Properties

Label 875.2.a.j.1.2
Level $875$
Weight $2$
Character 875.1
Self dual yes
Analytic conductor $6.987$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [875,2,Mod(1,875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(875, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("875.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 10x^{6} + 30x^{5} + 29x^{4} - 79x^{3} - 43x^{2} + 62x + 29 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.44932\) of defining polynomial
Character \(\chi\) \(=\) 875.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.88967 q^{2} -3.34505 q^{3} +1.57086 q^{4} +6.32104 q^{6} -1.00000 q^{7} +0.810940 q^{8} +8.18935 q^{9} -4.79106 q^{11} -5.25459 q^{12} +2.71167 q^{13} +1.88967 q^{14} -4.67412 q^{16} -0.520174 q^{17} -15.4752 q^{18} +0.405581 q^{19} +3.34505 q^{21} +9.05354 q^{22} -5.82371 q^{23} -2.71264 q^{24} -5.12416 q^{26} -17.3586 q^{27} -1.57086 q^{28} +0.163565 q^{29} -9.18965 q^{31} +7.21067 q^{32} +16.0263 q^{33} +0.982958 q^{34} +12.8643 q^{36} -4.98799 q^{37} -0.766414 q^{38} -9.07067 q^{39} -5.25682 q^{41} -6.32104 q^{42} +9.37859 q^{43} -7.52607 q^{44} +11.0049 q^{46} -1.98155 q^{47} +15.6352 q^{48} +1.00000 q^{49} +1.74001 q^{51} +4.25964 q^{52} +1.42426 q^{53} +32.8021 q^{54} -0.810940 q^{56} -1.35669 q^{57} -0.309083 q^{58} +2.21497 q^{59} +8.65223 q^{61} +17.3654 q^{62} -8.18935 q^{63} -4.27755 q^{64} -30.2845 q^{66} +7.72412 q^{67} -0.817119 q^{68} +19.4806 q^{69} +2.12012 q^{71} +6.64107 q^{72} -2.38846 q^{73} +9.42566 q^{74} +0.637109 q^{76} +4.79106 q^{77} +17.1406 q^{78} +11.7405 q^{79} +33.4974 q^{81} +9.93365 q^{82} -5.80296 q^{83} +5.25459 q^{84} -17.7225 q^{86} -0.547132 q^{87} -3.88527 q^{88} -14.5987 q^{89} -2.71167 q^{91} -9.14821 q^{92} +30.7398 q^{93} +3.74447 q^{94} -24.1201 q^{96} -16.4698 q^{97} -1.88967 q^{98} -39.2357 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} - 8 q^{3} + 13 q^{4} + 2 q^{6} - 8 q^{7} + 12 q^{8} + 18 q^{9} - 5 q^{11} - 20 q^{12} - 6 q^{13} - q^{14} + 35 q^{16} + 13 q^{17} + 3 q^{18} + 13 q^{19} + 8 q^{21} + 22 q^{22} - 5 q^{23} - 3 q^{24}+ \cdots - 31 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.88967 −1.33620 −0.668100 0.744072i \(-0.732892\pi\)
−0.668100 + 0.744072i \(0.732892\pi\)
\(3\) −3.34505 −1.93126 −0.965632 0.259912i \(-0.916306\pi\)
−0.965632 + 0.259912i \(0.916306\pi\)
\(4\) 1.57086 0.785428
\(5\) 0 0
\(6\) 6.32104 2.58055
\(7\) −1.00000 −0.377964
\(8\) 0.810940 0.286711
\(9\) 8.18935 2.72978
\(10\) 0 0
\(11\) −4.79106 −1.44456 −0.722280 0.691601i \(-0.756906\pi\)
−0.722280 + 0.691601i \(0.756906\pi\)
\(12\) −5.25459 −1.51687
\(13\) 2.71167 0.752082 0.376041 0.926603i \(-0.377285\pi\)
0.376041 + 0.926603i \(0.377285\pi\)
\(14\) 1.88967 0.505036
\(15\) 0 0
\(16\) −4.67412 −1.16853
\(17\) −0.520174 −0.126161 −0.0630804 0.998008i \(-0.520092\pi\)
−0.0630804 + 0.998008i \(0.520092\pi\)
\(18\) −15.4752 −3.64753
\(19\) 0.405581 0.0930466 0.0465233 0.998917i \(-0.485186\pi\)
0.0465233 + 0.998917i \(0.485186\pi\)
\(20\) 0 0
\(21\) 3.34505 0.729949
\(22\) 9.05354 1.93022
\(23\) −5.82371 −1.21433 −0.607164 0.794577i \(-0.707693\pi\)
−0.607164 + 0.794577i \(0.707693\pi\)
\(24\) −2.71264 −0.553714
\(25\) 0 0
\(26\) −5.12416 −1.00493
\(27\) −17.3586 −3.34067
\(28\) −1.57086 −0.296864
\(29\) 0.163565 0.0303732 0.0151866 0.999885i \(-0.495166\pi\)
0.0151866 + 0.999885i \(0.495166\pi\)
\(30\) 0 0
\(31\) −9.18965 −1.65051 −0.825255 0.564760i \(-0.808969\pi\)
−0.825255 + 0.564760i \(0.808969\pi\)
\(32\) 7.21067 1.27468
\(33\) 16.0263 2.78983
\(34\) 0.982958 0.168576
\(35\) 0 0
\(36\) 12.8643 2.14405
\(37\) −4.98799 −0.820020 −0.410010 0.912081i \(-0.634475\pi\)
−0.410010 + 0.912081i \(0.634475\pi\)
\(38\) −0.766414 −0.124329
\(39\) −9.07067 −1.45247
\(40\) 0 0
\(41\) −5.25682 −0.820977 −0.410488 0.911866i \(-0.634642\pi\)
−0.410488 + 0.911866i \(0.634642\pi\)
\(42\) −6.32104 −0.975358
\(43\) 9.37859 1.43022 0.715111 0.699011i \(-0.246376\pi\)
0.715111 + 0.699011i \(0.246376\pi\)
\(44\) −7.52607 −1.13460
\(45\) 0 0
\(46\) 11.0049 1.62258
\(47\) −1.98155 −0.289038 −0.144519 0.989502i \(-0.546164\pi\)
−0.144519 + 0.989502i \(0.546164\pi\)
\(48\) 15.6352 2.25674
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.74001 0.243650
\(52\) 4.25964 0.590706
\(53\) 1.42426 0.195637 0.0978185 0.995204i \(-0.468814\pi\)
0.0978185 + 0.995204i \(0.468814\pi\)
\(54\) 32.8021 4.46380
\(55\) 0 0
\(56\) −0.810940 −0.108366
\(57\) −1.35669 −0.179698
\(58\) −0.309083 −0.0405846
\(59\) 2.21497 0.288365 0.144183 0.989551i \(-0.453945\pi\)
0.144183 + 0.989551i \(0.453945\pi\)
\(60\) 0 0
\(61\) 8.65223 1.10780 0.553902 0.832582i \(-0.313138\pi\)
0.553902 + 0.832582i \(0.313138\pi\)
\(62\) 17.3654 2.20541
\(63\) −8.18935 −1.03176
\(64\) −4.27755 −0.534694
\(65\) 0 0
\(66\) −30.2845 −3.72777
\(67\) 7.72412 0.943652 0.471826 0.881692i \(-0.343595\pi\)
0.471826 + 0.881692i \(0.343595\pi\)
\(68\) −0.817119 −0.0990902
\(69\) 19.4806 2.34519
\(70\) 0 0
\(71\) 2.12012 0.251612 0.125806 0.992055i \(-0.459848\pi\)
0.125806 + 0.992055i \(0.459848\pi\)
\(72\) 6.64107 0.782658
\(73\) −2.38846 −0.279549 −0.139774 0.990183i \(-0.544638\pi\)
−0.139774 + 0.990183i \(0.544638\pi\)
\(74\) 9.42566 1.09571
\(75\) 0 0
\(76\) 0.637109 0.0730814
\(77\) 4.79106 0.545992
\(78\) 17.1406 1.94079
\(79\) 11.7405 1.32091 0.660454 0.750867i \(-0.270364\pi\)
0.660454 + 0.750867i \(0.270364\pi\)
\(80\) 0 0
\(81\) 33.4974 3.72193
\(82\) 9.93365 1.09699
\(83\) −5.80296 −0.636957 −0.318479 0.947930i \(-0.603172\pi\)
−0.318479 + 0.947930i \(0.603172\pi\)
\(84\) 5.25459 0.573323
\(85\) 0 0
\(86\) −17.7225 −1.91106
\(87\) −0.547132 −0.0586587
\(88\) −3.88527 −0.414171
\(89\) −14.5987 −1.54746 −0.773728 0.633517i \(-0.781610\pi\)
−0.773728 + 0.633517i \(0.781610\pi\)
\(90\) 0 0
\(91\) −2.71167 −0.284260
\(92\) −9.14821 −0.953767
\(93\) 30.7398 3.18757
\(94\) 3.74447 0.386213
\(95\) 0 0
\(96\) −24.1201 −2.46174
\(97\) −16.4698 −1.67225 −0.836127 0.548535i \(-0.815186\pi\)
−0.836127 + 0.548535i \(0.815186\pi\)
\(98\) −1.88967 −0.190886
\(99\) −39.2357 −3.94334
\(100\) 0 0
\(101\) −4.45512 −0.443301 −0.221651 0.975126i \(-0.571144\pi\)
−0.221651 + 0.975126i \(0.571144\pi\)
\(102\) −3.28804 −0.325565
\(103\) 2.13097 0.209971 0.104985 0.994474i \(-0.466520\pi\)
0.104985 + 0.994474i \(0.466520\pi\)
\(104\) 2.19900 0.215630
\(105\) 0 0
\(106\) −2.69138 −0.261410
\(107\) 18.4519 1.78381 0.891904 0.452225i \(-0.149369\pi\)
0.891904 + 0.452225i \(0.149369\pi\)
\(108\) −27.2679 −2.62385
\(109\) 15.8405 1.51724 0.758622 0.651530i \(-0.225873\pi\)
0.758622 + 0.651530i \(0.225873\pi\)
\(110\) 0 0
\(111\) 16.6851 1.58368
\(112\) 4.67412 0.441663
\(113\) −7.17257 −0.674739 −0.337369 0.941372i \(-0.609537\pi\)
−0.337369 + 0.941372i \(0.609537\pi\)
\(114\) 2.56369 0.240112
\(115\) 0 0
\(116\) 0.256937 0.0238560
\(117\) 22.2068 2.05302
\(118\) −4.18557 −0.385313
\(119\) 0.520174 0.0476843
\(120\) 0 0
\(121\) 11.9543 1.08675
\(122\) −16.3499 −1.48025
\(123\) 17.5843 1.58552
\(124\) −14.4356 −1.29636
\(125\) 0 0
\(126\) 15.4752 1.37864
\(127\) 9.53313 0.845929 0.422964 0.906146i \(-0.360990\pi\)
0.422964 + 0.906146i \(0.360990\pi\)
\(128\) −6.33818 −0.560221
\(129\) −31.3718 −2.76214
\(130\) 0 0
\(131\) 7.97152 0.696475 0.348237 0.937406i \(-0.386780\pi\)
0.348237 + 0.937406i \(0.386780\pi\)
\(132\) 25.1751 2.19121
\(133\) −0.405581 −0.0351683
\(134\) −14.5960 −1.26091
\(135\) 0 0
\(136\) −0.421830 −0.0361717
\(137\) 3.58775 0.306522 0.153261 0.988186i \(-0.451023\pi\)
0.153261 + 0.988186i \(0.451023\pi\)
\(138\) −36.8119 −3.13364
\(139\) 10.6898 0.906698 0.453349 0.891333i \(-0.350229\pi\)
0.453349 + 0.891333i \(0.350229\pi\)
\(140\) 0 0
\(141\) 6.62837 0.558210
\(142\) −4.00632 −0.336203
\(143\) −12.9918 −1.08643
\(144\) −38.2780 −3.18984
\(145\) 0 0
\(146\) 4.51341 0.373533
\(147\) −3.34505 −0.275895
\(148\) −7.83541 −0.644067
\(149\) 1.22331 0.100217 0.0501087 0.998744i \(-0.484043\pi\)
0.0501087 + 0.998744i \(0.484043\pi\)
\(150\) 0 0
\(151\) −1.65614 −0.134774 −0.0673872 0.997727i \(-0.521466\pi\)
−0.0673872 + 0.997727i \(0.521466\pi\)
\(152\) 0.328902 0.0266775
\(153\) −4.25989 −0.344392
\(154\) −9.05354 −0.729555
\(155\) 0 0
\(156\) −14.2487 −1.14081
\(157\) −11.1522 −0.890042 −0.445021 0.895520i \(-0.646804\pi\)
−0.445021 + 0.895520i \(0.646804\pi\)
\(158\) −22.1856 −1.76500
\(159\) −4.76421 −0.377827
\(160\) 0 0
\(161\) 5.82371 0.458973
\(162\) −63.2990 −4.97324
\(163\) 1.03739 0.0812546 0.0406273 0.999174i \(-0.487064\pi\)
0.0406273 + 0.999174i \(0.487064\pi\)
\(164\) −8.25770 −0.644818
\(165\) 0 0
\(166\) 10.9657 0.851102
\(167\) 9.27166 0.717463 0.358731 0.933441i \(-0.383209\pi\)
0.358731 + 0.933441i \(0.383209\pi\)
\(168\) 2.71264 0.209284
\(169\) −5.64685 −0.434373
\(170\) 0 0
\(171\) 3.32144 0.253997
\(172\) 14.7324 1.12334
\(173\) −10.2811 −0.781660 −0.390830 0.920463i \(-0.627812\pi\)
−0.390830 + 0.920463i \(0.627812\pi\)
\(174\) 1.03390 0.0783797
\(175\) 0 0
\(176\) 22.3940 1.68801
\(177\) −7.40920 −0.556909
\(178\) 27.5867 2.06771
\(179\) 4.36578 0.326314 0.163157 0.986600i \(-0.447832\pi\)
0.163157 + 0.986600i \(0.447832\pi\)
\(180\) 0 0
\(181\) 4.26928 0.317333 0.158666 0.987332i \(-0.449281\pi\)
0.158666 + 0.987332i \(0.449281\pi\)
\(182\) 5.12416 0.379828
\(183\) −28.9421 −2.13946
\(184\) −4.72268 −0.348161
\(185\) 0 0
\(186\) −58.0882 −4.25923
\(187\) 2.49219 0.182247
\(188\) −3.11273 −0.227019
\(189\) 17.3586 1.26265
\(190\) 0 0
\(191\) −17.9357 −1.29778 −0.648891 0.760882i \(-0.724767\pi\)
−0.648891 + 0.760882i \(0.724767\pi\)
\(192\) 14.3086 1.03264
\(193\) 27.2695 1.96290 0.981452 0.191707i \(-0.0614023\pi\)
0.981452 + 0.191707i \(0.0614023\pi\)
\(194\) 31.1225 2.23447
\(195\) 0 0
\(196\) 1.57086 0.112204
\(197\) 9.05598 0.645212 0.322606 0.946533i \(-0.395441\pi\)
0.322606 + 0.946533i \(0.395441\pi\)
\(198\) 74.1426 5.26908
\(199\) 16.9716 1.20308 0.601541 0.798842i \(-0.294554\pi\)
0.601541 + 0.798842i \(0.294554\pi\)
\(200\) 0 0
\(201\) −25.8376 −1.82244
\(202\) 8.41872 0.592339
\(203\) −0.163565 −0.0114800
\(204\) 2.73330 0.191369
\(205\) 0 0
\(206\) −4.02684 −0.280563
\(207\) −47.6924 −3.31485
\(208\) −12.6747 −0.878831
\(209\) −1.94316 −0.134411
\(210\) 0 0
\(211\) 14.5470 1.00146 0.500729 0.865604i \(-0.333065\pi\)
0.500729 + 0.865604i \(0.333065\pi\)
\(212\) 2.23731 0.153659
\(213\) −7.09190 −0.485929
\(214\) −34.8679 −2.38352
\(215\) 0 0
\(216\) −14.0768 −0.957806
\(217\) 9.18965 0.623834
\(218\) −29.9333 −2.02734
\(219\) 7.98953 0.539882
\(220\) 0 0
\(221\) −1.41054 −0.0948833
\(222\) −31.5293 −2.11611
\(223\) 1.21243 0.0811900 0.0405950 0.999176i \(-0.487075\pi\)
0.0405950 + 0.999176i \(0.487075\pi\)
\(224\) −7.21067 −0.481783
\(225\) 0 0
\(226\) 13.5538 0.901586
\(227\) −16.8192 −1.11633 −0.558166 0.829729i \(-0.688495\pi\)
−0.558166 + 0.829729i \(0.688495\pi\)
\(228\) −2.13116 −0.141140
\(229\) 23.0409 1.52259 0.761294 0.648407i \(-0.224565\pi\)
0.761294 + 0.648407i \(0.224565\pi\)
\(230\) 0 0
\(231\) −16.0263 −1.05446
\(232\) 0.132641 0.00870832
\(233\) 15.8533 1.03859 0.519293 0.854596i \(-0.326195\pi\)
0.519293 + 0.854596i \(0.326195\pi\)
\(234\) −41.9636 −2.74324
\(235\) 0 0
\(236\) 3.47941 0.226490
\(237\) −39.2725 −2.55102
\(238\) −0.982958 −0.0637157
\(239\) −4.29785 −0.278005 −0.139002 0.990292i \(-0.544390\pi\)
−0.139002 + 0.990292i \(0.544390\pi\)
\(240\) 0 0
\(241\) −2.38839 −0.153850 −0.0769248 0.997037i \(-0.524510\pi\)
−0.0769248 + 0.997037i \(0.524510\pi\)
\(242\) −22.5897 −1.45212
\(243\) −59.9745 −3.84737
\(244\) 13.5914 0.870101
\(245\) 0 0
\(246\) −33.2285 −2.11857
\(247\) 1.09980 0.0699787
\(248\) −7.45226 −0.473219
\(249\) 19.4112 1.23013
\(250\) 0 0
\(251\) 4.75420 0.300083 0.150041 0.988680i \(-0.452059\pi\)
0.150041 + 0.988680i \(0.452059\pi\)
\(252\) −12.8643 −0.810374
\(253\) 27.9018 1.75417
\(254\) −18.0145 −1.13033
\(255\) 0 0
\(256\) 20.5322 1.28326
\(257\) 15.4336 0.962724 0.481362 0.876522i \(-0.340142\pi\)
0.481362 + 0.876522i \(0.340142\pi\)
\(258\) 59.2825 3.69077
\(259\) 4.98799 0.309939
\(260\) 0 0
\(261\) 1.33949 0.0829122
\(262\) −15.0635 −0.930629
\(263\) −0.273283 −0.0168513 −0.00842567 0.999965i \(-0.502682\pi\)
−0.00842567 + 0.999965i \(0.502682\pi\)
\(264\) 12.9964 0.799874
\(265\) 0 0
\(266\) 0.766414 0.0469919
\(267\) 48.8333 2.98855
\(268\) 12.1335 0.741170
\(269\) 14.3844 0.877033 0.438516 0.898723i \(-0.355504\pi\)
0.438516 + 0.898723i \(0.355504\pi\)
\(270\) 0 0
\(271\) 15.6313 0.949532 0.474766 0.880112i \(-0.342533\pi\)
0.474766 + 0.880112i \(0.342533\pi\)
\(272\) 2.43136 0.147423
\(273\) 9.07067 0.548982
\(274\) −6.77966 −0.409574
\(275\) 0 0
\(276\) 30.6012 1.84198
\(277\) 21.3893 1.28516 0.642579 0.766220i \(-0.277865\pi\)
0.642579 + 0.766220i \(0.277865\pi\)
\(278\) −20.2002 −1.21153
\(279\) −75.2573 −4.50554
\(280\) 0 0
\(281\) −17.5303 −1.04577 −0.522886 0.852402i \(-0.675145\pi\)
−0.522886 + 0.852402i \(0.675145\pi\)
\(282\) −12.5254 −0.745879
\(283\) −1.87403 −0.111400 −0.0556999 0.998448i \(-0.517739\pi\)
−0.0556999 + 0.998448i \(0.517739\pi\)
\(284\) 3.33040 0.197623
\(285\) 0 0
\(286\) 24.5502 1.45168
\(287\) 5.25682 0.310300
\(288\) 59.0507 3.47960
\(289\) −16.7294 −0.984083
\(290\) 0 0
\(291\) 55.0923 3.22957
\(292\) −3.75193 −0.219565
\(293\) 18.2486 1.06609 0.533047 0.846086i \(-0.321047\pi\)
0.533047 + 0.846086i \(0.321047\pi\)
\(294\) 6.32104 0.368651
\(295\) 0 0
\(296\) −4.04496 −0.235109
\(297\) 83.1663 4.82580
\(298\) −2.31165 −0.133910
\(299\) −15.7920 −0.913274
\(300\) 0 0
\(301\) −9.37859 −0.540573
\(302\) 3.12955 0.180086
\(303\) 14.9026 0.856132
\(304\) −1.89573 −0.108728
\(305\) 0 0
\(306\) 8.04979 0.460176
\(307\) 12.9856 0.741125 0.370562 0.928808i \(-0.379165\pi\)
0.370562 + 0.928808i \(0.379165\pi\)
\(308\) 7.52607 0.428838
\(309\) −7.12821 −0.405509
\(310\) 0 0
\(311\) 18.1000 1.02635 0.513177 0.858283i \(-0.328468\pi\)
0.513177 + 0.858283i \(0.328468\pi\)
\(312\) −7.35577 −0.416439
\(313\) 2.59623 0.146747 0.0733737 0.997305i \(-0.476623\pi\)
0.0733737 + 0.997305i \(0.476623\pi\)
\(314\) 21.0740 1.18927
\(315\) 0 0
\(316\) 18.4426 1.03748
\(317\) −23.8818 −1.34134 −0.670669 0.741757i \(-0.733993\pi\)
−0.670669 + 0.741757i \(0.733993\pi\)
\(318\) 9.00280 0.504852
\(319\) −0.783649 −0.0438759
\(320\) 0 0
\(321\) −61.7223 −3.44501
\(322\) −11.0049 −0.613279
\(323\) −0.210973 −0.0117388
\(324\) 52.6196 2.92331
\(325\) 0 0
\(326\) −1.96032 −0.108572
\(327\) −52.9872 −2.93020
\(328\) −4.26296 −0.235383
\(329\) 1.98155 0.109246
\(330\) 0 0
\(331\) 18.4514 1.01418 0.507092 0.861892i \(-0.330721\pi\)
0.507092 + 0.861892i \(0.330721\pi\)
\(332\) −9.11561 −0.500284
\(333\) −40.8484 −2.23848
\(334\) −17.5204 −0.958673
\(335\) 0 0
\(336\) −15.6352 −0.852968
\(337\) 10.1586 0.553377 0.276688 0.960960i \(-0.410763\pi\)
0.276688 + 0.960960i \(0.410763\pi\)
\(338\) 10.6707 0.580409
\(339\) 23.9926 1.30310
\(340\) 0 0
\(341\) 44.0282 2.38426
\(342\) −6.27643 −0.339391
\(343\) −1.00000 −0.0539949
\(344\) 7.60548 0.410060
\(345\) 0 0
\(346\) 19.4279 1.04445
\(347\) 17.5771 0.943590 0.471795 0.881708i \(-0.343606\pi\)
0.471795 + 0.881708i \(0.343606\pi\)
\(348\) −0.859465 −0.0460722
\(349\) −9.74642 −0.521714 −0.260857 0.965377i \(-0.584005\pi\)
−0.260857 + 0.965377i \(0.584005\pi\)
\(350\) 0 0
\(351\) −47.0709 −2.51246
\(352\) −34.5468 −1.84135
\(353\) 12.9348 0.688449 0.344224 0.938887i \(-0.388142\pi\)
0.344224 + 0.938887i \(0.388142\pi\)
\(354\) 14.0009 0.744142
\(355\) 0 0
\(356\) −22.9324 −1.21542
\(357\) −1.74001 −0.0920910
\(358\) −8.24990 −0.436021
\(359\) −0.176146 −0.00929664 −0.00464832 0.999989i \(-0.501480\pi\)
−0.00464832 + 0.999989i \(0.501480\pi\)
\(360\) 0 0
\(361\) −18.8355 −0.991342
\(362\) −8.06753 −0.424020
\(363\) −39.9877 −2.09881
\(364\) −4.25964 −0.223266
\(365\) 0 0
\(366\) 54.6911 2.85875
\(367\) −27.4851 −1.43471 −0.717355 0.696708i \(-0.754647\pi\)
−0.717355 + 0.696708i \(0.754647\pi\)
\(368\) 27.2207 1.41898
\(369\) −43.0499 −2.24109
\(370\) 0 0
\(371\) −1.42426 −0.0739438
\(372\) 48.2879 2.50361
\(373\) −18.6763 −0.967020 −0.483510 0.875339i \(-0.660638\pi\)
−0.483510 + 0.875339i \(0.660638\pi\)
\(374\) −4.70942 −0.243518
\(375\) 0 0
\(376\) −1.60692 −0.0828704
\(377\) 0.443533 0.0228431
\(378\) −32.8021 −1.68716
\(379\) −19.5390 −1.00365 −0.501825 0.864969i \(-0.667338\pi\)
−0.501825 + 0.864969i \(0.667338\pi\)
\(380\) 0 0
\(381\) −31.8888 −1.63371
\(382\) 33.8926 1.73409
\(383\) 26.7503 1.36688 0.683439 0.730008i \(-0.260484\pi\)
0.683439 + 0.730008i \(0.260484\pi\)
\(384\) 21.2015 1.08194
\(385\) 0 0
\(386\) −51.5305 −2.62283
\(387\) 76.8046 3.90420
\(388\) −25.8717 −1.31344
\(389\) 13.9701 0.708314 0.354157 0.935186i \(-0.384768\pi\)
0.354157 + 0.935186i \(0.384768\pi\)
\(390\) 0 0
\(391\) 3.02934 0.153201
\(392\) 0.810940 0.0409587
\(393\) −26.6651 −1.34508
\(394\) −17.1128 −0.862132
\(395\) 0 0
\(396\) −61.6336 −3.09721
\(397\) −28.1378 −1.41219 −0.706097 0.708115i \(-0.749546\pi\)
−0.706097 + 0.708115i \(0.749546\pi\)
\(398\) −32.0707 −1.60756
\(399\) 1.35669 0.0679193
\(400\) 0 0
\(401\) −3.84138 −0.191830 −0.0959148 0.995390i \(-0.530578\pi\)
−0.0959148 + 0.995390i \(0.530578\pi\)
\(402\) 48.8245 2.43514
\(403\) −24.9193 −1.24132
\(404\) −6.99836 −0.348181
\(405\) 0 0
\(406\) 0.309083 0.0153395
\(407\) 23.8978 1.18457
\(408\) 1.41104 0.0698570
\(409\) 29.9871 1.48277 0.741384 0.671081i \(-0.234170\pi\)
0.741384 + 0.671081i \(0.234170\pi\)
\(410\) 0 0
\(411\) −12.0012 −0.591975
\(412\) 3.34745 0.164917
\(413\) −2.21497 −0.108992
\(414\) 90.1229 4.42930
\(415\) 0 0
\(416\) 19.5530 0.958663
\(417\) −35.7579 −1.75107
\(418\) 3.67194 0.179600
\(419\) 33.5276 1.63793 0.818964 0.573845i \(-0.194549\pi\)
0.818964 + 0.573845i \(0.194549\pi\)
\(420\) 0 0
\(421\) 39.6034 1.93015 0.965075 0.261975i \(-0.0843738\pi\)
0.965075 + 0.261975i \(0.0843738\pi\)
\(422\) −27.4891 −1.33815
\(423\) −16.2276 −0.789012
\(424\) 1.15499 0.0560912
\(425\) 0 0
\(426\) 13.4013 0.649297
\(427\) −8.65223 −0.418711
\(428\) 28.9852 1.40105
\(429\) 43.4582 2.09818
\(430\) 0 0
\(431\) −4.52867 −0.218138 −0.109069 0.994034i \(-0.534787\pi\)
−0.109069 + 0.994034i \(0.534787\pi\)
\(432\) 81.1363 3.90367
\(433\) 17.4520 0.838689 0.419344 0.907827i \(-0.362260\pi\)
0.419344 + 0.907827i \(0.362260\pi\)
\(434\) −17.3654 −0.833567
\(435\) 0 0
\(436\) 24.8832 1.19169
\(437\) −2.36198 −0.112989
\(438\) −15.0976 −0.721390
\(439\) −0.254860 −0.0121638 −0.00608189 0.999982i \(-0.501936\pi\)
−0.00608189 + 0.999982i \(0.501936\pi\)
\(440\) 0 0
\(441\) 8.18935 0.389969
\(442\) 2.66546 0.126783
\(443\) −18.4511 −0.876637 −0.438319 0.898820i \(-0.644426\pi\)
−0.438319 + 0.898820i \(0.644426\pi\)
\(444\) 26.2098 1.24386
\(445\) 0 0
\(446\) −2.29108 −0.108486
\(447\) −4.09203 −0.193546
\(448\) 4.27755 0.202095
\(449\) 9.88811 0.466649 0.233324 0.972399i \(-0.425040\pi\)
0.233324 + 0.972399i \(0.425040\pi\)
\(450\) 0 0
\(451\) 25.1857 1.18595
\(452\) −11.2671 −0.529959
\(453\) 5.53986 0.260285
\(454\) 31.7828 1.49164
\(455\) 0 0
\(456\) −1.10019 −0.0515212
\(457\) −24.5336 −1.14763 −0.573817 0.818984i \(-0.694538\pi\)
−0.573817 + 0.818984i \(0.694538\pi\)
\(458\) −43.5398 −2.03448
\(459\) 9.02951 0.421461
\(460\) 0 0
\(461\) −36.4327 −1.69684 −0.848421 0.529322i \(-0.822446\pi\)
−0.848421 + 0.529322i \(0.822446\pi\)
\(462\) 30.2845 1.40896
\(463\) 34.6332 1.60954 0.804770 0.593587i \(-0.202289\pi\)
0.804770 + 0.593587i \(0.202289\pi\)
\(464\) −0.764521 −0.0354920
\(465\) 0 0
\(466\) −29.9576 −1.38776
\(467\) −7.61216 −0.352249 −0.176124 0.984368i \(-0.556356\pi\)
−0.176124 + 0.984368i \(0.556356\pi\)
\(468\) 34.8837 1.61250
\(469\) −7.72412 −0.356667
\(470\) 0 0
\(471\) 37.3046 1.71891
\(472\) 1.79621 0.0826774
\(473\) −44.9334 −2.06604
\(474\) 74.2121 3.40867
\(475\) 0 0
\(476\) 0.817119 0.0374526
\(477\) 11.6638 0.534046
\(478\) 8.12152 0.371470
\(479\) −21.4501 −0.980080 −0.490040 0.871700i \(-0.663018\pi\)
−0.490040 + 0.871700i \(0.663018\pi\)
\(480\) 0 0
\(481\) −13.5258 −0.616722
\(482\) 4.51326 0.205574
\(483\) −19.4806 −0.886398
\(484\) 18.7785 0.853568
\(485\) 0 0
\(486\) 113.332 5.14085
\(487\) −3.34199 −0.151440 −0.0757199 0.997129i \(-0.524125\pi\)
−0.0757199 + 0.997129i \(0.524125\pi\)
\(488\) 7.01644 0.317619
\(489\) −3.47012 −0.156924
\(490\) 0 0
\(491\) −33.4036 −1.50748 −0.753741 0.657171i \(-0.771753\pi\)
−0.753741 + 0.657171i \(0.771753\pi\)
\(492\) 27.6224 1.24531
\(493\) −0.0850821 −0.00383191
\(494\) −2.07826 −0.0935054
\(495\) 0 0
\(496\) 42.9536 1.92867
\(497\) −2.12012 −0.0951003
\(498\) −36.6807 −1.64370
\(499\) −36.9475 −1.65400 −0.826999 0.562204i \(-0.809954\pi\)
−0.826999 + 0.562204i \(0.809954\pi\)
\(500\) 0 0
\(501\) −31.0142 −1.38561
\(502\) −8.98388 −0.400970
\(503\) 30.7679 1.37187 0.685936 0.727662i \(-0.259393\pi\)
0.685936 + 0.727662i \(0.259393\pi\)
\(504\) −6.64107 −0.295817
\(505\) 0 0
\(506\) −52.7252 −2.34392
\(507\) 18.8890 0.838889
\(508\) 14.9752 0.664416
\(509\) 10.9758 0.486494 0.243247 0.969964i \(-0.421787\pi\)
0.243247 + 0.969964i \(0.421787\pi\)
\(510\) 0 0
\(511\) 2.38846 0.105659
\(512\) −26.1227 −1.15447
\(513\) −7.04032 −0.310838
\(514\) −29.1645 −1.28639
\(515\) 0 0
\(516\) −49.2807 −2.16946
\(517\) 9.49372 0.417533
\(518\) −9.42566 −0.414140
\(519\) 34.3909 1.50959
\(520\) 0 0
\(521\) 20.9701 0.918719 0.459359 0.888250i \(-0.348079\pi\)
0.459359 + 0.888250i \(0.348079\pi\)
\(522\) −2.53119 −0.110787
\(523\) −6.71426 −0.293594 −0.146797 0.989167i \(-0.546896\pi\)
−0.146797 + 0.989167i \(0.546896\pi\)
\(524\) 12.5221 0.547031
\(525\) 0 0
\(526\) 0.516415 0.0225168
\(527\) 4.78022 0.208230
\(528\) −74.9091 −3.26000
\(529\) 10.9156 0.474591
\(530\) 0 0
\(531\) 18.1392 0.787174
\(532\) −0.637109 −0.0276222
\(533\) −14.2548 −0.617442
\(534\) −92.2788 −3.99330
\(535\) 0 0
\(536\) 6.26380 0.270555
\(537\) −14.6038 −0.630199
\(538\) −27.1818 −1.17189
\(539\) −4.79106 −0.206366
\(540\) 0 0
\(541\) 3.50487 0.150686 0.0753431 0.997158i \(-0.475995\pi\)
0.0753431 + 0.997158i \(0.475995\pi\)
\(542\) −29.5379 −1.26876
\(543\) −14.2809 −0.612854
\(544\) −3.75081 −0.160815
\(545\) 0 0
\(546\) −17.1406 −0.733549
\(547\) −25.9535 −1.10969 −0.554847 0.831953i \(-0.687223\pi\)
−0.554847 + 0.831953i \(0.687223\pi\)
\(548\) 5.63583 0.240751
\(549\) 70.8561 3.02406
\(550\) 0 0
\(551\) 0.0663387 0.00282612
\(552\) 15.7976 0.672390
\(553\) −11.7405 −0.499256
\(554\) −40.4187 −1.71723
\(555\) 0 0
\(556\) 16.7922 0.712146
\(557\) 3.45603 0.146437 0.0732184 0.997316i \(-0.476673\pi\)
0.0732184 + 0.997316i \(0.476673\pi\)
\(558\) 142.211 6.02029
\(559\) 25.4316 1.07564
\(560\) 0 0
\(561\) −8.33649 −0.351967
\(562\) 33.1266 1.39736
\(563\) 27.6750 1.16636 0.583181 0.812342i \(-0.301808\pi\)
0.583181 + 0.812342i \(0.301808\pi\)
\(564\) 10.4122 0.438434
\(565\) 0 0
\(566\) 3.54131 0.148852
\(567\) −33.4974 −1.40676
\(568\) 1.71929 0.0721398
\(569\) 18.0239 0.755602 0.377801 0.925887i \(-0.376680\pi\)
0.377801 + 0.925887i \(0.376680\pi\)
\(570\) 0 0
\(571\) −10.4491 −0.437281 −0.218641 0.975805i \(-0.570162\pi\)
−0.218641 + 0.975805i \(0.570162\pi\)
\(572\) −20.4082 −0.853311
\(573\) 59.9958 2.50636
\(574\) −9.93365 −0.414623
\(575\) 0 0
\(576\) −35.0304 −1.45960
\(577\) −25.4222 −1.05834 −0.529169 0.848516i \(-0.677496\pi\)
−0.529169 + 0.848516i \(0.677496\pi\)
\(578\) 31.6131 1.31493
\(579\) −91.2179 −3.79089
\(580\) 0 0
\(581\) 5.80296 0.240747
\(582\) −104.106 −4.31534
\(583\) −6.82372 −0.282609
\(584\) −1.93690 −0.0801496
\(585\) 0 0
\(586\) −34.4838 −1.42451
\(587\) 38.7065 1.59759 0.798793 0.601606i \(-0.205472\pi\)
0.798793 + 0.601606i \(0.205472\pi\)
\(588\) −5.25459 −0.216696
\(589\) −3.72715 −0.153574
\(590\) 0 0
\(591\) −30.2927 −1.24608
\(592\) 23.3145 0.958219
\(593\) 31.0697 1.27588 0.637939 0.770087i \(-0.279787\pi\)
0.637939 + 0.770087i \(0.279787\pi\)
\(594\) −157.157 −6.44823
\(595\) 0 0
\(596\) 1.92164 0.0787136
\(597\) −56.7707 −2.32347
\(598\) 29.8416 1.22032
\(599\) −0.389923 −0.0159318 −0.00796591 0.999968i \(-0.502536\pi\)
−0.00796591 + 0.999968i \(0.502536\pi\)
\(600\) 0 0
\(601\) −3.35540 −0.136870 −0.0684349 0.997656i \(-0.521801\pi\)
−0.0684349 + 0.997656i \(0.521801\pi\)
\(602\) 17.7225 0.722313
\(603\) 63.2555 2.57596
\(604\) −2.60155 −0.105856
\(605\) 0 0
\(606\) −28.1610 −1.14396
\(607\) 6.93329 0.281413 0.140707 0.990051i \(-0.455063\pi\)
0.140707 + 0.990051i \(0.455063\pi\)
\(608\) 2.92451 0.118605
\(609\) 0.547132 0.0221709
\(610\) 0 0
\(611\) −5.37330 −0.217381
\(612\) −6.69167 −0.270495
\(613\) −10.5240 −0.425060 −0.212530 0.977155i \(-0.568170\pi\)
−0.212530 + 0.977155i \(0.568170\pi\)
\(614\) −24.5384 −0.990290
\(615\) 0 0
\(616\) 3.88527 0.156542
\(617\) −5.97280 −0.240456 −0.120228 0.992746i \(-0.538363\pi\)
−0.120228 + 0.992746i \(0.538363\pi\)
\(618\) 13.4700 0.541841
\(619\) −38.0234 −1.52829 −0.764145 0.645045i \(-0.776839\pi\)
−0.764145 + 0.645045i \(0.776839\pi\)
\(620\) 0 0
\(621\) 101.092 4.05667
\(622\) −34.2030 −1.37141
\(623\) 14.5987 0.584884
\(624\) 42.3974 1.69725
\(625\) 0 0
\(626\) −4.90602 −0.196084
\(627\) 6.49998 0.259584
\(628\) −17.5185 −0.699064
\(629\) 2.59462 0.103454
\(630\) 0 0
\(631\) −25.2371 −1.00467 −0.502337 0.864672i \(-0.667526\pi\)
−0.502337 + 0.864672i \(0.667526\pi\)
\(632\) 9.52083 0.378718
\(633\) −48.6605 −1.93408
\(634\) 45.1288 1.79229
\(635\) 0 0
\(636\) −7.48390 −0.296756
\(637\) 2.71167 0.107440
\(638\) 1.48084 0.0586269
\(639\) 17.3624 0.686845
\(640\) 0 0
\(641\) 23.9595 0.946341 0.473171 0.880971i \(-0.343109\pi\)
0.473171 + 0.880971i \(0.343109\pi\)
\(642\) 116.635 4.60321
\(643\) −38.5274 −1.51937 −0.759686 0.650290i \(-0.774648\pi\)
−0.759686 + 0.650290i \(0.774648\pi\)
\(644\) 9.14821 0.360490
\(645\) 0 0
\(646\) 0.398669 0.0156854
\(647\) −33.6150 −1.32154 −0.660771 0.750588i \(-0.729771\pi\)
−0.660771 + 0.750588i \(0.729771\pi\)
\(648\) 27.1644 1.06712
\(649\) −10.6121 −0.416561
\(650\) 0 0
\(651\) −30.7398 −1.20479
\(652\) 1.62959 0.0638196
\(653\) −22.6590 −0.886716 −0.443358 0.896345i \(-0.646213\pi\)
−0.443358 + 0.896345i \(0.646213\pi\)
\(654\) 100.128 3.91533
\(655\) 0 0
\(656\) 24.5710 0.959337
\(657\) −19.5600 −0.763107
\(658\) −3.74447 −0.145975
\(659\) 45.0061 1.75319 0.876595 0.481229i \(-0.159810\pi\)
0.876595 + 0.481229i \(0.159810\pi\)
\(660\) 0 0
\(661\) −13.7843 −0.536148 −0.268074 0.963398i \(-0.586387\pi\)
−0.268074 + 0.963398i \(0.586387\pi\)
\(662\) −34.8672 −1.35515
\(663\) 4.71833 0.183245
\(664\) −4.70585 −0.182622
\(665\) 0 0
\(666\) 77.1900 2.99105
\(667\) −0.952553 −0.0368830
\(668\) 14.5644 0.563515
\(669\) −4.05562 −0.156799
\(670\) 0 0
\(671\) −41.4534 −1.60029
\(672\) 24.1201 0.930451
\(673\) 9.76275 0.376326 0.188163 0.982138i \(-0.439747\pi\)
0.188163 + 0.982138i \(0.439747\pi\)
\(674\) −19.1965 −0.739422
\(675\) 0 0
\(676\) −8.87038 −0.341169
\(677\) 17.3365 0.666295 0.333147 0.942875i \(-0.391889\pi\)
0.333147 + 0.942875i \(0.391889\pi\)
\(678\) −45.3381 −1.74120
\(679\) 16.4698 0.632053
\(680\) 0 0
\(681\) 56.2612 2.15593
\(682\) −83.1989 −3.18585
\(683\) −10.2687 −0.392921 −0.196460 0.980512i \(-0.562945\pi\)
−0.196460 + 0.980512i \(0.562945\pi\)
\(684\) 5.21751 0.199496
\(685\) 0 0
\(686\) 1.88967 0.0721480
\(687\) −77.0730 −2.94052
\(688\) −43.8367 −1.67126
\(689\) 3.86212 0.147135
\(690\) 0 0
\(691\) −27.0508 −1.02906 −0.514531 0.857472i \(-0.672034\pi\)
−0.514531 + 0.857472i \(0.672034\pi\)
\(692\) −16.1502 −0.613937
\(693\) 39.2357 1.49044
\(694\) −33.2150 −1.26082
\(695\) 0 0
\(696\) −0.443691 −0.0168181
\(697\) 2.73446 0.103575
\(698\) 18.4175 0.697114
\(699\) −53.0301 −2.00578
\(700\) 0 0
\(701\) 19.3032 0.729073 0.364536 0.931189i \(-0.381227\pi\)
0.364536 + 0.931189i \(0.381227\pi\)
\(702\) 88.9484 3.35714
\(703\) −2.02303 −0.0763001
\(704\) 20.4940 0.772398
\(705\) 0 0
\(706\) −24.4425 −0.919904
\(707\) 4.45512 0.167552
\(708\) −11.6388 −0.437412
\(709\) 27.9701 1.05044 0.525219 0.850967i \(-0.323983\pi\)
0.525219 + 0.850967i \(0.323983\pi\)
\(710\) 0 0
\(711\) 96.1469 3.60579
\(712\) −11.8387 −0.443672
\(713\) 53.5179 2.00426
\(714\) 3.28804 0.123052
\(715\) 0 0
\(716\) 6.85802 0.256296
\(717\) 14.3765 0.536901
\(718\) 0.332858 0.0124222
\(719\) −39.2359 −1.46325 −0.731626 0.681706i \(-0.761238\pi\)
−0.731626 + 0.681706i \(0.761238\pi\)
\(720\) 0 0
\(721\) −2.13097 −0.0793616
\(722\) 35.5929 1.32463
\(723\) 7.98927 0.297124
\(724\) 6.70642 0.249242
\(725\) 0 0
\(726\) 75.5636 2.80443
\(727\) −33.0645 −1.22629 −0.613147 0.789969i \(-0.710097\pi\)
−0.613147 + 0.789969i \(0.710097\pi\)
\(728\) −2.19900 −0.0815005
\(729\) 100.125 3.70835
\(730\) 0 0
\(731\) −4.87850 −0.180438
\(732\) −45.4639 −1.68039
\(733\) −13.8421 −0.511268 −0.255634 0.966774i \(-0.582284\pi\)
−0.255634 + 0.966774i \(0.582284\pi\)
\(734\) 51.9378 1.91706
\(735\) 0 0
\(736\) −41.9929 −1.54788
\(737\) −37.0068 −1.36316
\(738\) 81.3501 2.99454
\(739\) 40.3699 1.48503 0.742515 0.669829i \(-0.233633\pi\)
0.742515 + 0.669829i \(0.233633\pi\)
\(740\) 0 0
\(741\) −3.67889 −0.135147
\(742\) 2.69138 0.0988037
\(743\) 5.77743 0.211953 0.105977 0.994369i \(-0.466203\pi\)
0.105977 + 0.994369i \(0.466203\pi\)
\(744\) 24.9282 0.913911
\(745\) 0 0
\(746\) 35.2920 1.29213
\(747\) −47.5224 −1.73875
\(748\) 3.91487 0.143142
\(749\) −18.4519 −0.674216
\(750\) 0 0
\(751\) −17.2304 −0.628745 −0.314372 0.949300i \(-0.601794\pi\)
−0.314372 + 0.949300i \(0.601794\pi\)
\(752\) 9.26200 0.337750
\(753\) −15.9030 −0.579539
\(754\) −0.838132 −0.0305230
\(755\) 0 0
\(756\) 27.2679 0.991724
\(757\) −3.11588 −0.113248 −0.0566242 0.998396i \(-0.518034\pi\)
−0.0566242 + 0.998396i \(0.518034\pi\)
\(758\) 36.9222 1.34108
\(759\) −93.3328 −3.38776
\(760\) 0 0
\(761\) −10.5773 −0.383425 −0.191713 0.981451i \(-0.561404\pi\)
−0.191713 + 0.981451i \(0.561404\pi\)
\(762\) 60.2593 2.18296
\(763\) −15.8405 −0.573465
\(764\) −28.1744 −1.01931
\(765\) 0 0
\(766\) −50.5493 −1.82642
\(767\) 6.00628 0.216874
\(768\) −68.6811 −2.47832
\(769\) −6.97652 −0.251580 −0.125790 0.992057i \(-0.540146\pi\)
−0.125790 + 0.992057i \(0.540146\pi\)
\(770\) 0 0
\(771\) −51.6263 −1.85927
\(772\) 42.8365 1.54172
\(773\) 27.4955 0.988945 0.494473 0.869193i \(-0.335361\pi\)
0.494473 + 0.869193i \(0.335361\pi\)
\(774\) −145.135 −5.21678
\(775\) 0 0
\(776\) −13.3560 −0.479453
\(777\) −16.6851 −0.598573
\(778\) −26.3989 −0.946448
\(779\) −2.13206 −0.0763891
\(780\) 0 0
\(781\) −10.1576 −0.363468
\(782\) −5.72446 −0.204706
\(783\) −2.83926 −0.101467
\(784\) −4.67412 −0.166933
\(785\) 0 0
\(786\) 50.3883 1.79729
\(787\) −1.16804 −0.0416361 −0.0208181 0.999783i \(-0.506627\pi\)
−0.0208181 + 0.999783i \(0.506627\pi\)
\(788\) 14.2256 0.506768
\(789\) 0.914145 0.0325444
\(790\) 0 0
\(791\) 7.17257 0.255027
\(792\) −31.8178 −1.13060
\(793\) 23.4620 0.833159
\(794\) 53.1711 1.88697
\(795\) 0 0
\(796\) 26.6599 0.944934
\(797\) −5.25703 −0.186214 −0.0931068 0.995656i \(-0.529680\pi\)
−0.0931068 + 0.995656i \(0.529680\pi\)
\(798\) −2.56369 −0.0907537
\(799\) 1.03075 0.0364653
\(800\) 0 0
\(801\) −119.554 −4.22422
\(802\) 7.25895 0.256323
\(803\) 11.4433 0.403825
\(804\) −40.5871 −1.43140
\(805\) 0 0
\(806\) 47.0893 1.65865
\(807\) −48.1165 −1.69378
\(808\) −3.61284 −0.127099
\(809\) −32.2856 −1.13510 −0.567551 0.823338i \(-0.692109\pi\)
−0.567551 + 0.823338i \(0.692109\pi\)
\(810\) 0 0
\(811\) 0.362439 0.0127270 0.00636348 0.999980i \(-0.497974\pi\)
0.00636348 + 0.999980i \(0.497974\pi\)
\(812\) −0.256937 −0.00901670
\(813\) −52.2873 −1.83380
\(814\) −45.1589 −1.58282
\(815\) 0 0
\(816\) −8.13301 −0.284712
\(817\) 3.80378 0.133077
\(818\) −56.6658 −1.98127
\(819\) −22.2068 −0.775969
\(820\) 0 0
\(821\) −38.4523 −1.34199 −0.670996 0.741461i \(-0.734133\pi\)
−0.670996 + 0.741461i \(0.734133\pi\)
\(822\) 22.6783 0.790996
\(823\) 5.90272 0.205756 0.102878 0.994694i \(-0.467195\pi\)
0.102878 + 0.994694i \(0.467195\pi\)
\(824\) 1.72809 0.0602009
\(825\) 0 0
\(826\) 4.18557 0.145635
\(827\) 41.8778 1.45624 0.728118 0.685452i \(-0.240395\pi\)
0.728118 + 0.685452i \(0.240395\pi\)
\(828\) −74.9179 −2.60358
\(829\) 19.9050 0.691331 0.345665 0.938358i \(-0.387653\pi\)
0.345665 + 0.938358i \(0.387653\pi\)
\(830\) 0 0
\(831\) −71.5482 −2.48198
\(832\) −11.5993 −0.402134
\(833\) −0.520174 −0.0180230
\(834\) 67.5708 2.33978
\(835\) 0 0
\(836\) −3.05243 −0.105571
\(837\) 159.520 5.51381
\(838\) −63.3560 −2.18860
\(839\) −37.3674 −1.29007 −0.645033 0.764155i \(-0.723156\pi\)
−0.645033 + 0.764155i \(0.723156\pi\)
\(840\) 0 0
\(841\) −28.9732 −0.999077
\(842\) −74.8373 −2.57906
\(843\) 58.6398 2.01966
\(844\) 22.8513 0.786573
\(845\) 0 0
\(846\) 30.6648 1.05428
\(847\) −11.9543 −0.410755
\(848\) −6.65716 −0.228608
\(849\) 6.26873 0.215142
\(850\) 0 0
\(851\) 29.0486 0.995773
\(852\) −11.1403 −0.381662
\(853\) −47.5502 −1.62809 −0.814044 0.580804i \(-0.802738\pi\)
−0.814044 + 0.580804i \(0.802738\pi\)
\(854\) 16.3499 0.559481
\(855\) 0 0
\(856\) 14.9634 0.511437
\(857\) 30.6116 1.04567 0.522836 0.852433i \(-0.324874\pi\)
0.522836 + 0.852433i \(0.324874\pi\)
\(858\) −82.1216 −2.80359
\(859\) −38.0855 −1.29946 −0.649730 0.760165i \(-0.725118\pi\)
−0.649730 + 0.760165i \(0.725118\pi\)
\(860\) 0 0
\(861\) −17.5843 −0.599271
\(862\) 8.55769 0.291476
\(863\) 38.9217 1.32491 0.662455 0.749101i \(-0.269514\pi\)
0.662455 + 0.749101i \(0.269514\pi\)
\(864\) −125.167 −4.25828
\(865\) 0 0
\(866\) −32.9785 −1.12066
\(867\) 55.9607 1.90053
\(868\) 14.4356 0.489977
\(869\) −56.2494 −1.90813
\(870\) 0 0
\(871\) 20.9453 0.709703
\(872\) 12.8457 0.435010
\(873\) −134.877 −4.56489
\(874\) 4.46337 0.150976
\(875\) 0 0
\(876\) 12.5504 0.424039
\(877\) 27.5668 0.930863 0.465432 0.885084i \(-0.345899\pi\)
0.465432 + 0.885084i \(0.345899\pi\)
\(878\) 0.481601 0.0162532
\(879\) −61.0424 −2.05891
\(880\) 0 0
\(881\) 6.81222 0.229509 0.114755 0.993394i \(-0.463392\pi\)
0.114755 + 0.993394i \(0.463392\pi\)
\(882\) −15.4752 −0.521076
\(883\) 41.1531 1.38491 0.692457 0.721459i \(-0.256528\pi\)
0.692457 + 0.721459i \(0.256528\pi\)
\(884\) −2.21576 −0.0745240
\(885\) 0 0
\(886\) 34.8665 1.17136
\(887\) −10.3979 −0.349128 −0.174564 0.984646i \(-0.555852\pi\)
−0.174564 + 0.984646i \(0.555852\pi\)
\(888\) 13.5306 0.454057
\(889\) −9.53313 −0.319731
\(890\) 0 0
\(891\) −160.488 −5.37655
\(892\) 1.90455 0.0637689
\(893\) −0.803678 −0.0268940
\(894\) 7.73259 0.258616
\(895\) 0 0
\(896\) 6.33818 0.211744
\(897\) 52.8249 1.76377
\(898\) −18.6853 −0.623536
\(899\) −1.50310 −0.0501313
\(900\) 0 0
\(901\) −0.740863 −0.0246817
\(902\) −47.5928 −1.58467
\(903\) 31.3718 1.04399
\(904\) −5.81653 −0.193455
\(905\) 0 0
\(906\) −10.4685 −0.347793
\(907\) −14.3126 −0.475242 −0.237621 0.971358i \(-0.576368\pi\)
−0.237621 + 0.971358i \(0.576368\pi\)
\(908\) −26.4206 −0.876798
\(909\) −36.4846 −1.21012
\(910\) 0 0
\(911\) −48.4129 −1.60399 −0.801996 0.597329i \(-0.796229\pi\)
−0.801996 + 0.597329i \(0.796229\pi\)
\(912\) 6.34132 0.209982
\(913\) 27.8023 0.920123
\(914\) 46.3604 1.53347
\(915\) 0 0
\(916\) 36.1940 1.19588
\(917\) −7.97152 −0.263243
\(918\) −17.0628 −0.563156
\(919\) −0.526360 −0.0173630 −0.00868151 0.999962i \(-0.502763\pi\)
−0.00868151 + 0.999962i \(0.502763\pi\)
\(920\) 0 0
\(921\) −43.4373 −1.43131
\(922\) 68.8459 2.26732
\(923\) 5.74906 0.189233
\(924\) −25.1751 −0.828199
\(925\) 0 0
\(926\) −65.4453 −2.15067
\(927\) 17.4513 0.573175
\(928\) 1.17941 0.0387161
\(929\) −1.36557 −0.0448030 −0.0224015 0.999749i \(-0.507131\pi\)
−0.0224015 + 0.999749i \(0.507131\pi\)
\(930\) 0 0
\(931\) 0.405581 0.0132924
\(932\) 24.9033 0.815734
\(933\) −60.5453 −1.98216
\(934\) 14.3845 0.470674
\(935\) 0 0
\(936\) 18.0084 0.588623
\(937\) −0.859041 −0.0280636 −0.0140318 0.999902i \(-0.504467\pi\)
−0.0140318 + 0.999902i \(0.504467\pi\)
\(938\) 14.5960 0.476578
\(939\) −8.68451 −0.283408
\(940\) 0 0
\(941\) 42.2414 1.37703 0.688516 0.725221i \(-0.258263\pi\)
0.688516 + 0.725221i \(0.258263\pi\)
\(942\) −70.4935 −2.29680
\(943\) 30.6142 0.996935
\(944\) −10.3531 −0.336964
\(945\) 0 0
\(946\) 84.9094 2.76064
\(947\) 40.7967 1.32571 0.662857 0.748746i \(-0.269344\pi\)
0.662857 + 0.748746i \(0.269344\pi\)
\(948\) −61.6914 −2.00364
\(949\) −6.47673 −0.210243
\(950\) 0 0
\(951\) 79.8859 2.59048
\(952\) 0.421830 0.0136716
\(953\) 16.0122 0.518688 0.259344 0.965785i \(-0.416494\pi\)
0.259344 + 0.965785i \(0.416494\pi\)
\(954\) −22.0407 −0.713592
\(955\) 0 0
\(956\) −6.75130 −0.218353
\(957\) 2.62134 0.0847360
\(958\) 40.5336 1.30958
\(959\) −3.58775 −0.115854
\(960\) 0 0
\(961\) 53.4497 1.72418
\(962\) 25.5593 0.824064
\(963\) 151.109 4.86941
\(964\) −3.75181 −0.120838
\(965\) 0 0
\(966\) 36.8119 1.18440
\(967\) 44.6342 1.43534 0.717669 0.696384i \(-0.245209\pi\)
0.717669 + 0.696384i \(0.245209\pi\)
\(968\) 9.69423 0.311584
\(969\) 0.705714 0.0226708
\(970\) 0 0
\(971\) −34.8396 −1.11805 −0.559027 0.829149i \(-0.688825\pi\)
−0.559027 + 0.829149i \(0.688825\pi\)
\(972\) −94.2113 −3.02183
\(973\) −10.6898 −0.342700
\(974\) 6.31525 0.202354
\(975\) 0 0
\(976\) −40.4416 −1.29450
\(977\) 21.1094 0.675348 0.337674 0.941263i \(-0.390360\pi\)
0.337674 + 0.941263i \(0.390360\pi\)
\(978\) 6.55738 0.209682
\(979\) 69.9432 2.23539
\(980\) 0 0
\(981\) 129.723 4.14175
\(982\) 63.1218 2.01430
\(983\) 20.7396 0.661491 0.330745 0.943720i \(-0.392700\pi\)
0.330745 + 0.943720i \(0.392700\pi\)
\(984\) 14.2598 0.454587
\(985\) 0 0
\(986\) 0.160777 0.00512019
\(987\) −6.62837 −0.210983
\(988\) 1.72763 0.0549632
\(989\) −54.6182 −1.73676
\(990\) 0 0
\(991\) −18.9582 −0.602227 −0.301113 0.953588i \(-0.597358\pi\)
−0.301113 + 0.953588i \(0.597358\pi\)
\(992\) −66.2636 −2.10387
\(993\) −61.7210 −1.95866
\(994\) 4.00632 0.127073
\(995\) 0 0
\(996\) 30.4922 0.966181
\(997\) −20.9224 −0.662618 −0.331309 0.943522i \(-0.607490\pi\)
−0.331309 + 0.943522i \(0.607490\pi\)
\(998\) 69.8186 2.21007
\(999\) 86.5846 2.73942
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.a.j.1.2 yes 8
3.2 odd 2 7875.2.a.w.1.7 8
5.2 odd 4 875.2.b.e.624.4 16
5.3 odd 4 875.2.b.e.624.13 16
5.4 even 2 875.2.a.i.1.7 8
7.6 odd 2 6125.2.a.w.1.2 8
15.14 odd 2 7875.2.a.bb.1.2 8
35.34 odd 2 6125.2.a.v.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
875.2.a.i.1.7 8 5.4 even 2
875.2.a.j.1.2 yes 8 1.1 even 1 trivial
875.2.b.e.624.4 16 5.2 odd 4
875.2.b.e.624.13 16 5.3 odd 4
6125.2.a.v.1.7 8 35.34 odd 2
6125.2.a.w.1.2 8 7.6 odd 2
7875.2.a.w.1.7 8 3.2 odd 2
7875.2.a.bb.1.2 8 15.14 odd 2