critical line