Properties

Label 2-8784-1.1-c1-0-100
Degree $2$
Conductor $8784$
Sign $1$
Analytic cond. $70.1405$
Root an. cond. $8.37499$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.12·5-s + 3.56·7-s + 3.56·11-s + 5.56·13-s − 0.561·17-s − 4·19-s − 5·23-s + 12·25-s + 5.12·29-s − 4·31-s + 14.6·35-s − 3.68·37-s − 9.56·41-s + 2.56·43-s + 7.12·47-s + 5.68·49-s − 9.12·53-s + 14.6·55-s − 6.43·59-s + 61-s + 22.9·65-s + 3.31·67-s + 13.9·71-s + 16.3·73-s + 12.6·77-s + 12.9·79-s − 10.8·83-s + ⋯
L(s)  = 1  + 1.84·5-s + 1.34·7-s + 1.07·11-s + 1.54·13-s − 0.136·17-s − 0.917·19-s − 1.04·23-s + 2.40·25-s + 0.951·29-s − 0.718·31-s + 2.48·35-s − 0.605·37-s − 1.49·41-s + 0.390·43-s + 1.03·47-s + 0.812·49-s − 1.25·53-s + 1.98·55-s − 0.838·59-s + 0.128·61-s + 2.84·65-s + 0.405·67-s + 1.65·71-s + 1.91·73-s + 1.44·77-s + 1.45·79-s − 1.18·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8784\)    =    \(2^{4} \cdot 3^{2} \cdot 61\)
Sign: $1$
Analytic conductor: \(70.1405\)
Root analytic conductor: \(8.37499\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8784,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.400379802\)
\(L(\frac12)\) \(\approx\) \(4.400379802\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
61 \( 1 - T \)
good5 \( 1 - 4.12T + 5T^{2} \)
7 \( 1 - 3.56T + 7T^{2} \)
11 \( 1 - 3.56T + 11T^{2} \)
13 \( 1 - 5.56T + 13T^{2} \)
17 \( 1 + 0.561T + 17T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 + 5T + 23T^{2} \)
29 \( 1 - 5.12T + 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 + 3.68T + 37T^{2} \)
41 \( 1 + 9.56T + 41T^{2} \)
43 \( 1 - 2.56T + 43T^{2} \)
47 \( 1 - 7.12T + 47T^{2} \)
53 \( 1 + 9.12T + 53T^{2} \)
59 \( 1 + 6.43T + 59T^{2} \)
67 \( 1 - 3.31T + 67T^{2} \)
71 \( 1 - 13.9T + 71T^{2} \)
73 \( 1 - 16.3T + 73T^{2} \)
79 \( 1 - 12.9T + 79T^{2} \)
83 \( 1 + 10.8T + 83T^{2} \)
89 \( 1 + 15.6T + 89T^{2} \)
97 \( 1 + 3.43T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.964646523231635693916031174328, −6.65462672221849624973221040893, −6.47850698368629031830395626661, −5.71781705454767233506905182249, −5.12183477599327489484243505990, −4.30998827016662809419079898599, −3.53680856380664299390535945535, −2.27847953041382123107512835709, −1.70758647325552011171081640599, −1.17759715663722635125754418662, 1.17759715663722635125754418662, 1.70758647325552011171081640599, 2.27847953041382123107512835709, 3.53680856380664299390535945535, 4.30998827016662809419079898599, 5.12183477599327489484243505990, 5.71781705454767233506905182249, 6.47850698368629031830395626661, 6.65462672221849624973221040893, 7.964646523231635693916031174328

Graph of the $Z$-function along the critical line