Properties

Label 8784.2.a.bg.1.2
Level $8784$
Weight $2$
Character 8784.1
Self dual yes
Analytic conductor $70.141$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8784,2,Mod(1,8784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8784, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8784.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8784 = 2^{4} \cdot 3^{2} \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8784.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.1405931355\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 366)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 8784.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.12311 q^{5} +3.56155 q^{7} +3.56155 q^{11} +5.56155 q^{13} -0.561553 q^{17} -4.00000 q^{19} -5.00000 q^{23} +12.0000 q^{25} +5.12311 q^{29} -4.00000 q^{31} +14.6847 q^{35} -3.68466 q^{37} -9.56155 q^{41} +2.56155 q^{43} +7.12311 q^{47} +5.68466 q^{49} -9.12311 q^{53} +14.6847 q^{55} -6.43845 q^{59} +1.00000 q^{61} +22.9309 q^{65} +3.31534 q^{67} +13.9309 q^{71} +16.3693 q^{73} +12.6847 q^{77} +12.9309 q^{79} -10.8078 q^{83} -2.31534 q^{85} -15.6847 q^{89} +19.8078 q^{91} -16.4924 q^{95} -3.43845 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{7} + 3 q^{11} + 7 q^{13} + 3 q^{17} - 8 q^{19} - 10 q^{23} + 24 q^{25} + 2 q^{29} - 8 q^{31} + 17 q^{35} + 5 q^{37} - 15 q^{41} + q^{43} + 6 q^{47} - q^{49} - 10 q^{53} + 17 q^{55} - 17 q^{59}+ \cdots - 11 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.12311 1.84391 0.921954 0.387298i \(-0.126592\pi\)
0.921954 + 0.387298i \(0.126592\pi\)
\(6\) 0 0
\(7\) 3.56155 1.34614 0.673070 0.739579i \(-0.264975\pi\)
0.673070 + 0.739579i \(0.264975\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.56155 1.07385 0.536924 0.843630i \(-0.319586\pi\)
0.536924 + 0.843630i \(0.319586\pi\)
\(12\) 0 0
\(13\) 5.56155 1.54250 0.771249 0.636534i \(-0.219633\pi\)
0.771249 + 0.636534i \(0.219633\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.561553 −0.136197 −0.0680983 0.997679i \(-0.521693\pi\)
−0.0680983 + 0.997679i \(0.521693\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.00000 −1.04257 −0.521286 0.853382i \(-0.674548\pi\)
−0.521286 + 0.853382i \(0.674548\pi\)
\(24\) 0 0
\(25\) 12.0000 2.40000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.12311 0.951337 0.475668 0.879625i \(-0.342206\pi\)
0.475668 + 0.879625i \(0.342206\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 14.6847 2.48216
\(36\) 0 0
\(37\) −3.68466 −0.605754 −0.302877 0.953030i \(-0.597947\pi\)
−0.302877 + 0.953030i \(0.597947\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −9.56155 −1.49326 −0.746632 0.665237i \(-0.768330\pi\)
−0.746632 + 0.665237i \(0.768330\pi\)
\(42\) 0 0
\(43\) 2.56155 0.390633 0.195317 0.980740i \(-0.437427\pi\)
0.195317 + 0.980740i \(0.437427\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.12311 1.03901 0.519506 0.854467i \(-0.326116\pi\)
0.519506 + 0.854467i \(0.326116\pi\)
\(48\) 0 0
\(49\) 5.68466 0.812094
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −9.12311 −1.25315 −0.626577 0.779359i \(-0.715545\pi\)
−0.626577 + 0.779359i \(0.715545\pi\)
\(54\) 0 0
\(55\) 14.6847 1.98008
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.43845 −0.838214 −0.419107 0.907937i \(-0.637657\pi\)
−0.419107 + 0.907937i \(0.637657\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 22.9309 2.84422
\(66\) 0 0
\(67\) 3.31534 0.405033 0.202517 0.979279i \(-0.435088\pi\)
0.202517 + 0.979279i \(0.435088\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 13.9309 1.65329 0.826645 0.562724i \(-0.190247\pi\)
0.826645 + 0.562724i \(0.190247\pi\)
\(72\) 0 0
\(73\) 16.3693 1.91588 0.957942 0.286963i \(-0.0926455\pi\)
0.957942 + 0.286963i \(0.0926455\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 12.6847 1.44555
\(78\) 0 0
\(79\) 12.9309 1.45484 0.727418 0.686194i \(-0.240720\pi\)
0.727418 + 0.686194i \(0.240720\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −10.8078 −1.18631 −0.593153 0.805090i \(-0.702117\pi\)
−0.593153 + 0.805090i \(0.702117\pi\)
\(84\) 0 0
\(85\) −2.31534 −0.251134
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −15.6847 −1.66257 −0.831285 0.555846i \(-0.812394\pi\)
−0.831285 + 0.555846i \(0.812394\pi\)
\(90\) 0 0
\(91\) 19.8078 2.07642
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −16.4924 −1.69209
\(96\) 0 0
\(97\) −3.43845 −0.349121 −0.174561 0.984646i \(-0.555851\pi\)
−0.174561 + 0.984646i \(0.555851\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.24621 −0.621521 −0.310761 0.950488i \(-0.600584\pi\)
−0.310761 + 0.950488i \(0.600584\pi\)
\(102\) 0 0
\(103\) −4.56155 −0.449463 −0.224732 0.974421i \(-0.572151\pi\)
−0.224732 + 0.974421i \(0.572151\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.56155 0.827677 0.413838 0.910350i \(-0.364188\pi\)
0.413838 + 0.910350i \(0.364188\pi\)
\(108\) 0 0
\(109\) 6.43845 0.616691 0.308346 0.951274i \(-0.400225\pi\)
0.308346 + 0.951274i \(0.400225\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.56155 −0.146899 −0.0734493 0.997299i \(-0.523401\pi\)
−0.0734493 + 0.997299i \(0.523401\pi\)
\(114\) 0 0
\(115\) −20.6155 −1.92241
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.00000 −0.183340
\(120\) 0 0
\(121\) 1.68466 0.153151
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 28.8617 2.58147
\(126\) 0 0
\(127\) 14.8078 1.31398 0.656988 0.753901i \(-0.271830\pi\)
0.656988 + 0.753901i \(0.271830\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.68466 −0.496671 −0.248335 0.968674i \(-0.579884\pi\)
−0.248335 + 0.968674i \(0.579884\pi\)
\(132\) 0 0
\(133\) −14.2462 −1.23530
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −18.0540 −1.54246 −0.771228 0.636559i \(-0.780357\pi\)
−0.771228 + 0.636559i \(0.780357\pi\)
\(138\) 0 0
\(139\) −13.4924 −1.14441 −0.572206 0.820110i \(-0.693912\pi\)
−0.572206 + 0.820110i \(0.693912\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 19.8078 1.65641
\(144\) 0 0
\(145\) 21.1231 1.75418
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −8.43845 −0.691305 −0.345652 0.938363i \(-0.612342\pi\)
−0.345652 + 0.938363i \(0.612342\pi\)
\(150\) 0 0
\(151\) 2.68466 0.218474 0.109237 0.994016i \(-0.465159\pi\)
0.109237 + 0.994016i \(0.465159\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −16.4924 −1.32470
\(156\) 0 0
\(157\) −7.75379 −0.618820 −0.309410 0.950929i \(-0.600131\pi\)
−0.309410 + 0.950929i \(0.600131\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −17.8078 −1.40345
\(162\) 0 0
\(163\) 1.75379 0.137367 0.0686837 0.997638i \(-0.478120\pi\)
0.0686837 + 0.997638i \(0.478120\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.24621 0.328582 0.164291 0.986412i \(-0.447466\pi\)
0.164291 + 0.986412i \(0.447466\pi\)
\(168\) 0 0
\(169\) 17.9309 1.37930
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.75379 0.285395 0.142698 0.989766i \(-0.454422\pi\)
0.142698 + 0.989766i \(0.454422\pi\)
\(174\) 0 0
\(175\) 42.7386 3.23074
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −15.6847 −1.17233 −0.586163 0.810193i \(-0.699362\pi\)
−0.586163 + 0.810193i \(0.699362\pi\)
\(180\) 0 0
\(181\) 22.8078 1.69529 0.847644 0.530566i \(-0.178020\pi\)
0.847644 + 0.530566i \(0.178020\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −15.1922 −1.11696
\(186\) 0 0
\(187\) −2.00000 −0.146254
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.31534 0.239890 0.119945 0.992781i \(-0.461728\pi\)
0.119945 + 0.992781i \(0.461728\pi\)
\(192\) 0 0
\(193\) 12.8769 0.926899 0.463450 0.886123i \(-0.346612\pi\)
0.463450 + 0.886123i \(0.346612\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.19224 0.441179 0.220589 0.975367i \(-0.429202\pi\)
0.220589 + 0.975367i \(0.429202\pi\)
\(198\) 0 0
\(199\) −7.43845 −0.527298 −0.263649 0.964619i \(-0.584926\pi\)
−0.263649 + 0.964619i \(0.584926\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 18.2462 1.28063
\(204\) 0 0
\(205\) −39.4233 −2.75344
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −14.2462 −0.985431
\(210\) 0 0
\(211\) 24.4924 1.68613 0.843064 0.537813i \(-0.180749\pi\)
0.843064 + 0.537813i \(0.180749\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 10.5616 0.720292
\(216\) 0 0
\(217\) −14.2462 −0.967096
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.12311 −0.210083
\(222\) 0 0
\(223\) −3.56155 −0.238499 −0.119250 0.992864i \(-0.538049\pi\)
−0.119250 + 0.992864i \(0.538049\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −11.5616 −0.767367 −0.383684 0.923465i \(-0.625345\pi\)
−0.383684 + 0.923465i \(0.625345\pi\)
\(228\) 0 0
\(229\) −21.8078 −1.44110 −0.720549 0.693404i \(-0.756110\pi\)
−0.720549 + 0.693404i \(0.756110\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5.12311 −0.335626 −0.167813 0.985819i \(-0.553670\pi\)
−0.167813 + 0.985819i \(0.553670\pi\)
\(234\) 0 0
\(235\) 29.3693 1.91584
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 11.3693 0.735420 0.367710 0.929941i \(-0.380142\pi\)
0.367710 + 0.929941i \(0.380142\pi\)
\(240\) 0 0
\(241\) −19.4924 −1.25562 −0.627809 0.778368i \(-0.716048\pi\)
−0.627809 + 0.778368i \(0.716048\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 23.4384 1.49743
\(246\) 0 0
\(247\) −22.2462 −1.41549
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7.36932 −0.465147 −0.232574 0.972579i \(-0.574715\pi\)
−0.232574 + 0.972579i \(0.574715\pi\)
\(252\) 0 0
\(253\) −17.8078 −1.11956
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.3693 −0.833955 −0.416978 0.908917i \(-0.636911\pi\)
−0.416978 + 0.908917i \(0.636911\pi\)
\(258\) 0 0
\(259\) −13.1231 −0.815430
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 28.0000 1.72655 0.863277 0.504730i \(-0.168408\pi\)
0.863277 + 0.504730i \(0.168408\pi\)
\(264\) 0 0
\(265\) −37.6155 −2.31070
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −22.0000 −1.34136 −0.670682 0.741745i \(-0.733998\pi\)
−0.670682 + 0.741745i \(0.733998\pi\)
\(270\) 0 0
\(271\) −16.1771 −0.982688 −0.491344 0.870966i \(-0.663494\pi\)
−0.491344 + 0.870966i \(0.663494\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 42.7386 2.57724
\(276\) 0 0
\(277\) 6.49242 0.390092 0.195046 0.980794i \(-0.437514\pi\)
0.195046 + 0.980794i \(0.437514\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.87689 0.171621 0.0858106 0.996311i \(-0.472652\pi\)
0.0858106 + 0.996311i \(0.472652\pi\)
\(282\) 0 0
\(283\) −27.6155 −1.64157 −0.820786 0.571235i \(-0.806464\pi\)
−0.820786 + 0.571235i \(0.806464\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −34.0540 −2.01014
\(288\) 0 0
\(289\) −16.6847 −0.981450
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 22.1771 1.29560 0.647799 0.761811i \(-0.275689\pi\)
0.647799 + 0.761811i \(0.275689\pi\)
\(294\) 0 0
\(295\) −26.5464 −1.54559
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −27.8078 −1.60816
\(300\) 0 0
\(301\) 9.12311 0.525847
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.12311 0.236088
\(306\) 0 0
\(307\) −29.4924 −1.68322 −0.841611 0.540085i \(-0.818392\pi\)
−0.841611 + 0.540085i \(0.818392\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −11.8078 −0.669557 −0.334778 0.942297i \(-0.608661\pi\)
−0.334778 + 0.942297i \(0.608661\pi\)
\(312\) 0 0
\(313\) −13.6155 −0.769595 −0.384798 0.923001i \(-0.625729\pi\)
−0.384798 + 0.923001i \(0.625729\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 23.4384 1.31643 0.658217 0.752828i \(-0.271311\pi\)
0.658217 + 0.752828i \(0.271311\pi\)
\(318\) 0 0
\(319\) 18.2462 1.02159
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.24621 0.124983
\(324\) 0 0
\(325\) 66.7386 3.70199
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 25.3693 1.39866
\(330\) 0 0
\(331\) 5.00000 0.274825 0.137412 0.990514i \(-0.456121\pi\)
0.137412 + 0.990514i \(0.456121\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 13.6695 0.746845
\(336\) 0 0
\(337\) −29.6155 −1.61326 −0.806630 0.591056i \(-0.798711\pi\)
−0.806630 + 0.591056i \(0.798711\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −14.2462 −0.771476
\(342\) 0 0
\(343\) −4.68466 −0.252948
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −29.3002 −1.57292 −0.786458 0.617643i \(-0.788087\pi\)
−0.786458 + 0.617643i \(0.788087\pi\)
\(348\) 0 0
\(349\) 21.0540 1.12699 0.563497 0.826118i \(-0.309456\pi\)
0.563497 + 0.826118i \(0.309456\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −21.3153 −1.13450 −0.567251 0.823545i \(-0.691993\pi\)
−0.567251 + 0.823545i \(0.691993\pi\)
\(354\) 0 0
\(355\) 57.4384 3.04852
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.56155 0.135194 0.0675968 0.997713i \(-0.478467\pi\)
0.0675968 + 0.997713i \(0.478467\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 67.4924 3.53271
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −32.4924 −1.68692
\(372\) 0 0
\(373\) 10.5616 0.546856 0.273428 0.961892i \(-0.411842\pi\)
0.273428 + 0.961892i \(0.411842\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 28.4924 1.46743
\(378\) 0 0
\(379\) 2.24621 0.115380 0.0576901 0.998335i \(-0.481626\pi\)
0.0576901 + 0.998335i \(0.481626\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.43845 0.124599 0.0622994 0.998058i \(-0.480157\pi\)
0.0622994 + 0.998058i \(0.480157\pi\)
\(384\) 0 0
\(385\) 52.3002 2.66546
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8.24621 0.418100 0.209050 0.977905i \(-0.432963\pi\)
0.209050 + 0.977905i \(0.432963\pi\)
\(390\) 0 0
\(391\) 2.80776 0.141995
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 53.3153 2.68259
\(396\) 0 0
\(397\) −10.1771 −0.510773 −0.255387 0.966839i \(-0.582203\pi\)
−0.255387 + 0.966839i \(0.582203\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −0.561553 −0.0280426 −0.0140213 0.999902i \(-0.504463\pi\)
−0.0140213 + 0.999902i \(0.504463\pi\)
\(402\) 0 0
\(403\) −22.2462 −1.10816
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −13.1231 −0.650488
\(408\) 0 0
\(409\) 8.00000 0.395575 0.197787 0.980245i \(-0.436624\pi\)
0.197787 + 0.980245i \(0.436624\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −22.9309 −1.12835
\(414\) 0 0
\(415\) −44.5616 −2.18744
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4.00000 −0.195413 −0.0977064 0.995215i \(-0.531151\pi\)
−0.0977064 + 0.995215i \(0.531151\pi\)
\(420\) 0 0
\(421\) −2.31534 −0.112843 −0.0564214 0.998407i \(-0.517969\pi\)
−0.0564214 + 0.998407i \(0.517969\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.73863 −0.326872
\(426\) 0 0
\(427\) 3.56155 0.172356
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.7386 −0.613598 −0.306799 0.951774i \(-0.599258\pi\)
−0.306799 + 0.951774i \(0.599258\pi\)
\(432\) 0 0
\(433\) 12.8769 0.618824 0.309412 0.950928i \(-0.399868\pi\)
0.309412 + 0.950928i \(0.399868\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 20.0000 0.956730
\(438\) 0 0
\(439\) 22.5616 1.07680 0.538402 0.842688i \(-0.319028\pi\)
0.538402 + 0.842688i \(0.319028\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.31534 0.205028 0.102514 0.994732i \(-0.467311\pi\)
0.102514 + 0.994732i \(0.467311\pi\)
\(444\) 0 0
\(445\) −64.6695 −3.06563
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 23.5616 1.11194 0.555969 0.831203i \(-0.312347\pi\)
0.555969 + 0.831203i \(0.312347\pi\)
\(450\) 0 0
\(451\) −34.0540 −1.60354
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 81.6695 3.82873
\(456\) 0 0
\(457\) 33.1231 1.54943 0.774717 0.632308i \(-0.217892\pi\)
0.774717 + 0.632308i \(0.217892\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −26.1771 −1.21919 −0.609594 0.792714i \(-0.708668\pi\)
−0.609594 + 0.792714i \(0.708668\pi\)
\(462\) 0 0
\(463\) −25.4384 −1.18222 −0.591112 0.806589i \(-0.701311\pi\)
−0.591112 + 0.806589i \(0.701311\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 39.4233 1.82429 0.912146 0.409865i \(-0.134424\pi\)
0.912146 + 0.409865i \(0.134424\pi\)
\(468\) 0 0
\(469\) 11.8078 0.545232
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.12311 0.419481
\(474\) 0 0
\(475\) −48.0000 −2.20239
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −7.36932 −0.336713 −0.168356 0.985726i \(-0.553846\pi\)
−0.168356 + 0.985726i \(0.553846\pi\)
\(480\) 0 0
\(481\) −20.4924 −0.934374
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −14.1771 −0.643748
\(486\) 0 0
\(487\) −14.2462 −0.645557 −0.322779 0.946474i \(-0.604617\pi\)
−0.322779 + 0.946474i \(0.604617\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 20.4924 0.924810 0.462405 0.886669i \(-0.346987\pi\)
0.462405 + 0.886669i \(0.346987\pi\)
\(492\) 0 0
\(493\) −2.87689 −0.129569
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 49.6155 2.22556
\(498\) 0 0
\(499\) −16.3693 −0.732791 −0.366396 0.930459i \(-0.619408\pi\)
−0.366396 + 0.930459i \(0.619408\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.63068 0.295648 0.147824 0.989014i \(-0.452773\pi\)
0.147824 + 0.989014i \(0.452773\pi\)
\(504\) 0 0
\(505\) −25.7538 −1.14603
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −31.6155 −1.40133 −0.700667 0.713489i \(-0.747114\pi\)
−0.700667 + 0.713489i \(0.747114\pi\)
\(510\) 0 0
\(511\) 58.3002 2.57905
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −18.8078 −0.828769
\(516\) 0 0
\(517\) 25.3693 1.11574
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 18.4924 0.810168 0.405084 0.914280i \(-0.367242\pi\)
0.405084 + 0.914280i \(0.367242\pi\)
\(522\) 0 0
\(523\) 44.2311 1.93409 0.967045 0.254607i \(-0.0819462\pi\)
0.967045 + 0.254607i \(0.0819462\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.24621 0.0978465
\(528\) 0 0
\(529\) 2.00000 0.0869565
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −53.1771 −2.30336
\(534\) 0 0
\(535\) 35.3002 1.52616
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 20.2462 0.872066
\(540\) 0 0
\(541\) 8.80776 0.378675 0.189338 0.981912i \(-0.439366\pi\)
0.189338 + 0.981912i \(0.439366\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 26.5464 1.13712
\(546\) 0 0
\(547\) 4.68466 0.200302 0.100151 0.994972i \(-0.468067\pi\)
0.100151 + 0.994972i \(0.468067\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −20.4924 −0.873007
\(552\) 0 0
\(553\) 46.0540 1.95841
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 45.6155 1.93279 0.966396 0.257058i \(-0.0827531\pi\)
0.966396 + 0.257058i \(0.0827531\pi\)
\(558\) 0 0
\(559\) 14.2462 0.602551
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −17.3693 −0.732029 −0.366015 0.930609i \(-0.619278\pi\)
−0.366015 + 0.930609i \(0.619278\pi\)
\(564\) 0 0
\(565\) −6.43845 −0.270868
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −23.8078 −0.998073 −0.499037 0.866581i \(-0.666313\pi\)
−0.499037 + 0.866581i \(0.666313\pi\)
\(570\) 0 0
\(571\) −11.6155 −0.486095 −0.243047 0.970014i \(-0.578147\pi\)
−0.243047 + 0.970014i \(0.578147\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −60.0000 −2.50217
\(576\) 0 0
\(577\) −1.36932 −0.0570054 −0.0285027 0.999594i \(-0.509074\pi\)
−0.0285027 + 0.999594i \(0.509074\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −38.4924 −1.59693
\(582\) 0 0
\(583\) −32.4924 −1.34570
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −39.8617 −1.64527 −0.822635 0.568570i \(-0.807497\pi\)
−0.822635 + 0.568570i \(0.807497\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2.80776 0.115301 0.0576505 0.998337i \(-0.481639\pi\)
0.0576505 + 0.998337i \(0.481639\pi\)
\(594\) 0 0
\(595\) −8.24621 −0.338062
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 19.2462 0.786379 0.393189 0.919457i \(-0.371372\pi\)
0.393189 + 0.919457i \(0.371372\pi\)
\(600\) 0 0
\(601\) 25.4924 1.03986 0.519929 0.854210i \(-0.325958\pi\)
0.519929 + 0.854210i \(0.325958\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 6.94602 0.282396
\(606\) 0 0
\(607\) −9.43845 −0.383095 −0.191547 0.981483i \(-0.561351\pi\)
−0.191547 + 0.981483i \(0.561351\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 39.6155 1.60267
\(612\) 0 0
\(613\) 13.8617 0.559870 0.279935 0.960019i \(-0.409687\pi\)
0.279935 + 0.960019i \(0.409687\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 25.6847 1.03403 0.517013 0.855978i \(-0.327044\pi\)
0.517013 + 0.855978i \(0.327044\pi\)
\(618\) 0 0
\(619\) −22.4924 −0.904047 −0.452023 0.892006i \(-0.649298\pi\)
−0.452023 + 0.892006i \(0.649298\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −55.8617 −2.23805
\(624\) 0 0
\(625\) 59.0000 2.36000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.06913 0.0825016
\(630\) 0 0
\(631\) 4.05398 0.161386 0.0806931 0.996739i \(-0.474287\pi\)
0.0806931 + 0.996739i \(0.474287\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 61.0540 2.42285
\(636\) 0 0
\(637\) 31.6155 1.25265
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 33.4384 1.32074 0.660370 0.750941i \(-0.270400\pi\)
0.660370 + 0.750941i \(0.270400\pi\)
\(642\) 0 0
\(643\) 2.06913 0.0815985 0.0407993 0.999167i \(-0.487010\pi\)
0.0407993 + 0.999167i \(0.487010\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10.1231 −0.397980 −0.198990 0.980001i \(-0.563766\pi\)
−0.198990 + 0.980001i \(0.563766\pi\)
\(648\) 0 0
\(649\) −22.9309 −0.900115
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 19.1231 0.748345 0.374172 0.927359i \(-0.377927\pi\)
0.374172 + 0.927359i \(0.377927\pi\)
\(654\) 0 0
\(655\) −23.4384 −0.915816
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −15.3002 −0.596011 −0.298005 0.954564i \(-0.596321\pi\)
−0.298005 + 0.954564i \(0.596321\pi\)
\(660\) 0 0
\(661\) −26.8769 −1.04539 −0.522695 0.852520i \(-0.675073\pi\)
−0.522695 + 0.852520i \(0.675073\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −58.7386 −2.27779
\(666\) 0 0
\(667\) −25.6155 −0.991837
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.56155 0.137492
\(672\) 0 0
\(673\) −4.73863 −0.182661 −0.0913305 0.995821i \(-0.529112\pi\)
−0.0913305 + 0.995821i \(0.529112\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 41.8617 1.60888 0.804439 0.594036i \(-0.202466\pi\)
0.804439 + 0.594036i \(0.202466\pi\)
\(678\) 0 0
\(679\) −12.2462 −0.469966
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 43.6847 1.67155 0.835774 0.549074i \(-0.185020\pi\)
0.835774 + 0.549074i \(0.185020\pi\)
\(684\) 0 0
\(685\) −74.4384 −2.84415
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −50.7386 −1.93299
\(690\) 0 0
\(691\) −8.63068 −0.328327 −0.164163 0.986433i \(-0.552492\pi\)
−0.164163 + 0.986433i \(0.552492\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −55.6307 −2.11019
\(696\) 0 0
\(697\) 5.36932 0.203377
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −22.9848 −0.868126 −0.434063 0.900883i \(-0.642920\pi\)
−0.434063 + 0.900883i \(0.642920\pi\)
\(702\) 0 0
\(703\) 14.7386 0.555878
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −22.2462 −0.836655
\(708\) 0 0
\(709\) −15.9309 −0.598296 −0.299148 0.954207i \(-0.596702\pi\)
−0.299148 + 0.954207i \(0.596702\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 20.0000 0.749006
\(714\) 0 0
\(715\) 81.6695 3.05427
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −8.49242 −0.316714 −0.158357 0.987382i \(-0.550620\pi\)
−0.158357 + 0.987382i \(0.550620\pi\)
\(720\) 0 0
\(721\) −16.2462 −0.605041
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 61.4773 2.28321
\(726\) 0 0
\(727\) 52.1080 1.93258 0.966288 0.257462i \(-0.0828862\pi\)
0.966288 + 0.257462i \(0.0828862\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.43845 −0.0532029
\(732\) 0 0
\(733\) −19.5616 −0.722522 −0.361261 0.932465i \(-0.617654\pi\)
−0.361261 + 0.932465i \(0.617654\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 11.8078 0.434945
\(738\) 0 0
\(739\) 24.6155 0.905497 0.452748 0.891638i \(-0.350444\pi\)
0.452748 + 0.891638i \(0.350444\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −17.6307 −0.646807 −0.323404 0.946261i \(-0.604827\pi\)
−0.323404 + 0.946261i \(0.604827\pi\)
\(744\) 0 0
\(745\) −34.7926 −1.27470
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 30.4924 1.11417
\(750\) 0 0
\(751\) −11.0540 −0.403365 −0.201683 0.979451i \(-0.564641\pi\)
−0.201683 + 0.979451i \(0.564641\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 11.0691 0.402847
\(756\) 0 0
\(757\) 3.56155 0.129447 0.0647234 0.997903i \(-0.479383\pi\)
0.0647234 + 0.997903i \(0.479383\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −13.5076 −0.489649 −0.244825 0.969567i \(-0.578730\pi\)
−0.244825 + 0.969567i \(0.578730\pi\)
\(762\) 0 0
\(763\) 22.9309 0.830153
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −35.8078 −1.29294
\(768\) 0 0
\(769\) −51.6155 −1.86130 −0.930652 0.365906i \(-0.880759\pi\)
−0.930652 + 0.365906i \(0.880759\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 26.6695 0.959235 0.479618 0.877478i \(-0.340775\pi\)
0.479618 + 0.877478i \(0.340775\pi\)
\(774\) 0 0
\(775\) −48.0000 −1.72421
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 38.2462 1.37031
\(780\) 0 0
\(781\) 49.6155 1.77538
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −31.9697 −1.14105
\(786\) 0 0
\(787\) −54.7386 −1.95122 −0.975611 0.219508i \(-0.929555\pi\)
−0.975611 + 0.219508i \(0.929555\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −5.56155 −0.197746
\(792\) 0 0
\(793\) 5.56155 0.197497
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −24.5464 −0.869478 −0.434739 0.900556i \(-0.643159\pi\)
−0.434739 + 0.900556i \(0.643159\pi\)
\(798\) 0 0
\(799\) −4.00000 −0.141510
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 58.3002 2.05737
\(804\) 0 0
\(805\) −73.4233 −2.58783
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 44.0540 1.54886 0.774428 0.632662i \(-0.218038\pi\)
0.774428 + 0.632662i \(0.218038\pi\)
\(810\) 0 0
\(811\) −7.49242 −0.263095 −0.131547 0.991310i \(-0.541995\pi\)
−0.131547 + 0.991310i \(0.541995\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 7.23106 0.253293
\(816\) 0 0
\(817\) −10.2462 −0.358470
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 20.2462 0.706598 0.353299 0.935511i \(-0.385060\pi\)
0.353299 + 0.935511i \(0.385060\pi\)
\(822\) 0 0
\(823\) −15.3693 −0.535741 −0.267870 0.963455i \(-0.586320\pi\)
−0.267870 + 0.963455i \(0.586320\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.0540 0.523478 0.261739 0.965139i \(-0.415704\pi\)
0.261739 + 0.965139i \(0.415704\pi\)
\(828\) 0 0
\(829\) −10.1922 −0.353991 −0.176995 0.984212i \(-0.556638\pi\)
−0.176995 + 0.984212i \(0.556638\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.19224 −0.110604
\(834\) 0 0
\(835\) 17.5076 0.605875
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −3.50758 −0.121095 −0.0605475 0.998165i \(-0.519285\pi\)
−0.0605475 + 0.998165i \(0.519285\pi\)
\(840\) 0 0
\(841\) −2.75379 −0.0949582
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 73.9309 2.54330
\(846\) 0 0
\(847\) 6.00000 0.206162
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 18.4233 0.631542
\(852\) 0 0
\(853\) −11.5616 −0.395860 −0.197930 0.980216i \(-0.563422\pi\)
−0.197930 + 0.980216i \(0.563422\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −36.4384 −1.24471 −0.622357 0.782734i \(-0.713825\pi\)
−0.622357 + 0.782734i \(0.713825\pi\)
\(858\) 0 0
\(859\) 54.3542 1.85454 0.927270 0.374393i \(-0.122149\pi\)
0.927270 + 0.374393i \(0.122149\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) 0 0
\(865\) 15.4773 0.526243
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 46.0540 1.56227
\(870\) 0 0
\(871\) 18.4384 0.624763
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 102.793 3.47502
\(876\) 0 0
\(877\) 55.5464 1.87567 0.937834 0.347083i \(-0.112828\pi\)
0.937834 + 0.347083i \(0.112828\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 13.4233 0.452242 0.226121 0.974099i \(-0.427395\pi\)
0.226121 + 0.974099i \(0.427395\pi\)
\(882\) 0 0
\(883\) −42.4773 −1.42947 −0.714737 0.699393i \(-0.753454\pi\)
−0.714737 + 0.699393i \(0.753454\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 6.56155 0.220315 0.110158 0.993914i \(-0.464864\pi\)
0.110158 + 0.993914i \(0.464864\pi\)
\(888\) 0 0
\(889\) 52.7386 1.76880
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −28.4924 −0.953463
\(894\) 0 0
\(895\) −64.6695 −2.16166
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −20.4924 −0.683461
\(900\) 0 0
\(901\) 5.12311 0.170675
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 94.0388 3.12596
\(906\) 0 0
\(907\) 46.4233 1.54146 0.770730 0.637162i \(-0.219892\pi\)
0.770730 + 0.637162i \(0.219892\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 34.7386 1.15094 0.575471 0.817822i \(-0.304819\pi\)
0.575471 + 0.817822i \(0.304819\pi\)
\(912\) 0 0
\(913\) −38.4924 −1.27391
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −20.2462 −0.668589
\(918\) 0 0
\(919\) 16.9460 0.558998 0.279499 0.960146i \(-0.409832\pi\)
0.279499 + 0.960146i \(0.409832\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 77.4773 2.55020
\(924\) 0 0
\(925\) −44.2159 −1.45381
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −40.3002 −1.32221 −0.661103 0.750295i \(-0.729911\pi\)
−0.661103 + 0.750295i \(0.729911\pi\)
\(930\) 0 0
\(931\) −22.7386 −0.745229
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −8.24621 −0.269680
\(936\) 0 0
\(937\) 35.4924 1.15949 0.579743 0.814799i \(-0.303153\pi\)
0.579743 + 0.814799i \(0.303153\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 8.00000 0.260793 0.130396 0.991462i \(-0.458375\pi\)
0.130396 + 0.991462i \(0.458375\pi\)
\(942\) 0 0
\(943\) 47.8078 1.55683
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 19.4233 0.631172 0.315586 0.948897i \(-0.397799\pi\)
0.315586 + 0.948897i \(0.397799\pi\)
\(948\) 0 0
\(949\) 91.0388 2.95525
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −28.5616 −0.925199 −0.462600 0.886567i \(-0.653083\pi\)
−0.462600 + 0.886567i \(0.653083\pi\)
\(954\) 0 0
\(955\) 13.6695 0.442335
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −64.3002 −2.07636
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 53.0928 1.70912
\(966\) 0 0
\(967\) −50.1771 −1.61359 −0.806793 0.590834i \(-0.798799\pi\)
−0.806793 + 0.590834i \(0.798799\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −20.4233 −0.655415 −0.327707 0.944779i \(-0.606276\pi\)
−0.327707 + 0.944779i \(0.606276\pi\)
\(972\) 0 0
\(973\) −48.0540 −1.54054
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.36932 −0.0438083 −0.0219042 0.999760i \(-0.506973\pi\)
−0.0219042 + 0.999760i \(0.506973\pi\)
\(978\) 0 0
\(979\) −55.8617 −1.78535
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −31.2311 −0.996116 −0.498058 0.867144i \(-0.665953\pi\)
−0.498058 + 0.867144i \(0.665953\pi\)
\(984\) 0 0
\(985\) 25.5312 0.813493
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12.8078 −0.407263
\(990\) 0 0
\(991\) −13.7538 −0.436903 −0.218452 0.975848i \(-0.570101\pi\)
−0.218452 + 0.975848i \(0.570101\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −30.6695 −0.972289
\(996\) 0 0
\(997\) 39.9309 1.26462 0.632312 0.774714i \(-0.282106\pi\)
0.632312 + 0.774714i \(0.282106\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8784.2.a.bg.1.2 2
3.2 odd 2 2928.2.a.u.1.1 2
4.3 odd 2 1098.2.a.m.1.2 2
12.11 even 2 366.2.a.h.1.1 2
60.59 even 2 9150.2.a.bh.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
366.2.a.h.1.1 2 12.11 even 2
1098.2.a.m.1.2 2 4.3 odd 2
2928.2.a.u.1.1 2 3.2 odd 2
8784.2.a.bg.1.2 2 1.1 even 1 trivial
9150.2.a.bh.1.2 2 60.59 even 2